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a b s t r a c t

In the paper we study the computational complexity of the backbone coloring problem for
planar graphs with connected backbones. For every possible value of integer parameters
λ ≥ 2 and k ≥ 1 we show that the following problem:

Instance: A simple planar graph G, its connected spanning subgraph (backbone) H .
Question: Is there a λ-backbone coloring c of G with backbone H such that max c(V (G))

≤ k?

is either NP-complete or polynomially solvable (by algorithms that run in constant, linear
or quadratic time). As a result of these considerations we obtain a complete classification
of the computational complexity with respect to the values of λ and k.

We also study the problem of computing the backbone chromatic number for two
special classes of planar graphs: cacti and thorny graphs. We construct an algorithm that
runs in O(n3) time and solves this problem for cacti and another polynomial algorithm that
is 1-absolute approximate for thorny graphs.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

One of the main algorithmic issues in area of radio network design is the frequency assignment problem. Consider, for
example, the radio network with given topology and assume existence of a certain substructure in the network (called the
backbone)with higher requirements concerning the level of interferences. Such connections could be recognized as the ones
with high traffic loads, crucial for the reliability of communication. In the case of backbone we should assign to the adjacent
base stations the channels separated by a certain frequency gap, while for the rest of the network it suffices not to assign the
same channel to the adjacent stations. The solution of this problem is to minimize the total frequency bandwidth required
by the network while keeping the acceptable level of interference between signals.

This problem is closely related to the general framework for graph coloring problems: given a radio network, we can
model its topology as a graph and the assignment of the frequency channels to the transmitters as a color assignment. In
this model the base stations (transmitters, receivers) and possible interferences between them are represented respectively
as the vertices and the edges of the graph. We define two vertices as adjacent if their frequency bands are close enough that
their signals interfere.

Formally, in thismodel of radio networks, introduced by Broersma in [1], we consider the so-called λ-backbone colorings
of a simple graph G with backbone (spanning subgraph) H , i.e. functions c : V (G) → N+ which satisfy |c(u) − c(v)| ≥ λ
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for each edge uv ∈ E(H) and c(u) ≠ c(v) for each edge uv ∈ E(G), where λ ≥ 2 is an integer. The λ-backbone coloring
problem (BBC) is to find a λ-backbone coloring function c whichminimizes the total span or, equivalently, max c(V (G)). The
smallest integer k such that there exists a λ-backbone coloring c with max c(V (G)) = k is called the λ-backbone chromatic
number and denoted by BBCλ(G,H). A λ-backbone coloring function c is optimal if and only if max c(V (G)) = BBCλ(G,H).

The first tight lower and upper bounds on BBCλ(G,H) depending on the chromatic number χ(G) of Gwere presented by
Broersma in [1]:

χ(G) ≤ BBCλ(G,H) ≤ λ(χ(G) − 1) + 1. (1)

Another bounds for general graphs that depend on χ(H) and the number n of vertices of G, were presented in [9]:

λ(χ(H) − 1) + 1 ≤ BBCλ(G,H) ≤ λ(χ(H) − 1) + n − χ(H) + 1. (2)

Clearly the backbone coloring problem is an extension of the classical vertex coloring problem so computing the exact
value of the backbone chromatic number in general case is NP-hard. Furthermore, deciding whether for a given number k
the inequality BBCλ(G,H) ≤ k holds is NP-complete for any k ≥ λ + 2 even in a case when H is restricted to a matching [3].
There were some works concerning the backbone coloring problem for planar graphs, see e.g. [2,8], but none of them gave
a complete classification of its computational complexity. In the paper we deal with it.

The remainder of the paper is organized as follows. Section 2 contains preliminary results. In Section 3 we present our
main result: the classification of the computational complexity of the following problem for all possible values λ and k:

Instance: A simple planar graph G, its connected spanning subgraph (backbone) H .
Question: Is there a λ-backbone coloring c of Gwith backbone H such that max c(V (G)) ≤ k?

The last section contains an algorithm for optimal coloring of cacti with connected backbones and 1-absolute approxi-
mate algorithm for coloring of thorny graphs. Both algorithms are polynomial.

2. Preliminaries

Theorem 1. Let G be a graph and H be its spanning bipartite subgraph. Then

BBCλ(G,H) ≤ λ + 2χ(G) − 2. (3)

Proof. It is an easy consequence of Proposition 13 of [8], which states that BBCλ(G,H) ≤ (χ(G) + λ − 2)χ(H) − λ + 2
provided that G is a graph, H is its subgraph and λ ≥ 2. �

Lemma 2. Let 1 ≤ x ≤ λ. If H is a spanning subgraph of a nonempty graph G and c : V → N+ is a λ-backbone coloring of graph
G with backbone H such that max c(V ) ≤ λ + x then:

(1) the vertices colored with 1, 2, . . . , x form an independent set in H,
(2) the vertices colored with x + 1, x + 2, . . . , λ are isolated in H,
(3) the vertices colored with λ + 1, λ + 2, . . . , λ + x form an independent set in H,
(4) H is bipartite and, provided it is connected, its bipartition is c−1({1, 2, . . . , x}) and c−1({λ + 1, . . . , λ + x}).

Proof. (1), (3) Obvious.
(2) Easy consequence of the fact that min{x + 1, x + 2, . . . , λ} + λ > λ + x and max{x + 1, x + 2, . . . , λ} − λ ≤ 0.
(4) Follows from (1)–(3) and the fact that H has no isolated vertices. �

3. Main results

In this section we present the computational complexity of the backbone coloring problem for general planar graphs
with connected backbones.

Theorem 3. If G is planar and H is a connected spanning subgraph of G then the problem BBCλ(G,H) ≤ k is decidable in O(1)
time for k ≤ λ.

Proof. If H is nonempty, then BBCλ(G,H) ≥ λ+1. If H is both empty and connected, H = G = K1 and BBCλ(G,H) = 1. �

Theorem 4. If G is planar and H is a connected spanning subgraph of G then the problem BBCλ(G,H) ≤ λ + 1 is decidable in
O(n) time.

Proof. We prove that this problem is equivalent to the problem of deciding whether G is bipartite.
(⇒) Let BBCλ(G,H) ≤ λ+1. From Lemma 2we know that H is bipartite and the only colors used are 1 and λ+1. Gmust

be also bipartite, otherwise the coloring would contain at least one vertex with a color outside of {1, λ + 1}.
(⇐) Let G be bipartite. Then Gwith any backbone H can be colored using the colors 1 and λ + 1 assigned to the vertices

in the first and second partition of G, respectively. �
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Fig. 1. Triangle that replaces the edge uv.

Fig. 2. Gadgets that replaces the vertex u: (a) the case k = λ + 3; (b) the case k = λ + 4; (c) the case k = λ + 5.

The above result can be strengthened for λ ≥ 5: BBCλ(G,H) ≤ λ + 1 is decidable in O(n) time for planar G and any
backbone H . Indeed, BBCλ(G,H) ≤ λ + 1 implies that both G and H are bipartite. If they are bipartite, then we color Gwith
colors 1, λ + 1 on all non-isolated vertices in H and use the colors {2, 3, 4, 5} to color all remaining vertices (this is possible
due to the famous Four Color Theorem).

Theorem 5. If G is planar and H is a connected spanning subgraph of G then the problem BBCλ(G,H) ≤ λ + 2 is decidable in
O(n2) time.

Proof. It was proved in [8] (see Theorem 17) that the problem is polynomially solvable even for nonplanar graphs. The proof
is based on a reduction to the 2-SAT problem. The reduction can be done in O(n2) time and the 2-SAT is solvable in O(n2)
time [5], so our claim holds. �

The requirement that H is connected is necessary. Otherwise, it was proved in [3] that for instances with matching
backbone the problem BBCλ(G,H) ≤ λ + 2 is NP-complete. In fact, the proof implies (although it is not stated explicitly)
that NP-completeness holds even when the problem is restricted to planar graphs with matching backbones.

Theorem 6. If G is planar and H is a connected spanning subgraph of G, then the problem BBCλ(G,H) ≤ k is NP-complete:

(1) for k = λ + 3 if λ ≥ 3,
(2) for k = λ + 4 if λ ≥ 4,
(3) for k = λ + 5 if λ ≥ 5.

Proof. We pick an arbitrary spanning tree T of G and replace every edge uv of T by a triangle shown in Fig. 1. Next, for each
vertex u of G, we replace v by a gadget shown in Fig. 2 (in both cases bold edges belong to the backbone T ′). We claim that
the resulting graph G′ with the backbone spanning tree T ′ has a λ-backbone coloring that uses colors from 1 to k if and only
if G is 3-colorable.

If G is 3-colorable, we simply expand the 3-coloring to all new vertices by coloring them as follows: vertices of degree 2
in T ′ receive color λ + 3 and all other pendant vertices connected with vertex in G of color x receive colors x+ λ, x+ λ + 1,
. . . , x + k − 3. This gives the desired λ-backbone coloring.

Now let c ′ be a λ-backbone coloring of G′ with backbone T ′ such that max c ′(V (G′)) ≤ k. All vertices of the original graph
G lie in the same partition of T ′, so, due to Lemma 2, they are either colored with 1, 2, . . . , k−λ or λ+1, λ+2, . . . , k. Without
loss of generality we assume that the first possibility holds. Let v be a vertex of G. Let u1, u2 be its pendant (in T ′) neighbors
with maximum and minimum color, respectively. v has exactly k − λ − 2 pendant neighbors in T ′ and all of them have
different colors. Therefore c ′(v) ≤ c ′(u1) − λ ≤ c ′(u2) − (k − λ − 3) − λ = c ′(u2) − k + 3 ≤ 3 which proves that G is
3-colorable.

Since it is well known that 3-coloring of planar graphs is NP-complete (even for graphs with degree 4, [4]), the problem
BBCλ(G,H) ≤ k for planar graphs and connected backbones is also NP-complete. �

Theorem 7. If G is planar and H is a connected spanning subgraph of G, then the problem BBCλ(G,H) ≤ k is decidable in O(n)
time for every fixed λ + 6 ≤ k ≤ 2λ.

Proof. If χ(H) ≥ 3 then BBCλ(G,H) ≥ 2λ + 1—hence H is necessarily bipartite. It turns out that it is also a sufficient
condition, since from Theorem 1 we have BBCλ(G,H) ≤ λ + 2χ(G) − 2 ≤ λ + 6. �

Theorem 8. If G is planar and H is a connected spanning subgraph of G, then the problem BBCλ(G,H) ≤ k is NP-complete for
every fixed 2λ + 1 ≤ k ≤ 3λ.

Proof. It is known (see the right-hand side of the inequality (1) and the left-hand side of the inequality (2)) that BBCλ(G,G) =

λ(χ(G)− 1)+ 1. Therefore BBCλ(G,G) ≤ k if and only if χ(G) ≤ 3 for all 2λ+ 1 ≤ k ≤ 3λ. To complete the proof it suffices
to recall that the 3-coloring problem for planar graphs is NP-complete [4]. �
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Table 1
The complexity of the backbone coloring problem: G—planar, H—connected.

Theorem 9. If G is planar andH is a connected spanning subgraph of G, then the problemBBCλ(G,H) ≤ k is trivial for k ≥ 3λ+1.

Proof. Every planar graph is 4-colorable, so from the upper bound from inequality (1) we obtain BBCλ(G,H) ≤ 3λ+ 1. �

Wemay sum up all presented results in Table 1, containing the complete classification of the computational complexity
with respect to the values of λ and k. Similar results, but not complete, for backbones being trees are presented in Table 2.

4. Backbone coloring of cacti and thorny graphs

In this section, we present algorithms for solving the backbone coloring problem for special classes of planar graphs:
cacti and thorny graphs. Cacti, introduced first in literature under name Husimi trees [7], are defined as follows:

Definition 1. A connected graph is a cactus if and only if every edge of it belongs to at most one cycle.

It can be shown that every cactus can be constructed from a single vertex using a sequence of two operations: addition of
a new pendant vertex or attachment of a cycle to one of the vertices of the graph. Clearly, every cactus is outerplanar and
therefore also planar. The chromatic number of the cacti is at most 3. Cacti can be recognized in linear time. In [6], there was
introduced the class of thorny graphs:

Definition 2. A connected graph G is thorny if and only if it has at least one decomposition into subgraphs G1, G2, . . . ,Gk
so the following conditions are fulfilled:

(1) all graphs Gi, 1 ≤ i ≤ k, are cycles or paths,
(2) graph G is a union of the graphs G1, G2, . . . ,Gk,
(3) for every 2 ≤ i ≤ k, the union of graphs G1, G2, . . . ,Gi−1 intersects with Gi only in a vertex or an edge.

As with the cacti, we can define thorny graphs as results of a sequence of three operations, starting from the K1 graph:
addition of a new pendant vertex, attachment of a cycle to one of the vertices of the graph or attachment of a cycle to one of
the edges of the graph. Hence, every cactus is thorny and every thorny graph is planar and connected. Furthermore, it was
shown in [6] that outerplanar graphs form a subclass of thorny graphs. In the same paper, there was presented algorithm
that recognizes thorny graphs in O(n3) time.

Since thorny graphs are 3-colorable [6], we know from inequalities (1) and (2) that ifH is not bipartite then BBCλ(G,H) =

2λ + 1. Furthermore, we obtain the following corollary from Theorem 1:

Corollary 10. If G is a thorny graph and H is a connected bipartite subgraph of G then BBCλ(G,H) ≤ λ + 4. �
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Table 2
The complexity of backbone coloring problem: G—planar, T—spanning tree.

Fig. 3. Thorny graph Gwith backbone H , BBCλ(G,H) = λ + 4.

This bound is tight, at least for λ ≥ 3. An example is given in Fig. 3. Suppose that this graph has a λ-backbone coloring
c such that max c(V (G)) ≤ λ + 3. Then, by Lemma 2, the non-backbone triangle v1v2v3 is colored either with {1, 2, 3} or
{λ + 1, λ + 2, λ + 3}. Without loss of generality we assume that the first possibility holds. Then, at least one of the vertices
ui will be assigned λ + 3 as its color since all edges uivj are in H . Hence, there would be a vertex wi such that for some vj
and uk we will have wivj ∈ E(H), c(vj) = 3 and wiuk ∈ E(G), c(uk) = λ + 3. Therefore, such wi cannot be colored using any
color less than λ + 4—a contradiction.

However, in case of cacti graphs we may tighten the upper bound:

Theorem 11. If G is a cactus and H is a connected bipartite spanning subgraph of G then BBCλ(G,H) ≤ λ + 3. The bound is
tight.

Proof. We claim that we can find a λ-backbone coloring using only colors from the set {1, 2, λ + 2, λ + 3}. G can be
constructed from a single vertex using a sequence two operations: addition of a new pendant vertex or attachment of a
cycle to one of the vertices of the graph. A single vertex can be easily colored with 1. To complete the proof, it suffices to
show that, given a partial coloring, we can extend it without recoloring in both mentioned operations.

If we attach a pendant vertex v to a vertex u already colored with c(u), we may assign c(v) = λ + 4 − c(u). If we attach
a pendant even cycle, we may assign colors λ + 4 − c(u) and c(u) alternately to the vertices on the cycle, thus obtaining a
valid coloring.

The only remaining case is thus the attachment of an odd cycle to a vertex v. Notice that such cycle contains one edge
outside of H , since otherwise χ(H) > 2. Let us denote this edge as u1u2. Then, either both paths: from v to u1 and from v to
u2 have odd or even length. In the first case (left example in Fig. 4) we assign the colors λ + 4 − c(v) and c(v) alternately
along both paths without u1 and color u1 with λ + 3 − c(v).

In the second case (right example in Fig. 4) it is possible that either v = u1 or v = u2 (but not both since u1 ≠ u2). Hence,
we assign the colors λ + 4 − c(v) and c(v) along both paths and finally recolor an arbitrary ui ≠ v with λ + 3 − c(v).

Finally, the graph in Fig. 5 demonstrates that this bound cannot be improved, even if we restrict backbones to trees.
Suppose on the contrary that it has λ-backbone coloring that uses colors 1, 2, . . . , λ + 2. Then, one of the vertices of the
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(a) An example of odd paths. (b) An example of even paths.

Fig. 4. The attachment of an odd cycle to a vertex v.

Fig. 5. Cactus Gwith backbone H , BBCλ(G,H) = λ + 3.

internal triangle is coloredwith a color from the set {2, 3, . . . , λ+1}. But in this case, we cannot assign to the two uncolored
its neighbors different colors less than λ + 3, which would satisfy the backbone coloring conditions. �

This result, together with Theorems 3–5, gives us a complete algorithm for finding an optimal coloring of a given cactus
Gwith connected spanning backbone H . Since cacti can be decomposed into the sequence of two operations: attachment of
a single vertex and attachment of a cycle (even or odd), starting from a single vertex in O(n3), the whole algorithm runs in
O(n3). In case of thorny graphs we obtain 1-absolute approximate algorithm by combining the results from Theorems 3–5
with Corollary 10.
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