
An Analysis of Elliptical-Rectangular Multipatch

Structure on Dielectric-Coated Confocal and

Non-Confocal Elliptic Cylinders
Rafal Lech, Adam Kusiek, Wojciech Marynowski

Abstract—A rigorous analysis of the resonance frequency prob-
lem of an elliptical-rectangular microstrip structure mounted
on dielectric coated elliptic conducting cylinder, with electrically
small radius, is investigated in this paper. A full-wave analysis
and a moment-method calculation are employed. The analysis
is carried out considering the expansion of the field as a series
of Mathieu functions. The complex resonance frequencies of the
structure are studied. Modes suitable for antenna application are
also investigated. Numerical results for the complex resonance
frequency and radiation patterns are calculated and verified
by comparing them with results from commercial software
and our own measurements of manufactured prototypes. The
difference between confocal and non-confocal dielectric coated
elliptic cylinders is investigated.

Index Terms—Microstrip antenna arrays, elliptical-rectangular
structure, method of moments, complex resonance frequency,
antenna radiation patterns, confocal, non-confocal.

I. INTRODUCTION

C
ONFORMAL microstrip structures find many practi-

cal applications in airplanes, spacecraft, speedboats and

other high-speed vehicles where aerodynamic or hydrody-

namic considerations necessitate their use. The most common

application of such structures are in conformal antennas. Due

to the possibility of their merging into curved surfaces they can

also be utilized on the walls of buildings, towers or columns

without disturbance of the aesthetics of the building and

local architecture. Another advantage of utilizing conformal

antennas arises from electromagnetic considerations and the

need to obtain the specific radiation characteristics. Antennas

with curved surfaces provide a higher visible range compared

to planar antennas. An example of such a structure would be

a circular antenna array or an array of radiators located on the

surface of a cylinder, which provide omni-directional radiation

patterns in the azimuth plane, or else provide, in this plane,

the possibility of beam control [1].

The methods of analysis of conformal antenna are com-

monly divided according to the point of view of antenna

dimensions [1]. Electrically small antennas are often analyzed

using orthogonalization and mode-matching methods [2] [3],
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the method of moments combined with integral equations [4]–

[10], the finite element method, often combined with other

approaches [11], and the finite-difference time-domain method

[12]. Large antennas are mainly analyzed with the use of

a high-frequency approach, which uses various asymptotic

techniques to find approximate solutions, often combined with

the method of moments [13]–[15] to take into account small

details in the antenna structure geometry.

Antennas printed on layered circular cylinders have been

fully investigated and described in the literature. However,

a more interesting and more general case is the elliptic-

cylindrical body, which allows surfaces to be investigated

with variable radius of curvature and model, e.g., wings and

tails of airplanes. The analysis of elliptical bodies is mainly

considered for the scattering problems [16]–[18]. The case of

antennas printed on elliptic-cylindrical surfaces has so far been

considered only in a few papers. The results for radiation

by sources placed on metallic surfaces based on asymptotic

techniques can be found in [19], [20]. A cavity-backed patch

antenna mounted on an elliptic cylinder was analyzed in [21].

Axial slot antennas on conducting elliptic cylinders with a

dielectric coating were investigated in [22], [23]. The results of

resonance frequencies and radiation patterns calculation using

cavity model analysis of a rectangular patch antenna printed

on a thin elliptic-cylindrical substrate, using the approximation

of constant dielectric layer thickness for confocal ellipses, can

be found in [24] and [25].

In this paper, a complex resonant frequency problem of an

elliptical-rectangular microstrip structure mounted on ellipti-

cal cylinder with a dielectric substrate layer is investigated.

Both confocal and non-confocal cases of dielectric-coated

conducting elliptic cylinder are considered. The thickness of

the substrate layer is assumed to be irregular in the case of

confocal ellipses and constant in the case of non-confocal

ellipses. A full-wave analysis and a moment-method calcu-

lation are employed. The analysis is carried out considering

the expansion of the field as a series of Mathieu functions. For

the analysis of the non-confocal case the additional theorem

for Mathieu functions is utilized. The proposed model can be

easily extended to take in to account the additional layers in

the antenna structure (dielectric antenna covers or air gaps in

substrate or superstrate layers) by using procedure presented

by authors in [10] for patch antennas configurations on circular

cylinder. Also, to the best knowledge of the authors of this

article, the comparison between microstrip structures placed on

confocal and non-confocal dielectric-coated conducting elliptic
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cylinders is presented for the first time. From this comparison

it is evident that the approximation of constant dielectric layer

thickness for confocal ellipses case, even for a thin elliptic-

cylindrical substrate, is incorrect. The complex resonance

frequencies and radiation patterns for the chosen examples

are calculated and the results are verified by comparing them

with those obtained from a commercial simulator and our own

measurements of manufactured prototypes.

II. FORMULATION OF THE PROBLEM

Fig. 1. The geometry of an investigated structure - multipatch microstrip
structure on elliptical body.

Fig. 2. The cross-section of the structure; (a) confocal ellipses; (b) non-
confocal ellipses.

The investigated structure is composed of N (n = 1, . . . , N )

patches located on an elliptical surface with an elliptical

cylinder axis along the ~iz direction, as schematically illus-

trated in Fig. 1. Two versions of the microstrip structure are

investigated: in the first one the conducting cylinder and the

dielectric layer are built from confocal ellipses (see Fig. 2(a)),

while in the second they are built from non-confocal ellipses

(see Fig. 2(b)). Here u and v are the radial and the angular

coordinates, respectively, and d is the focal length. The patches

are placed on a substrate layer with relative permittivity εr1.

Each patch is of length Ln (along the z axis) and width Wn

(along the v axis), and is located arbitrarily on the elliptical

surface, i.e., between vn and v′n along the v axis and between

zn and z′n along the z axis on the surface with u1. The

contour of the conducting cylinder is placed in u = u0,

and the interface between dielectric layer and air space is

placed in u = u1. In the case of confocal ellipses both u0

and u1 interfaces are defined in the same elliptical coordinate

system with focal length d. In the case of non-focal ellipses

the ellipses have different focal length (d1 for the ellipse of

conducting cylinder and d2 for the interface between dielectric

layer and air space), and therefore the interfaces are denoted

as ū0 and u1 (a line above the variable will indicate the

coordinate system for the inner ellipse while the variable

without the line will denote the coordinate system of the outer

ellipse).

In the analysis of the confocal ellipses case, the contour of

the conducting cylinder and the dielectric layer have the same

focal length, which simplifies the analysis of the structure. For

the non-confocal ellipses case, both contours have different

focal lengths and the analysis of such structure requires the use

of an additional theorem for the Mathieu functions [26], which

increases the complexity of analysis. In the case when the

values of both minor and major axes of the ellipses are equal,

which indicates that the structure has circular cross-sections,

both confocal and non-confocal cases are identical. However,

with the decreasing minor-over-major axis ratio the thickness

of the dielectric layer, in the case of confocal ellipses, becomes

irregular. The more elliptical structure (lower value of minor-

over-major axis) the higher irregularity of the dielectric layer

thickness and in result the bigger difference between the height

of the dielectric layer under the patch edges and its center

(see Fig. 2(a)). Furthermore the irregular thickness of the

dielectric layer is somewhat difficult to realize in practical

application. In the literature it is sometimes assumed that

for thin dielectric layers (u1 − u0 ≪ u0), and assuming

that (d cosh(u1) − d cosh(u0)) ≪ λ the substrate thickness

can be considered as constant at any value of the angular

coordinate. However, as will be shown in the results section,

this assumption, even for thin layers, does not always lead to

correct results.

It is assumed that the patches are made of an ideal con-

ductor, and therefore that on the patch surfaces the tangential

components of the electric field are zero. Utilizing this condi-

tion the unknown surface currents on the patches can be found.

The structure is divided into two regions: a dielectric layer and

an air space outside the structure. The z components of the

electric and magnetic fields, due to the current distribution on

the patch in each region, have the following form (suppressing

e−iωt time dependence):

F (κ)
z (u, v, z) =

1

2π

∞
∫

−∞

dkze
ikzz

×
∑

ν

(

L
∑

l=0

M
(ν)
cl (u, qκ)A

(ν),ζ,e
l,κ cel(v, qκ)

+
L
∑

l=1

M
(ν)
sl (u, qκ)A

(ν),ζ,o
l,κ sel(v, qκ)

)

(1)

where F, ζ = {E,H} relate the functions and coefficients

to electric or magnetic fields. κ = {1, 2} denote the region.

M
(ν)
cl (·) and M

(ν)
sl (·) are even and odd radial Mathieu func-

tions, respectively, of order l and kind ν = {1, 4}. cel(·) and

sel(·) are even and odd angular Mathieu functions, respec-

tively, of order l. A
(ν),ζ,e(o)
l,κ are unknown coefficients relevant
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to even (e) and odd (o) functions of order l and kind ν and

they will be determined by satisfying the boundary conditions.

The parameters qκ are related to the transverse propagation

constant kz as qκ = (k2κ − k2z)d
2/4, where kκ = ω

√
εrκε0µ0.

In the case of non-confocal ellipses, in the dielectric layer,

this parameter will be defined for focal length d1 as q̄1 and

for focal length d2 as q1.

The v components of the electric and magnetic fields can

easily be obtained from z components:

Ev =
1

h(k2κ − k2z)

(

∂2Ez

∂z∂v
+ iωµ

∂Hz

∂u

)

(2)

Hv =
1

h(k2κ − k2z)

(

∂2Hz

∂z∂v
− iωε

∂Ez

∂u

)

(3)

where h = d
√

cosh2(u)− cos2(v).

In the outer region the coefficients A
(1),ζ,e(o)
l,2 = 0, and in

region 1, applying the boundary condition on the tangential

components of the electric field (Ez and Ev) at u = ū0 the

coefficients A
(4),ζ,e(o)
l,1 take the following form:

A
(4),E,e(o)
l,1 = −

M
(1)
c(s)l(ū0, q̄1)

M
(4)
c(s)l(ū0, q̄1)

A
(1),E,e(o)
l,1 , (4)

A
(4),H,e(o)
l,1 = −

M
′(1)
c(s)l(ū0, q̄1)

M
′(4)
c(s)l(ū0, q̄1)

A
(1),H,e(o)
l,1 (5)

where prime indicates derivatives of radial Mathieu functions

with respect to the u variable. For the considered structure we

obtain eight sets of unknown coefficients (each set of even

coefficients is composed of L + 1 elements, and each set of

odd coefficients has L elements).

In order to calculate the resonance frequencies and radiation

patterns of the structure the unknown coefficients of the fields

in the structure need to be derived. Following the procedure

in [10] we write the boundary conditions for the tangential

components of the electric and magnetic fields in the spectral

domain at the interface u = u1 and rearrange them to take the

following form:

H̃
(2)
z (v, u1, kz)− H̃

(1)
z (v, u1, kz) = −J̃v(v, kz)

H̃
(2)
v (v, u1, kz)− H̃

(1)
v (v, u1, kz) = J̃z(v, kz)

Ẽ
(2)
z (v, u1, kz)− Ẽ

(1)
z (v, u1, kz) = 0

Ẽ
(2)
v (v, u1, kz)− Ẽ

(1)
v (v, u1, kz) = 0

(6)

where J̃v(v, kz) and J̃z(v, kz) are patch surface current den-

sities in the spectral domain defined as follows:

[

J̃v(v, kz)

J̃z(z, kz)

]

=
1

2π

∞
∫

−∞

dze−ikzz

[

Jv(v, z)
Jz(v, z)

]

(7)

In order to solve the boundary problem (6) for the non-

confocal ellipses, the fields in the dielectric layer (region 1)

need to be transformed from the elliptical coordinate system

of the conducting cylinder to an elliptical coordinate system

of the interface between dielectric layer and air space. The

transformation is applied using the additional theorem of

Mathieu functions, as described in appendix A. Applying

Galerkin’s method to (6), and using angular Mathieu functions

from outer region cel(v, q2) and sel(v, q2) as testing functions,

we obtain eight equations. These equations are then rearranged

and rewritten in matrix form as follows:
[

X11 X12

X21 X22

] [

Ac

Ar

]

=

[

J̃

0

]

(8)

where vector Ac contains four sets of amplitudes from the

chosen region. In the case of calculating the radiation patterns

the best choice is to pick the amplitudes of the fields in the

outer region. When the resonance frequencies of the antenna

are calculated it is suitable to pick the amplitudes of the fields

in regions located above or below the patch. Therefore, for

the investigated structure, vector Ac contains the amplitudes

from the outer region and has the following form:

Ac =
[

A
(4),E,e
2 ,A

(4),E,o
2 ,A

(4),H,e
2 ,A

(4),H,o
2

]T

(9)

where A
(4),(·),o
2 = [A

(4),(·),o
1,2 , . . . , A

(4),(·),o
L,2 ], and A

(4),(·),e
2 =

[A
(4),(·),e
0,2 , A

(4),(·),e
1,2 , . . . , A

(4),(·),e
L,2 ]. Vector Ar contains all the

other amplitudes. The current densities vector is arranged as:

J̃(kz) = [J̃e
v(kz), J̃

o
v(kz), J̃

e
z(kz), J̃

o
z(kz)]

T (10)

where the elements of vectors J̃
e(o)
v(z)(kz) have the following

form:

(

J̃
e
v(z)(kz)

)L

l=0
=

2π
∫

0

dv cel(v, q2)J̃v(z)(v, kz), (11)

(

J̃
o
v(z)(kz)

)L

l=1
=

2π
∫

0

dv sel(v, q2)J̃v(z)(v, kz) (12)

Matrices X11, X12, X21 and X22 are square matrices of

size 2(2L + 1). The elements of these matrices are given in

appendix A.

From (8), the relation between chosen coefficients and patch

surface current densities can be derived:

Ac =
(

X11 −X12X
−1
22 X21

)−1
J̃ = X

′
J̃ (13)

Obtaining the unknown coefficients Ac, the expressions for

the transverse electric fields of Ez and Ev on all patch surfaces

in the outer region can be written as follows [9]:

E(u1, v, z) =
1

2π

∞
∫

−∞

dkze
ikzz

×Y(u1, v, kz)X
′(kz)J̃(kz) = 0 (14)

where the electric vector E = (Ev(·), Ez(·))T and the ele-

ments of matrix Y are as defined in appendix B.

The integral equation (14) is solved using Galerkin’s mo-

ment method. Following Galerkin’s procedure, the surface

current densities on the nth patch are expanded in terms of a

linear combination of known basis functions:

~J(v, z) =

M1,n
∑

m1=1

I(n)v,m1
J (n)
v,m1

(v, z)~iv +

M2,n
∑

m2=1

I(n)z,m2
J (n)
z,m2

(v, z)~iz

(15)

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


JOURNAL OF LATEX CLASS FILES, VOL. 11, NO. 4, DECEMBER 2012 4

where I
(n)
m denotes unknown coefficients for the mth basis

function for the nth patch. The most common choices of basis

functions are those obtained from the cavity-model functions

[24], [27], which take the following form:

J (n)
vm1

(v, z) = sin
m1vπsn

Sn

cos
m1zπ(z − zn)

z′n − zn
(16)

J (n)
zm2

(v, z) = cos
m2vπsn

Sn

sin
m2zπ(z − zξ)

z′ξ − zξ
(17)

where mv,mz = 0, 1, . . . ,∞ and their combination denotes

the mode number of the basis function. Sn is the length of

elliptical arc covered by the current distribution, which is equal

to the width Wn of the nth patch, and s is the curvilinear

coordinate that follows the arc.

The spectral amplitudes of the current distribution are

calculated from:

J̃(v, kz) =
1

2π

z′

n
∫

zn

dze−ikzzJ(v, z) (18)

Substituting the calculated spectral components of the cur-

rent distributions into (14) and then using the chosen basis

functions as testing functions and integrating the obtained

equation over the patch area, the following matrix equation

is obtained:
[

Zvv Zvz

Zzv Zzz

] [

Iv

Iz

]

= 0 (19)

In the results section the resonance frequencies of single-

patch configurations are shown, whereby I
v(z) in (19) has the

following form:

I
v(z) = [Iv(z),1, . . . , Iv(z),M1(2)

]T (20)

where M1(2) is the number of modes for the patch antenna.

The terms of the sub-matrices Z(·) are defined as follows:

[Zx,y]pr =

∞
∫

−∞

dkz

v′

n
∫

vn

dv

J̃x,p(v,−kz)Y(u1, v, kz)X
′(kz)J̃y,r(kz) (21)

where x, y = (v, z), p and r denote the mode number for the

structure.

Non-trivial solutions can exist if the determinant of (19)

vanishes, that is, det(Z) = 0. This is the eigenvalue equation,

the roots of which are complex frequencies f = Ref + jImf
for a particular mode [7]. This complex frequency gives the

resonant frequency Ref and the quality factor Ref/2Imf
for the microstrip patch. The imaginary part of the complex

resonance frequencies accounts for the radiation losses [8].

The far-zone radiated fields in the spherical coordinates are

given by [9]:

[

Eθ

Eφ

]

∼= 1

sin θ

[

−1 0

0
√

µ0

ε0

]

[

Ez

Hz

]

(22)

In the far field (r → ∞) the z components of electric and

magnetic fields have the following form:

Fz =
−ieik0r

πr

[

L
∑

l=0

(i)lcel(v, q2)A
(4),F,e
2 (k0 cos θ)

+
L
∑

l=1

(i)lsel(v, q2)A
(4),F,o
2 (k0 cos θ)

]

(23)

where F = {E,H}. To calculate the radiation pattern the

field coefficients need to be calculated from (13), assuming

kz = k0 cos θ, and introduced into (23).

III. RESULTS

In this section the numerical results of several chosen

configurations are presented. The calculations of the resonant

frequencies of TM10 mode (the patch current is excited in

the v direction) and TM01 mode (the patch current is excited

in the z direction) of single-patch configurations placed on

different sides of the ellipse versus the minor-over-major axis

ratio amin/amax of the cylinder are performed. The compari-

son between the confocal and non-confocal cases is made and

the obtained results are compared with the calculations of the

commercial software simulator ANSYS HFSS. The radiation

patterns for the chosen single patches and patches arrays are

established and the obtained results are also compared with

the HFSS calculations, as well as our own measurements.

Similarly to the case of the microstrip structure on the

circular cylinder along the original path of integration, branch-

point singularities and pole singularities are encountered [28]

[29], which makes the integrals (21) non-integrable along the

real axis on the complex kz plane. To avoid these branch-point

singularities, the deformed path proposed in [29] and applied

in [10] is utilized here (see Fig. 3), where P1 = k0(1− iT1),
P2 = k0

√

1 + T 2
2 , P3 = k0

√

1 + T 2
3 . For the presented

examples, to obtain accurate results, the values of these

parameters are as follows: T1 ∈ [0.2, 0.5], T2 ∈ [20, 30], and

T3/T2 ∈ [1.1, 5]. Also for the presented examples, to calculate

resonance frequencies, it was sufficient to select L = 30 terms

for the convergence of the l-series of (1), (11) and (12). For

radiation pattern calculation, L = 10 terms were found to be

sufficient for the convergence of these series.

It should be noticed that the truncation of the l-series is

dependent on the radius and/or frequency of the host elliptical

cylinder. The larger value of the cylinder radius (in electrical

sense), the larger number of l-series truncation should be

taken to obtain convergent results. Unfortunately, utilizing a

large number of cylindrical special functions with complex

arguments and high orders leads to numerical instabilities in

the Hankel functions (which are used to calculate Mathieu

functions) during the computation of the related spectral

Green’s functions. Therefore, the presented technique is valid

only for elliptical cylinders with electrically small-radius.

In order to calculate the resonance frequency in ANSYS

HFSS for a specific mode (TM10 or TM01) the patch needed

to be fed by a coaxial line. To excite the TM10 mode the

feeding point needs to be displaced from the patch center along

its width (along v coordinate), while to excite TM01 mode the
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Fig. 3. Deformed integration path.

feeding point needs to be displaced from the patch center along

its height (along z coordinate).

The calculations of the proposed model were performed

in MATLAB environment on Intel Xenon X5690 3.47 GHz

(2 processors). Assuming L = 30 terms in the series, the

calculation of a single frequency point takes approximately

15 seconds. Comparing this to the calculation of commercial

software ANSYS HFSS the time of single frequency point

calculation is 81 seconds with 516 seconds of adaptive process.

The difference between the effectiveness of our method with

respect to HFSS is not surprising, since the developed model

is dedicated only to the structures considered in the article.

However, the results clearly shows that such model is suitable

and more predisposed to utilize in the optimization process.

A. Resonant frequencies

As an example, the structure investigated in [24] is chosen.

The patch of width W = 4 cm and length L = 3 cm (see

Fig. 1) is printed on the ellipse with major axis amax = 5 cm,

and is coated with a dielectric with εr = 2.32 and thickness

h = 0.795 mm. Two patch positions are considered, which will

be denoted as type I and type II. In the type-I structure the

center of the patch is located along the x axis (see Fig. 4(a)),

and in the type-II structure along the y axis (see Fig. 4(b)).

To obtain different ratios amin/amax, spanning from 0.3 to

0.999, the y-directed minor axis of the ellipse is changed. Both

confocal with irregular dielectric thickness and non-confocal

with constant dielectric thickness cases are considered.

Figs. 5 and 6 show the complex resonance frequencies of the

TM10 and TM01 mode, respectively, for the structure types I

and II as functions of the ratio amin/amax of the cylinders.

To find the complex roots of the characteristic equation a

hybrid complex root-finding algorithm [30], which uses an

adaptive mesh, based on Delaunay triangulation, to sample

the function, was utilized.

Fig. 4. Single-patch antenna on elliptical body: a) type I - antenna center
along x axis; b) type II - antenna center along y axis.

Fig. 5. Real and imaginary parts of resonance frequencies of TM10 mode
as functions of minor/major axis (amin/amax) of single-patch structure of
type I and type II.

As can be observed for both modes, the resonance fre-

quencies of the non-confocal cases with constant dielectric-

layer thickness are almost unchanged. However, when the

dielectric-layer thickness is irregular (confocal case) the patch

resonant frequency changes for both type-I and type-II antenna

configurations. The largest changes are visible in the case

of the type-I structure for TM10 mode, where the resonant

frequency shifts by about 400 MHz. It can also be seen that the

TM01 mode is less sensitive to changes in the patch curvature

than the TM10 mode. In each case the obtained results are

compared with the calculations of HFSS full-wave simulator,

and good agreement was observed. The discrepancies between

the results, especially for lower values of amin/amax ratio,

may be the result of using feeding line in HFSS calculations,

however, the error is smaller than 1.2%, which is satisfactory.

In the confocal case for type-II structure, by making the

structure more elliptical substrate thickness is increased under

the patch surface. The increase in substrate thickness decreases

the structure resonance frequency, which is associated with

the increase of the effective length of the patch related to the

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


JOURNAL OF LATEX CLASS FILES, VOL. 11, NO. 4, DECEMBER 2012 6

Fig. 6. Real and imaginary parts of resonance frequencies of TM01 mode
as functions of minor/major axis (amin/amax) of single patch structure of
type I and type II

fringing effect on the patch edges. This effect is observed for

type-II structure in both modes, as in both these cases the

effective length or effective width is increased.

This phenomenon is also observed in planar patch antennas,

where by increasing the substrate thickness the capacitance

under the patch decreases but at the same time the capacitances

on the patch edges (associated with fringing effect of the field)

increase, which results in an increase of the overall patch

capacitance and therefore a decrease of resonance frequency.

Making the structure more elliptical for type-I structure

causes a stronger increase of the substrate thickness at the

sides of the patch than at its center (with respect to angular

coordinate). The structure behaves differently for each mode.

In the case of the TM01 mode, mainly the patch length

(not width) determines resonance frequency, and the substrate

thickness is only increased in the corners of both the upper and

lower side of the patch (with respect to the z axis). In this case,

for more elliptical structures the resonance frequency behaves

similarly to the type-II structure.

In the case of the TM10 mode the width of the patch

Fig. 7. Normalized radiation patterns around the resonance of TM10 mode
for rectangular patches of type-I and type-II structures, confocal and non-
confocal cases.

has a greater influence on the resonance frequency, and for

more elliptical structures the distance between patch edges

and the ground (conducting ellipse) is greater than the distance

between its center and the ground. For this deformation the

fringing effect is weaker in this structure and the overall

capacitance under the patch decreases, which in turn increases

the resonance frequency.

Comparing the imaginary parts of the complex frequency

for confocal and non-confocal cases it is seen that, similar to

real parts, the structure with irregular dielectric layer is more

affected by the change of its ellipticity than the structure with

the layer of constant thickness.

From the performed investigations it is evident that the

assumption of constant thickness of the dielectric layer for

the confocal case is incorrect, even for thin dielectric layers.

B. Radiation patterns

The radiation patterns of the single-patch configurations for

both structure types and both confocal and non-confocal cases

were calculated for different ratio amin/amax. The normalized

radiation patterns for TM10 and TM01 modes are illustrated

in Figs. 7 and 8, respectively. As can be observed, the patterns

of type-II structures are almost unchanged with the variation of

ratio e. The biggest change is observed for the TM10 mode

of type-I structures. The radiation patterns for the confocal

and non-confocal cases are almost indistinguishable for the

investigated example.

Next, the arrays of three and four rectangular patches

located on the circumference of the circular cylinder and

elliptical cylinder are investigated. Only the TM01 mode and

non-confocal case is considered, as only here are the resonant

frequencies of the patches the same. Fig. 9 presents the

normalized radiation patterns of the investigated configurations

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


JOURNAL OF LATEX CLASS FILES, VOL. 11, NO. 4, DECEMBER 2012 7

Fig. 8. Normalized radiation patterns around the resonance of TM01 mode
for rectangular patches of type-I and type-II structures, confocal and non-
confocal cases.

Fig. 9. Normalized radiation patterns around the resonance f = 1.95 GHz
of TM01 mode for the configurations of three and four rectangular patches
4 × 5 cm on circular cylinder of radius r = 11.6cm and elliptical cylinder
with major axis amax = 15 cm, amin = 0.5amax (non-confocal cases)
with dielectric layer of thickness h = 1 mm and εr = 3.44. Solid line - this
method, dashed line - HFSS.

with their cross-sections. In each case the results are compared

with those obtained from the Ansoft HFSS simulator, showing

satisfactory agreement. The discrepancies may result from

the fact that the structures analyzed in HFSS have finite

dimensions (along the z axis).

Finally, to additionally check the validity of the proposed

Fig. 10. Normalized radiation patterns around the resonance f = 1.95 GHz
of TM01 mode for three configurations of two rectangular patches 4× 5 cm
on elliptical cylinder with major axis amax = 12 cm amin = 0.5amax with
dielectric layer of thickness h = 0.254 mm and εr = 3.44. The centers of
the patches are located in configuration 1 at v = 0◦ and 90◦ , in configuration
2 at v = −53◦ and 53◦, and in configuration 3 at v = 53◦ and 127◦ . Solid
line - this method, dashed line - HFSS, circle line - measurement.

procedure, a double-patch configuration was manufactured and

measured, and the obtained results were compared with the

calculated ones. The Taconic RF-35 substrate was used with

thickness h = 0.254 mm and εr = 3.44. The manufactured

configuration along with obtained results for different patch

locations on the elliptical cylinder are presented in Fig. 10.

As can be seen, satisfactory agreement between the results

was obtained. The discrepancies may have resulted from the

manufacturing process of antennas, the feeding system or

measurement station in an anechoic chamber.

IV. CONCLUSION

The procedure for calculating the resonance frequencies and

radiation patterns of elliptical-rectangular microstrip structure

placed on the surface of a dielectric-coated elliptic conducting

cylinder was proposed. A full-wave analysis and a moment-

method calculation were employed and the expansion of

the field as a series of Mathieu functions was considered.

The difference between confocal and non-confocal dielectric-

coated elliptic cylinders was investigated. The results showed

that the resonance frequency is more affected by the change

of structure ellipticity for the case when the dielectric layer

is irregular (confocal ellipses) and it changes only slightly

when this layer has constant thickness. It was shown that even

for thin dielectric layers the assumption of constant thickness

for the confocal case does not lead to accurate results. The

obtained results were verified by comparing them with calcu-

lations of commercial software and our own measurements of

manufactured prototype, and good agreement was achieved.
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APPENDIX A

THE ELEMENTS OF MATRIX X

Each one of four sub-matrices of matrix X defined in (8) is

a square matrix of size 2(2L+1), taking the following form:

X11=









0 0 I
e2e2H

e
2 0

0 0 0 I
o2o2H

o
2

I
e2e2α2H

′e
2 0 0 I

e2o
′

2ϑ2H
o
2

0 I
o2o2α2H

′o
2 I

o2e
′

2ϑ2H
e
2 0









X12=









0 0 −I
e2e1Λ

e
H 0

0 0 0 −I
o2o1Λ

o
H

−I
e2e1α1Λ

′e
E 0 0 −I

e2o
′

1ϑ1Λ
o
H

0 −I
o2o1α1Λ

′o
E −I

o2e
′

1ϑ1Λ
e
H 0









X21=









I
e2e2H

e
2 0 0 0

0 I
o2o2H

o
2 0 0

0 I
e2o

′

2ϑ2H
o
2 I

e2e2β2H
′e
2 0

I
o2e

′

2ϑ2H
e
2 0 0 I

o2o2β2H
′o
2









X22=









−I
e2e1Λ

e
E 0 0 0

0 −I
o2o1Λ

o
E 0 0

0 −I
e2o

′

1ϑ1Λ
o
E −I

e2e1β1Λ
′e
H 0

−I
o2e

′

1ϑ1Λ
o
E 0 0 −I

o2o1β1Λ
′o
H









where ακ = −iωε0εrκ/(k
2
κ− k2z), βκ = iωµ0/(k

2
κ− k2z), and

ϑκ = ikz/(k
2
κ − k2z) for κ = (1, 2).

Λ
e(o)
E = J

e(o)
1 We(o) −H

e(o)
1 We(o)Ξe(o),

Λ
′e(o)
E = J

′e(o)
1 We(o) −H

′e(o)
1 We(o)Ξe(o),

Λ
e(o)
H = J

e(o)
1 We(o) −H

e(o)
1 We(o)Ξ

′

e(o),

Λ
′e(o)
H = J

′e(o)
1 We(o) −H

′e(o)
1 We(o)Ξ

′

e(o),

with

Ξe(o) = diag
(

M
(1)
c(s)l(ū0, q̄1)/M

(4)
c(s)l(ū0, q̄1)

)L

l=0(1)

Ξ′e(o) = diag
(

M
′(1)
c(s)l(ū0, q̄1)/M

′(4)
′c(s)l(ū0, q̄1)

)L

l=0(1)

J
e(o)
1 = diag

(

M
(1)
c(s)l(u1, q1)

)L

l=0(1)

H
e(o)
1 = diag

(

M
(4)
c(s)l(u1, q1)

)L

l=0(1)

H
e(o)
2 = diag

(

M
(4)
c(s)l(u1, q2)

)L

l=0(1)

We and Wo are the transformation matrices between the

elliptical coordinate systems with different focal lengths [16],

[23], [26]. In the case of confocal ellipses the matrices become

unit matrices. For the non-confocal ellipses their elements take

the following form:

[We]ll′ =

2π
∫

0

dv cel(v, q̄1)cel′(v, q1)

2π
∫

0

dv cel(v, q1)cel′(v, q1)

(i)l−l′

[Wo]ll′ =

2π
∫

0

dv sel(v, q̄1)sel′(v, q1)

2π
∫

0

dv sel(v, q1)sel′(v, q1)

(i)l−l′

The matrices I
(·)(·) and I

(·)(·)
h are composed of integrals

of angular Mathieu functions, and their elements have the

following form:

{

(Ie2eκ)ιl
(

I
e2o

′

κ

)

ιl

=

2π
∫

0

dv ceι(v, q2)

{

cel(v, qκ)
se′l(v, qκ)

{

(Io2oκ)ιl
(

I
o2e

′

κ

)

ιl

=

2π
∫

0

dv seι(v, q2)

{

sel(v, qκ)
ce′l(v, qκ)

{

(Ie2eκh )
ιl

(

I
e2o

′

κ

h

)

ιl

=

2π
∫

0

dv
1

hd2,u1
ceι(v, q2)

{

cel(v, qκ)
se′l(v, qκ)

{

(Io2oκh )
ιl

(

I
o2e

′

κ

h

)

ιl

=

2π
∫

0

dv
1

hd2,u1
seι(v, q2)

{

sel(v, qκ)
ce′l(v, qκ)

where hd2,u1 = d2

√

cosh2(u1)− cos2(v) and ι, l =

(0, . . . , L) for even functions and ι, l = (1, . . . , L) for odd

functions. A prime symbol indicates derivatives of radial

Mathieu functions with respect to the u variable or derivatives

of angular Mathieu functions with respect to the v variable.

APPENDIX B

THE ELEMENTS OF MATRIX Y

Matrix Y, as defined in (21), has the following form:

Y =

[

Y1e Y1o Y2e Y2o

Y3e Y3o 0 0

]

where its elements are horizontal vectors defined as follows:

Y1e =

(

ϑ2

hd2,u1
M

(4)
cl (u1, q2)ce

′

l(v, q2)

)1,L

1,l=0

Y1o =

(

ϑ2

hd2,u1
M

(4)
sl (u1, q2)se

′

l(v, q2)

)1,L

1,l=1

Y2e =

(

β2

hd2,u1
M

′(4)
cl (u1, q2)cel(v, q2)

)1,L

1,l=0

Y2o =

(

β2

hd2,u1
M

′(4)
sl (u1, q2)sel(v, q2)

)1,L

1,l=1

Y2e =
(

M
(4)
cl (u1, q2)ce

′

l(v, q2)
)1,L

1,l=0

Y2o =
(

M
(4)
sl (u1, q2)se

′

l(v, q2)
)1,L

1,l=1
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