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Abstract—The article describes a new model of a MEMS
accelerometer for usage in inertial measurement units (IMU).
Such units allow to measure orientation and location of the sen-
sor/system and therefore can be applied for systems positioning.
The main purpose of the paper is to model pertinent accelerom-
eter functions substantial in determination of the location of
the sensor by means of double integration of acceleration. The
model takes into account static and dynamic working conditions.
Based on this model an estimator is constructed that allows us to
test the developed system in terms of the effects of rotational
dynamics. Computer simulations are applied to illustrate the
performance of the estimator for simulated measurement signals.
The results obtained show what conditions must be met in order
to properly determine the linear acceleration with accelerometer
measurements.

I. INTRODUCTION

The MEMS (ang. Micro Electro-Mechanical System) sen-
sors are in a widespread use for the last years. The low cost
of sensor chips is the main reason for using them in many
applications. MEMS accelerometers are frequently used in
cell phones (smartphones), hard disks, photo cameras, console
games etc. [1]. In most cases, however, accelerometers are used
only to find the direction of the vector of gravity. In advanced
applications, such as determining the orientation of air crafts,
and surveillance of human health, there is a need for sensors
of high fidelity and high precision.

In robotic applications accelerometers are applied to spe-
cific single tasks, like detection of free fall or high g-force,
or measuring vibrations. There are also complex tasks, like
automotive crash detection, adjusting surgical trajectory [2],
or other dedicated solutions for micro robotics [3]. Most
commonly used systems are focused generally on the determi-
nation of orientation for static conditions or on other inertial
measurements [4], [5].

If you are using a video camera with inertial measurements,
appropriate image processing can be improved in many ways.
For instance, to improve the quality of the results of pro-
cessing, especially when acquisition conditions are poor, an
image shift can be reduced using inertial measurements [6].
Tasks related to robot navigation can also give better effects
if one combines a MEMS sensor output with vision feature
detection algorithms [7], [8]. Similarly, SLAM (Simultaneous
Localization an Mapping) solutions often use various sensory
data. Thus the design and the use of a proper sensor data fusion
algorithm appears to be a crucial task.

Our previous research in this context has been associated
with the problem of SLAM and image processing in mobile
robotics. We have focused our attention on designing a Vis-
Robot system for the purpose of creating a 3D map in a limited
environment. The principal part of mapping has been based
on the idea of relocating systemic robots for the purpose of
producing different stereo images.

In this system the orientation data rely on inertial sen-
sors. Magnetometer, accelerometer and gyroscope placed on
a single board are used to determine the actual rotation of
an object. Actually, there are two algorithms of sensor fusion
tested on our robotic platform. Localization at this stage of
research is determined using accelerometers. Although the
system orientation does not appear to be problematic, location
based on acceleration data is not an easy task. To ensure
precise results of the integration of accelerometer readings, we
have to analyse accelerometer parameters and data to create a
dynamical model of the applied accelerometer. Due to the well
known problems related to data integration, there are certain
restrictions for this approach. Therefore, we assume that the
accelerometer data have to be integrated only for a short period
of time, and the robot has to stop after this time.

To discuss our approach to double integration, let us first
assume that all sensors are mounted on a stable carrier or
platform. Moreover, the sensors are isolated from the external
rotational motion resulting from movements of the applied
gimbals and the application of rolling robotics or pedometers.
As results from tests with long integration time [9]: ”Double
integration of an acceleration error of 0.lg would mean a
position error of more than 350 m at the end of the test”. There
are, however, solutions (under development) used in pedometry
and based on double integration of accelerometer data that do
not indicate large position errors [10].

There are other problems with accelerometers which should
be taken into consideration. Readings from accelerometers
suffer from the loss of data precision, arising from the MEMS
technology. There are descriptions of some problematic fea-
tures of MEMS detailed in [11], [12]. In practice though, such
features are to be modelled, since it is difficult to omit their
impact on data degradation.

Typical issues associated with MEMS are their scale factor
and bias. The scale factor, sometimes referred to as sensitivity,
is the ratio of the change at the sensor output to the change
at its input that is intended to be measured. Bias of an ac-

This is a post-peer-review, pre-copyedit version of an article published in 2014 19th International Conference on Methods and Models in Automation and 
Robotics (MMAR). The final authenticated version is available online at: https://doi.org/10.1109/MMAR.2014.6957478

© 2014 IEEE.  Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including 
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse 
of any copyrighted component of this work in other works.

https://doi.org/10.1109/MMAR.2014.6957478


celerometer can be identified as a non-zero offset of the sensor
output signal from the expected true value, in m/s2. Bias has
no correlation with the input. It is measured over a certain
time at specified operating conditions. Both characteristics
are affected by factors related to material and construction,
e.g. nonlinearity, hysteresis, cross-axis effects, etc. There are
also factors related to the conditions of operation, such as
temperature and pressure [12]. The bias and sensitivity (scale
factor) can be improved using a proper calibration procedure.

Flicker noise occurs due to certain thermo-mechanical
noise, fluctuations at a rate greater than the sampling rate of the
sensor. As a consequence, the bias can wander over time. Such
fluctuations can be modelled as random walk. Flicker noise
creates a second-order random walk in velocity (uncertainty
grows proportionally to t3/2), and a third-order random walk
in position (uncertainty grows proportionally to t5/2). Thus
double integration of a signal with fluctuating bias causes an
error in position, which grows quadratically with time [13].

There are works which deeply analyse the nonlinearities
of MEMS [14]. They consider internal resonators, oscillators,
internal vibrations, etc. All of them affect the noise bias in
MEMS. In some approaches the analysis of noise in MEMS
is realized using an Allan Variance [1], [14]. The latter idea
means a time domain analysis designed to characterize noise
and stability in clock systems. The time of such analysis
amounts to few hours. There are though no perfect solutions
to eliminate the flicker noise.

The above mentioned problems with noise in MEMS as
well as the difficulties of double integration are taken into
account in the construction of a suitable model of a MEMS
accelerometer and in the synthesis of appropriate transforma-
tion equations. For this purposes, we need to characterize the
forces that have impact on the accelerometer.

II. ROTATIONS AND ACCELEROMETER DATA

In robotic applications of accelerometers one should cal-
culate linear acceleration of an object (a robot) or some part
of this object. However, accelerometer measurements include
accelerations associated with various forces. Most important
factors are linear movements, rotations, and the impact of
gravity. Linear movement appears when the object changes
its location. Acceleration connected with rotations is a con-
sequence of the object movement related to its coordinates
(external forces are neglected). On the contrary, gravity is
caused by an external force, which can be easily described
in global coordinates. Different coordinate systems require to
define proper transformation matrices.

Assuming the Cartesian coordinate system the transfor-
mation between the object and global coordinates can be
expressed as awxawy

awz

 = Tw
o

aoxaoy
aoz

 (1)

To ensure the clarity of used symbols, the global coordi-
nates will be expressed as ax, ay, az and the objects coordi-
nates as al, as, at (longitudinal, side, transversal component

respectively). The relationship between the object and global
coordinates can be expressed with rotation matrices and a
translation vector. All transformations are written assuming
that we deal with the right-handed system. Rotation matrices
express rotations around the object x axis (roll), y axis (pitch),
z axis (yaw) as shown in (2), (3), and (4), respectively.
Due to the resulting size of following rotation matrices, the
trigonometric functions are given in an abbreviated notation
(sα = sinα, cα = cosα).

Rx(φ) =

[
1 0 0
0 cφ sφ
0 −sφ cφ

]
(2)

Ry(θ) =

[
cθ 0 −sθ
0 1 0
sθ 0 cθ

]
(3)

Rz(ψ) =

[
cψ sψ 0
−sψ cψ 0

0 0 1

]
(4)

Combining all the 3 rotations Rx, Ry, Rz , the resulting
rotation matrix can be expressed as follows:

Rxyz = Rx(ψ)Ry(θ)Rz(φ) =

=

[
cθcψ cθsψ −sθ

−cφsψ + sφsθsψ cφcψ + sφsθsψ sφcθ
sφsψ + cφsθcψ −sφcψ + cφsθsψ cφcθ

]
(5)

As all the rotation matrices are unitary, it is easy to find
their inverses. Note that due to inversion the sequence of the
component matrices is reverted [15]:

Rxyz(φ, θ, ψ)−1 = Rz(ψ)−1Ry(θ)−1Rx(φ)−1 (6)

Based on the rotation matrix, we can show how gravity
affects acceleration in an actual object orientation. The gravity
vector is constant in the global coordinates and in the opposite
direction to the z axis. We assume that Rxyz means a trans-
formation from the object to the global coordinate system. In
a steady situation, without any movement of the object, the
influence of gravity can be (statically) expressed as

[
al
as
at

]
= R−1

xyz

[
0
0
g

]
= g

[
sφsψ + cφsθcψ
−sφcψ + cφsθsψ

cφcθ

]
(7)

For a static situation, when an accelerometer measures only
gravity, it is easy to calculate the actual rotation. Unfortunately,
not all rotations cause changes in gravity measurements. With
solely a yaw rotation there are no changes in the measured
gravity (Fig. 4). There is also a gimbal lock problem which can
occur while (further) working with rotations [16]. If the object
is not only affected by gravity, but also by linear acceleration,
the gravity substantially interferes with the measurements
of linear acceleration. Therefore, gravity is the most crucial
element in modelling an accelerometer.
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Fig. 1. Tested sensor Pololu IMU9.

III. ACCELEROMETER MODEL

In order to distinguish between acceleration measurements
(accelerometer data) and accelerations which affect the ac-
celerometer model, we shall refer to a measured longitudinal
acceleration denoted as ãl. Considering a static model of an
accelerometer, measurements are affected by gravity and linear
acceleration. Such a model can be expressed by (8), which is
a result of joining linear acceleration with (7),

[
ãl
ãs
ãt

]
=

[
al
as
at

]
+ g

[
sφsψ + cφsθcψ
−sφcψ + cφsθsψ

cφcθ

]
(8)

The description is suitable for applications which use a
gravity vector like bubble level, pinball etc. If linear accel-
eration of the object al occurs, measurements may indicate
a small additional rotation or changes in gravity. The effect
depends on the angle between al and g as well as on al/g.

If we can acquire data about the rotation angles φ, θ, ψ,
e.g., by using sensor data fusion, it is possible to determine the
linear acceleration of the sensor (before the object moves, and
after this movement stops). However, to calculate the linear
acceleration during the movement of the object, we should
analyse rotation dynamics.

Let us assume that during a movement the object can
invoke rapid rotations for a short period of time. This is a
typical situation, e.g. when the robot travels on a rough ground.
In real applications of IMUs not all sensors are implemented
in a single chip. Typically, accelerometers and magnetometers
are in one box, and a gyroscope is in a separate box. The
distance between the chips in classical low-cost solutions (e.g.
Pololu IMU-9 v.1 1) is about 1 cm. Moreover, it is difficult
or impossible in real implementations to mount the sensor
precisely at a point where all the 3 rotation axes of the object
intersect. The rotation axis of the object is translocated as
compared to the rotation axis of the sensor by a vector r
(having rl, rs, and rt as components). Thus, in practice, the
impact of dynamic rotations on the accelerometer readings is
sure to appear.

As the result of rotation dynamics the centrifugal and
tangential accelerations should be taken into consideration. In
Figs. 2, 3, and 4 the centrifugal acceleration acf is normal to
the rotation direction and nonzero when a respective angular
velocity, φ̇, θ̇, ψ̇, is nonzero. The tangential acceleration atg is

Fig. 2. Roll, rotation around the x axis.

Fig. 3. Pitch, rotation around the y axis.

parallel to the rotation direction and takes nonzero value when
the angular acceleration (φ̈, θ̈, ψ̈) is nonzero.

For roll, i.e. the rotation around the x axis in the right-
handed coordinate system shown in Fig. 2, the centrifugal
acceleration acf = φ̇2 appears in the component ãs, and the
tangential acceleration atg = φ̈ is present in ãt. There is
no influence of the roll dynamic rotation on the longitudinal
component ãl.

Based on Figs. 3 and 4, we can describe the influence of
the centrifugal and tangential accelerations for the other two
rotations. For pitch rotation, acf = θ̇2 is a component of ãl,
and atg = −θ̈ is the one of ãt. For yaw rotation, acf = ψ̇2

enriches ãs, and atg = ψ̈ appears in ãt. These results enable
us to formulate a composed dynamic model of acceleration by
incrementing 8 with a correction term as follows
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Fig. 4. Yaw, rotation around the z axis.

[
ãl
ãs
ãt

]
=

[
al
as
at

]
+g

[
sφsψ + cφsθcψ
−sφcψ + cφsθsψ

cφcθ

]
+

 (θ̇2 + ψ̈)rl
(φ̇2 + ψ̇2)rs

(φ̈− θ̈)rt

 (9)

This model includes the influence of dynamic movements
of the object. There are also other forces, like precession and
Coriolis forces, which are neglected at this stage of research.
Nevertheless, certain issues related to the MEMS features, such
as the previously mentioned scale factor, noise characteristics,
and bias should be taken into account. Therefore, a proper
calibration of the sensor appears to be mandatory to reduce
the impact of these effects.

Based on the provided dynamic model of the object coor-
dinates, it is now easy to express acceleration measurements
in the global coordinates. Using the rotation matrix (5) the
measured acceleration can be written in the following form:

[
ãx
ãy
ãz

]
= Rxyz

[
al
as
at

]
+

[
0
0
g

]
+Rxyz

 (θ̇2 + ψ̈)rl
(φ̇2 + ψ̇2)rs

(φ̈− θ̈)rt

 (10)

It is worth noticing that the gravity vector in the global
coordinates is constant. However, the angles estimated with a
certain accuracy will cause a gravity error in this equation.

IV. ESTIMATION OF ACCELERATION DATA

Based on the described model of accelerometers, we can
now derive an appropriate estimator. We assume that all the
rotation angels φ, θ, ψ and rotation radius r are known in
this model. Moreover, a Gaussian noise sequence with zero
mean contaminates the measured data. Hence the following
measurement model with noise (η) have to be considered:

[
ãl
ãs
ãt

]
=

[
al
as
at

]
+g

[
sφsψ + cφsθcψ
−sφcψ + cφsθsψ

cφcθ

]
+

 (θ̇2 + ψ̈)rl
(φ̇2 + ψ̇2)rs

(φ̈− θ̈)rt

+

[
ηl
ηs
ηt

]
(11)

In real applications the actual rotations are known only
to a certain degree. To determine the linear movement of the
object, we propose using an estimator described as follows

[
âl
âs
ât

]
=

[
ãl
ãs
ãt

]
− g

 sφ̂sψ̂ + cφ̂sθ̂cψ̂

−sφ̂cψ̂ + cφ̂sθ̂sψ̂

cφ̂cθ̂

−

 (
˙̂
θ2 +

¨̂
ψ)rl

(
˙̂
φ2 +

˙̂
ψ2)rs

(
¨̂
φ− ¨̂

θ)rt


(12)

where the estimated value of linear acceleration is denoted as
â and the estimated angles are represented by φ̂ = φ + ∆φ
(an ideal value of the angle plus an error). The error values
should be set adequately to the precision of determining the
angle values (by using the sensor fusion) and the sensor noise
which is characteristic for MEMS. Furthermore, we need to
calculate the first and second derivatives of the angles. As
the angle error ∆φ generates noise, the differentiated noise
can produce undesirable rapid changes in the estimated linear
acceleration. Thus the estimated angles should be processed
by a low pass filter to reduce spikes in estimated acceleration.

V. EXPERIMENTS AND SIMULATIONS

The described model and the estimator were examined in
a simulation study. Tests were performed in the Matlab envi-
ronment using generated angle signals and linear acceleration
signals. The following 3 variants of test signals were applied:

• angle step in the x axis rotation (roll)

• move which simulates the behaviour of a boat when
a large wave arise

• movement of a robot on a manoeuvring square.

Generated signals (angle and acceleration) have rapid
amplitude changes (an unlimited spectrum). To ensure that
these signals are similar to real accelerometer data they were
processed with the use of a low-pass FIR filter of order
10, attenuation 30 dB, normalized cut-off frequency 0.6 (the
associated delay caused by filtration was removed).

Moreover, the generated angle signals (φ, θ, ψ) were modi-
fied with the Gaussian white noise with the zero mean and the
variance selected according to the typical precision of sensor
fusion algorithms [10].

Similarly, the generated acceleration signals (al, as, at)
were modified with the Gaussian white noise of the zero mean,
and the variance 0.03 g. The variance value was chosen ac-
cording to noise density (220), and zero-g level offset accuracy,
as specified in the Pololu accelerometer documentation [17].

A. Correction term for roll step signals

The simulation was intended to check how the rotation
dynamics influences the measured acceleration according to
the derived model, in particular, the dynamical correction term
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(a) Roll step signal. (b) Roll step signal with noise.

Fig. 5. Test signal: roll step.

(a) Correction term for roll step. (b) Correction term for noise.

Fig. 6. Rotation dynamics (correction terms) for roll step.

(a) The term for low noise. (b) The term for high noise.

Fig. 7. Rotation dynamics for roll step (2 other noisy variants).

in 9 and 11 and the roll step testing signals (note that the
influence of other angles is neglected/nullified).

The angle signal for the roll step after low pass filtering
and noise contamination (with the variance 0.7◦), are shown
in Fig. 5, subfigures (a) and (b), respectively.

The resulting dynamical correction term (impact of rotation
on acceleration) for a displacement of the sensor r = 5cm in
the roll step test of Fig. 5, is illustrated in Fig. 6 for the second
coordinate of the term ( ˙̂

φ2). Note that the term can exceed the
acceleration of 0.5 g. Thus the dynamical correction represents
an essential factor in acceleration estimation. According to
other observations, peaks existent in the correction term (see
Fig. 6) grow linearly with the effective sensor displacement r
(projected on the x axis).

The correction term in the presence of lower measurement
noise (with the variance 0.2◦) and higher noise (with the
variance 2.0◦) are illustrated in Fig. 7. As can be seen from
the Fig. 7b, the rotation dynamics can be destructive for
highly contaminating noise (approximately, starting from 2.0◦).
Probably, this effect can be improved by suitable filtration.

(a) Angular signals (φ - blue, θ -
green, ψ - red).

(b) Linear acceleration (al - blue,
as - green, at - red).

Fig. 8. Simulated input signals of boat movement.

(a) Angular signals (φ - blue, θ -
green, ψ - red).

(b) Linear acceleration (al - blue,
as - green, at - red).

Fig. 9. Simulated input signals of manoeuvring robot.

(a) Linear acceleration estimation
of boat movement (φ - blue, θ -
green, ψ - red).

(b) Linear acceleration estimation
of manoeuvring robot (al - blue, as
- green, at - red).

Fig. 10. Linear acceleration estimation for two test and low noise.

B. Acceleration estimation using generated measurements

The low-pass filtered signals (generated according to the
typical precision of accelerometers [17]) were used to compute
the locally measured, linear acceleration 9, denoted with , and
next applied in the estimator ((12)), using the knowledge about
the angles gained from separate gauges. The angle information
from such gauges, denoted with ,̂ was generated according to
the above described rules (LPF plus Gauss). The obtained 3D
linear acceleration and angular (rotation) signals corresponding
to the simulated boat movement and the manoeuvring robot,
are shown in Fig. 8 and Fig. 9, respectively.

For the considered stage of preliminary estimation the
noise level ( 0.7◦) corresponding to the sensor fusion precision
proved to be too high. Therefore, we found experimentally that
relatively good signal estimation can be obtained for the noise
variance lower than 0.02◦. The estimated linear acceleration
signals for both tests signals are shown in Fig. 10.
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(a) Linear acceleration estimation
of boat movement (φ - blue, θ -
green, ψ - red).

(b) Linear acceleration estimation
of manoeuvring robot (al - blue, as
- green, at - red).

Fig. 11. Linear acceleration estimation for two test and medium noise.

(a) Linear acceleration estimation
of boat movement (φ - blue, θ -
green, ψ - red).

(b) Linear acceleration estimation
of manoeuvring robot (al - blue, as
- green, at - red).

Fig. 12. Linear acceleration estimation for two test and high noise.

The estimator output for larger noise levels are presented
in Fig. (11) and Fig. (12). We set the variance to 0.1◦

and 0.3◦, respectively. Higher values than 0.3◦ resulted in
improper estimation. Perhaps, additional noise suppression or
high frequency signal filtration may enhance the results.

In the presence of low noise in the angular data we found
that the rotation dynamics (correction term) is important at
rapid movements (at the beginning or/and the end of them).
While the noise increases, the rotation dynamics deteriorate
the estimation precision. Taking into account the detrimental
derivatives, in case of very high noise the dynamical correction
term in (12) should rather be disregarded. Nevertheless, to
find linear acceleration using a low-cost accelerometer much
attention should be paid to noise filtration.

VI. CONCLUSION

The derived dynamic model of a MEMS accelerometer
operates properly for dynamic signals tested in our simulation
study. The influence of the dynamic rotations is significant for
small displacements of the sensors. For instance, the measured
acceleration increases by 0.8 g even for a displacement of
r = 5cm.

Moreover, the estimation tests performed proved that the
modelled rotation is sensitive to the angle error. The angle
precision of 0.05◦ is sufficient for computing the value of linear
acceleration from accelerometer measurements. It appears that
this type of errors can be suppressed via proper filtration.

In future research we plan to enhance the system per-
formance using additional signal processing. The anticipated
tests should include both simulated signals and real data from
accelerometers. The expected results should also enhance the
functionality and fidelity of the VisRobot system in terms of
3D mapping. Another type of strategy for robot positioning is
expected for the case of robots moving on large distances.
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