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Abstract An approach to the knowledge representation

extraction from biomedical signals analysis concerning

motor activity of Parkinson disease patients is proposed in

this paper. This is done utilizing accelerometers attached to

their body as well as exploiting video image of their hand

movements. Experiments are carried out employing artifi-

cial neural networks and support vector machine to the

recognition of characteristic motor activity disorders in

patients. Obtained results indicate that it is possible to

interpret some selected patient’s body movements with a

sufficiently high effectiveness.

Keywords Biomedical signal � Granular representation �
Parkinson’s disease � ANN � SVM � Motor activity data

processing

1 Introduction

Investigating biomedical signals may be treated as

decomposing of knowledge into small entities of knowl-

edge, called granules. Zadeh informal definition of granu-

lation involves ‘‘decomposition of whole into parts’’

(Zadeh 1997). Pawlak pointed out that granularity of

knowledge is inherently connected with the foundation of

rough set theory. The concept of the rough set rely on

classification of objects of interest into similarity classes,

which form elementary building blocks (atoms, granules)

of knowledge (Pawlak 1998). It should be stated that

granular computing is now a well established field of

research (Lin et al. 2002; Pedrycz et al. 2008; Polkowski

and Skowron 1998; Wang 2007; Wang et al. 2009). Pub-

lications that may be found in the literature (Pedrycz et al.

2008; Wang et al. 2009) offer a comprehensive reference

source for the granular computing community and also

show that this area encompasses computational intelli-

gence, fuzzy set theory, rough sets, etc. In books related to

this domain one may found many case studies that involve

capturing knowledge from sensors (Gacek and Pedrycz

2012; Pedrycz 2001). However, it should be emphasized

that granular computing founds its way toward human-

centric information processing, including biomedical signal

analysis (Bargiela and Pedrycz 2009; Momot et al. 2010;

Pedrycz and Gacek 2002). This paper presents classifica-

tion of acceleration signals extracted from sensors placed

on the Parkinson’s disease (PD) patient, decomposed into

tri-axial entities.

PD belongs to the group of neurodegenerative diseases.

It is a slowly progressing, degenerative disease of the

central nervous system that is usually associated with dis-

turbed dopamine production by the nervous cells of the

brain. The disease manifests itself with movement distur-

bances. The cause of such disturbances has not yet been

fully elucidated. The treatment of patients with PD is

mainly based on minimizing the effects of symptoms. PD

develops slowly and may last for many years. At its initial

stage it is difficult to detect. It is crucial that once the

disease is diagnosed, its fast development is restrained.

Noticing changes in patient’s condition in a matter of short

time is hard, especially that there are no fully objective

tests that would allow for the assessment of its stage. The
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main symptoms of PD are associated with limitations in

patient’s motor activity such as involuntary slowing of

movements, bradykinesia, disturbances of gait including

freezing of gait (FOG), disturbances of balance resulting in

falls, problems with coordination of movements, resting

effort tremor (Izworski et al. 2005; Kostek et al. 2012),

difficulty swallowing, slowed mimical facial movements,

etc. In addition to the symptoms associated with the motor

activity, PD may also cause problems with concentration

and planning of everyday activities.

One of the methods used for the assessment of patient

with diagnosed PD is a series of standardized clinical tests

performed by a specialist physician, called a Unified Par-

kinson’s Disease Rating Scale (UPDRS 2003). However,

the results of these tests are encumbered with errors

resulting from their subjective nature. The evaluation of

patient’s condition with the UPDRS tests conducted every

3 or 6 months allows for the assessment of PD’s progres-

sion, but they require regular appointments with the

attending physician, which is not always possible. In such

cases, it may not always be achievable to verify the exact

time when the medicines were taken or examine the side

effects of the drugs which usually manifest themselves as

dyskinesias (involuntary movement disorder) (White et al.

2006). With time, the effectiveness of the treatment begins

to decrease gradually and the so-called ‘‘on’’ and ‘‘off’’

phases occur in an alternating mode (periods of good motor

ability and significantly worse motor ability, respectively).

The changes in the physical condition are clearly associ-

ated with the rhythm of drug taking and, in the case of the

‘‘on’’ phase, can be predicted. However, some patients

experience sudden ‘‘off’’ phases without any obvious

connection with medicine intake. We may also observe a

phenomenon called an ‘‘on–off’’ phase, which involves

multiple and quick switches between mobility and immo-

bility. Therefore, too rare and irregular follow-up visits at

the doctor’s office lack to provide information of a possible

deterioration of the patient’s condition. Also, they do not

enable to establish whether a given medicine or its dosage

is appropriate and, most importantly, whether the patients

reporting to a doctor is currently in the ‘‘on’’ or ‘‘off’’ phase

(Zwan et al. 2010). This makes it impossible for a physi-

cian to fully assess the condition of a PD patient.

In order to support the process of the evaluation of

patients’ condition, there are some systems created for

constant monitoring. The system created within the PER-

FORM project with the participation of the authors of this

paper can serve as an example of that approach (‘‘A

soPhisticatEd multi-paRametric system FOR the continu-

ous effective assessment and Monitoring of motor status in

Parkinson’s disease (PD) and other neurodegenerative

diseases progression and optimizing patients’ quality of

life’’) (Baga et al. 2009; Greenlaw et al. 2009; Kupryjanow

et al. 2010; Maziewski et al. 2009). The system is supposed

to monitor the patient’s condition 24-h a day on the basis

of biomedical signals analysis. It uses specially-designed

sensors located on the patient’s body and a series of tests

conducted on diagnostic appliances (Baga et al. 2009;

Greenlaw et al. 2009). The patient is monitored while being

at home and the information obtained after the initial

processing of the collected signals is sent to the hospital

central unit. The unit then performs a detailed analysis of

the data received. This may enable the assessment of the

correctness and effectiveness of individually matched

schemes of treatment and their possible adaptations. The

monitoring of patients with PD mainly involves informa-

tion obtained from acceleration sensors (accelerometers),

gyroscopes, electrooculogram, spirometer and sensors of

pressure with an analysis of the video footage recorded

during the tests mentioned earlier in the text. Also, moni-

toring PD patients by employing data from patients’ diaries

which were rated by clinicians in the UPDRS scale and

rule-based data processing was proposed in which metadata

on patients were processed using rough sets (Zwan et al.

2010).

The issue of movement categories recognition on the

basis of acceleration signals analysis was investigated in

numerous studies (Bao and Intille 2004; Godfrey et al.

2008; Lee and Mase 2002; Lombriser et al. 2007; Mathie

et al. 2004). However, the classification of movement

categories in patients with PD constitutes an individual

problem, since it requires taking into account the disrup-

tions resulting from movement disturbances of the patients

(Tadeusiewicz 2009; White et al. 2006). The algorithms

responsible, for example, for the analysis of hand move-

ment may erroneously interpret intense shaking as an

intended limb movement. Gait recognition is limited by a

fact that PD patients frequently perform movement similar

to walking when they are at rest, thus recognizing walking/

no-walking and hand movement/no-hand movement and

the nature of these movements are important for the

assessment of the patients or the diagnosis of the PD.

This article presents the algorithms enabling to classify

selected movement categories in patients with PD. They

were designed to support the evaluation of PD progression.

Even though the algorithms utilized are conventional, i.e.

SVM and ANN, they results in an effective recognition of

the following categories: walking/no walking, hand

movement/no hand movement. The classification is carried

out on the basis of the analysis of acceleration signals

coming from tri-axial accelerometers located on the

patient’s body. The last part of this paper discusses another

study, which show the possibility of hand motor activity

analysis in PD patients conducted by processing the image

recorded by an Internet video camera on a stand. This

device is called Virtual TouchPad (VTP). Hand movement
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tests are included in the UPDRS examination. Automatic

performance of such tests is an alternative to testing hand

motor function with the use of gloves containing, for

example, grip sensors or accelerometers (Kostek et al.

2012; Lee and Mase 2002).

2 Recording biomedical signals

For PD patients’ monitoring a multimedia application was

conceived and engineered. In order to test and train the

classifiers recognizing the categories of movement activity

in patients with PD, we used acceleration signals recorded

during the tests involving patients and doctors from the

Neurology Department of the St. Adalbert’s Hospital in

Gdansk and the hospital in Ioannina (Greece). The exper-

iment included 33 patients (mean age 68.2 years; standard

deviation 9.8 years), average illness duration time was 9

(SD ± 5) years including both men and women in

approximately the same number. The patient was supposed

to perform a series of movements simulating everyday

activities. The sequences of the performed movements and

the recording were carried out in controlled conditions to

make it possible to ascribe particular labels of movements

to the signals at the stage of initial processing. Since PD is

an asymmetrical disease, most of these symptoms were

assessed separately for both right and left body sides.

Each of the patients performed the following activities:

walking in straight line with a turn, lifting an object with

the left, right and both hands, lifting the left, right and both

hands, sitting and getting up from a chair, lying down and

getting up from bed, standing, sitting and lying. Each of the

above was performed in a sequence of dynamic and static

activity. For example, gait sequence was recorded in the

following sequence: standing in place, walking with a turn

and stopping. Each sequence of movement was repeated

three times. During the recording of acceleration signals we

also recorded the video image synchronized with the

acceleration signals. Video records allowed for precise

tagging of the beginning and end of each of movement

categories.

Acceleration signal were recorded with two types of

devices equipped with triaxial accelerometers. The signal

was recorded on microSD cards integrated with the

recording devices. During the tests we used the devices

produced by Shimmer (Shimmer 2008) and the device

designed within the PERFORM project system (Baga et al.

2009; Greenlaw et al. 2009). The accelerometers were

located on subjects’ wrists, ankles and chests. This was for

the purpose to detect the highest number of movement

activities and assess patient’s condition automatically by

the algorithms recognizing the symptoms of the disease.

The number of sensors was limited so that not to cause any

discomfort to the patient when using the device. The range

of accelerations recorded by the accelerometers fell within

the range of ±6 g, which fully covers the range of accel-

erations obtained during typical movement activities of a

human body. The sampling rate of the signal was 51.2 Hz

for Shimmer and 62.5 Hz for the PERFORM system. The

location of the devices on subject’s body is presented in

Fig. 1. In the presented study signals from 5 accelerome-

ters and 3 axes were independently recorded, resulting in

15 acceleration time-domain signals. Examples of accel-

eration signal are presented in Fig. 2.

On signal diagrams pertaining to the x axis, constant

component equal to the gravity acceleration can be

observed (1 g). The presence of the constant component for

this axis is associated with the orientation of the acceler-

ometers, which had been located in the following way: axis

x—vertically, y—horizontally and perpendicular to the

chest, axis z—vertically and parallel to the chest.

3 The parameterization of acceleration signals

The analysis of acceleration signals is usually carried out

after signal parameterization is performed (Huynh and

Schiele 2005). In the case of the classification of signals

recorded during tests with PD patients it is necessary to

additionally pre-process the signals in order to eliminate

the interferences resulting from the symptoms of the dis-

ease. Earlier studies conducted in the Multimedia Systems

Department (MSD), Gdansk University of Technology,

GUT (Kupryjanow et al. 2010; Maziewski et al. 2009)

allowed a conclusion that low-pass acceleration signal fil-

tering with the cut-off frequency of 3 Hz gives the best

results in interference elimination, at the same time pre-

serving significant information associated with the

Fig. 1 Location of acceleration sensors on subject’s body
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frequency of movement. One may also find that the high-

pass cut-off frequency of 2 Hz is used for acceleration

signals (Rissanen et al. 2011). Therefore, all signals had

been exposed to a low-pass filtering with the use of a IIR

filter of a 3 Hz cut-off frequency.

The parameterization of the signals was carried out in

time windows dependent on the type of activity. In the case

of gait recognition, a window size of 1,250 ms was used

with hop size of the 625 ms, which corresponded to 64 and

32 signal samples overlapping between consecutive frames

for Shimmer and 78 and 39 samples for the devices of the

PERFORM system. For the parameterization of the signal

used for hand movement classification we used a shorter

window of 625 ms and the hop size of 320 ms. This was

associated with the necessity to detect high-frequency

activities. All the parameters were normalized to the value

of \-1,1[ before being fed to the input. As mentioned

before, acceleration signals extracted from sensors form tri-

axial entities which may be treated as sources of granules

of information. Especially important seems a granular

interpretation of their nature in the context of a human-

centric description of relationships existing within data

(Gacek 2013). Moreover, because of much redundancy

contained in the acceleration signals, there is a need to

parameterize these signal entities. Thus if we recall that the

essence of granularity (Pedrycz 2001) is a meaningful

representation of a collection of numeric values (real

numbers), i.e. {x1, x2, …, xN}, then the extracted feature

vectors will become information granules. The parameters

describing information extracted from the acceleration

signal frames can be divided into the ones calculated in the

time domain and the spectrum domain. They will be dis-

cussed in Sects. 3.1 and 3.2, respectively.

3.1 Parameters in time domain

For the parameterization, we first used the standard sta-

tistical signal metrics. The first one was the mean value of

the signal—a parameter describing the level of acceleration

for a given frame of signal. It can be observed that this

parameter is of high values for dynamic activities (e.g.

walking, hand movement) and low for static activities (e.g.

sitting). The mean value of the acceleration signal can be

counted in the following way:

x ¼ 1

N

XN

n¼1

xðnÞ ð1Þ

where n is the number of acceleration signal sample, and

N is the length of a signal frame in samples.

Standard deviation represents the range of signal

variability:

Fig. 2 Acceleration signals recorded during the tests
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stdðxðnÞÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N � 1

XN

n¼1

xðnÞ � xð Þ2

 !vuut ð2Þ

Another parameter—kurtosis was determined in order to

establish the dynamics of changes in acceleration signal:

krtðxðnÞÞ ¼ m4ðxðnÞÞ
stdðxðnÞÞ2

� 3 ð3Þ

where m4(x(n)) represents the fourth central moment.

The crest factor is a ratio of the maximum signal value

to the RMS value. It describes the impulsiveness of the

signal:

kszðxðnÞÞ ¼
maxðxðnÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
N

PN

n¼1

xðnÞ2

s ð4Þ

In order to describe the relation between the movement

of particular limbs and the body, a correlation coefficient

was calculated corresponding to the same axes of accel-

erometers located on different body parts. As a result, 30

coefficients were obtained for five sensors. Additionally, a

correlation coefficient was determined between each pair

of axes of the same accelerometer, which completed the

description of the movement by the relation of a temporary

location of the sensor. The correlation coefficient was

calculated using the following formula:

corrðxðnÞli; xðnÞ
m
j Þ ¼

xðnÞlixðnÞ
m
j � xlix

m
j

stdðxðnÞliÞstdðxðnÞ
m
j Þ

ð5Þ

where i = 1…5, j = 1…5 represent the numbers of

acceleration sensors and l = {x, y, z}, m = {x, y, z} are the

axes of accelerometers. The correlation coefficient between

the sensors was calculated for i = j and l = m, correlation

coefficients between axes of accelerometers for i = j and

l = m.

3.2 Energy-based descriptors

The complexity of movement was described with the use of

the signal spectrum energy expressed in the following

formula:

EðAðkÞÞ ¼

PK

k¼1

AðkÞ2

K
ð6Þ

where A(k) is k-th amplitude spectrum line of the accel-

eration signal, K denotes the total number of spectrum

lines.

The evaluation of periodicity is described by the

entropy:

Ent ¼ �
XK

k¼1

pðkÞ log2 pðkÞð Þ ð7Þ

where p(k) represents the probability of A(k) value occur-

rence in the amplitude spectrum of the acceleration signal.

Low value of entropy indicates the periodicity of the ana-

lyzed signal.

4 Classifiers

The classification of acceleration signal was carried out

using two independent classifiers designed for the recog-

nition of the gait category and hand movement. The clas-

sifiers involved artificial neural networks (ANN) and the

support vector machine (SVM) (Vapnik 1995). Due to the

fact that classifiers based on ANNs are widely-used in

many domains, the description of algorithm settings and

parameters will be limited to the most important informa-

tion concerning the structure and parameters of classifiers.

On the other hand, some basic assumptions of the SVM

algorithm will be given. In order to find an optimal

placement of the accelerometers (i.e. a placement which

allows for the classification of a given movement category

at the highest possible effectiveness), we prepared classi-

fiers allowing for a recognition of movement activities with

the use of a various number of sensors. Also, in the liter-

ature one may find investigations to determine the optimal

placement of accelerometers for the purpose of detecting a

range of everyday activities (Cleland et al. 2013).

4.1 SVM algorithm

The method was originally invented by Vapnik (1995), as a

classifier allowing for dividing sets of parameters into two

classes y = {y1, y2, …, yd}, where ye{-1,1}. The classi-

fication is based on the assumption that it is possible to

separate the sets of parameter vectors x = {x1, x2,…, xd}

belonging to the Rn space into two subsets U1 and U2, using

a linear function f(x) expressed by the following formula

(8):

f ðxÞ ¼ w � x þ b ð8Þ

A set of all parameters {x, y} e U. Plane f(x) separating

the set of parameters is called a hyperplane. The training of

the classifier involves finding a hyperplane separating two

parameter sets with preserving of the largest possible

margin, where the established hyperplane is counted as

f(x) = 0, and the margin as f(x) = -1 and f(x) = ?1. The

highest value of the margin is achieved if the value of (9) is

minimal and the assumptions described in formulas (10)

and (11) are fulfilled.
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min
1

2
wk k2 þC

Xl

i

fi ð9Þ

yi � w � xið Þ þ bð Þ� 1 � fi; 8i 2 U ð10Þ
fi � 0; 8i 2 U ð11Þ

where ||w|| is the length of the vector w, C is a cost, and fi is

a slack variable determined independently for each vector

xi. Including the cost and the slack variable allows for

dividing the nonlinearly separable sets. The value of the

cost is determined by the user during the training of the

classifier. The higher the value of the parameter C, the

lower the value of the margin, which may result in

excessive matching of the classifier to the training data.

Primarily the SVM method did not take into consider-

ation the case of nonlinearly separable sets. Developing the

method by adding the non-linear division of parameters

required an introduction of the kernel function, which

allows for the transformation of x parameters from the Rn

space to the Rm, space, where m[ n. It is presupposed that

after the transformation to the space of a higher dimension,

i.e. the feature space, the sets will be separable and it will

be possible to separate them using a linear function. Once

the U, function mapping the parameters to the feature space

has been taken into account, the function describing the

hyperplane will take on the following form (12):

f ðxÞ ¼ w � uðxÞ þ b ð12Þ

where u(x) represents the mapping function. Just as in the

case of separable data using a linear function, for the

training of non-linear classifier the highest value of the

margin between the hyperplanes f(x) = -1 and f(x) = ?1

is determined. Once the mapping function has been

included, the conditions which allow for the highest value

of the margin can be determined in the following formula

(13), taking into account the limiting conditions (14) and

(15).

min
1

2
wk k2 þC

Xl

i

fi ð13Þ

yi � w � uðxiÞð Þ þ bð Þ� 1 � fi; 8i 2 U ð14Þ
fi � 0; 8i 2 U ð15Þ

The mapping function u(x) introduces an additional

complexity into the calculations. In order to avoid the

necessity of knowing the mapping function the so-called

kernel trick can be used, which is described by the fol-

lowing formula (16):

Kðx; zÞ ¼ uðxÞ � uðzÞ ð16Þ

where K(x, z) denotes the kernel function, and u(x) and

u(z) the mapping functions. Thanks to relation (16) it is

possible to omit the mapping functions during the training

of the classifier and replacing them with the kernel func-

tion. This allows for a simplification of calculations con-

ducted during the training.

4.2 Walk recognition classification

Gait classifier is to distinguish particular fragments of a

signal in which the subject is walking from fragment in

which he/she is performing any other activities (e.g. lying

down in bed, sitting on a chair). Decisions made by this

classifier can be used by the algorithms assessing, for

example, FOG (UPDRS14—‘‘Freezing when walking’’).

Since it was necessary to include the possibility of gait

recognition (UPDRS29—‘‘Gait’’) with the use of a various

number of sensors, a various number of parameters was fed

to the input. Table 1 presents the relation between the

number of parameters and the number of sensors used in

the analysis.

The neural network used had one hidden layer. The

number of neurons in the input layer was dependent on the

number of accelerometers used for the classification (see

Table 1). The number of neurons in the hidden layer was

calculated according to the following formula:

nukr ¼
nwej

2
þ nwyj ð17Þ

where nin is the number of neurons in the input layer, and

nout in the number of neurons in the output layer.

The ANN-decision-based system for gait classification

had two output neurons. If the data belonged to the ‘gait’

class, the value at the output was expected to be [1,0].

Otherwise value [0,1] was expected. The value of ‘1’ was

ascribed to the output which returned the highest value. For

the training network we used error back propagation

algorithm. Neurons of both network layers used the sig-

moid function of activation defined in the following

formula:

f ðxÞ ¼ b
ð1 � eaxÞ
ð1 þ eaxÞ ð18Þ

where a and b were equal to a unit.

The structure of networks used for the classification of

hand movement and gait consisted of the input, one hidden

and the output layers. The input layer was dependent on the

number of the sensors used

The classifier based on the SVM was created using the

C-support vector Classification algorithm (Boser et al.

Table 1 The relation between the number of sensors and the number

of parameters

Number of sensors 1 2 3 5

Number of parameters 21 45 72 135
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1992; Chang and Lin 2010). The Gaussian kernel function

was used calculated with the following formula:

Kðxi; xjÞ ¼ e
�jjxi�xj jj

2c2 ð19Þ

For the training of the classifier based on the SVM

method two different approaches to (C) and c cost

parameters selection were applied. Initially, we established

fixed values of parameters C = 62.5 and c = 0.5, regard-

less of the number of acceleration sensors that were used.

The values of parameters were selected experimentally. In

the second attempt, in order to find the parameters ensuring

the best effectiveness of classification, we used the grid-

search method available in the OpenCV library. This

method is based on dividing the area of searching with a

conventional net and then using for data calculations two

parameters which change in every iteration. Finally, a pair

of parameters C and c, is chosen, which provides the best

accuracy of recognition (Weka system). It should be

pointed out that it is extremely crucial to find such a pair of

parameters C and c, so that the classifier recognizes

unknown data in the most efficient way. At the second

attempt values of parameters C and c were obtained

depending on the number of accelerometers that were used.

4.3 Hand movement recognition

Hand movement classifier was designed to recognize the

activity of one or two hands being moved. Information

concerning the currently performed activity may be used

for example in the process of bradykinesia assessment. The

classifier analyzed only those fragments of the signal,

which had not been marked by the gait detector as gait.

The neural network was in this case of almost the same

structure as in the case of gait classification. The difference

between the structures was in the number of network out-

put. Four output neurons were used, each corresponding to

the possible classes of hand movement: left, right, both

hands, no movement. The training process was conducted

the same way as in the case of gait classification. Also, the

same algorithm of training and activation function were

used as in the detection of gait.

Since the classifier based on the SVM is by definition a

two-class classifier, thus in the case of hand activity

detection it required more sophisticated scheme with a

possibility of classification of numerous body movement

classes. In this case the one-versus-all method was applied.

The method requires creating a number of two-class clas-

sifiers (the number of classifiers is equal to the one of the

classes), all of which are supposed to distinguish one of the

classes from the remaining ones. During the recognition of

movement, the vector of the parameters is fed to the input

of numerous classifiers, and the final decision as regards

the assigning to a particular class is made on the basis of

the certainty of the decision made by a classifier. If several

classifiers make a decision that a vector belongs to a class

recognized by them, finally the class for which the decision

of the highest estimated probability has been made will be

selected. The probability of decision making is calculated

on the basis of the SVM model and the necessary imple-

mentation is available within the libSVM library (Chang

and Lin 2010).

5 Experiments and results

Below are the results showing the effectiveness of move-

ment activity recognition according to the algorithm of

classification used and the testing method. Each algorithm

was testes with the use of the cross-validation algorithm

and the leave-one-out method (in this case the N-element

sample is divided into N subsets, containing one element

each). In the leave-one-out method the classifiers were

trained in the following way: the training set contained

parameters corresponding to movement activities per-

formed by n-1 people, where n is the number of all

patients, while the testing set contained the parameters for

one person. The values of effectiveness presented in

Tables 2 and 3 are the mean values for all 33 patients.

Since the testing phase is conducted with the use of

parameters extracted from patients’ body motion that were

not used for training the classifier, the leave-one-out

method allows for the evaluation of the generalization

capabilities of algorithms recognizing motor activities.

5.1 Walk recognition results

Tables 2 and 3 present the effectiveness of gait classifica-

tion according to the number of accelerometers used and

the type of the classifier. Apart from the effectiveness, we

also counted the standard deviation in order to show the

differences in the results obtained for particular persons

(the leave-one-out test) and successive validations (cross-

validation).

The result of the highest effectiveness and the lowest

standard deviation for a given configuration of acceler-

ometers was presented in bold. The best results of classi-

fication obtained from a particular testing method were

highlighted by an underline. Based on the analysis of

testing with the leave-one-out method (Table 2), it can be

observed that the highest level of detection effectiveness

was achieved for the SVM classifier. The best effectiveness

for the neural network were achieved in only two situations

(accelerometer on the left leg—gait recognition; acceler-

ometer on both legs, category—no gait). The SVM clas-

sifier provided the highest global effectiveness of
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recognition. The most precise gait recognition was

achieved when three accelerometers were used (legs,

chest), while the opposing class was best recognized when

all the available sensors were used. The results collected

during algorithm testing with the cross-validation method

(Table 3) in the case of gait detection correspond to the

results from Table 2 (the highest effectiveness was

obtained from the SVM classifier in the leg-chest config-

uration of accelerometers). The same configuration of

accelerometers also enabled the most effective classifica-

tion of the opposing class.

The analysis of the effectiveness of gait category rec-

ognition according to a method, accelerometers’ configu-

ration and type of a classifier showed that the highest

effectiveness (with the lowest possible number of sensors)

can be obtained with the use of the SVM classifier and

analyzing the signals recorded by three accelerometers

(legs, chest).

Table 2 Results of gait recognition—leave-one-out method

Accelerometers’ configuration Type of activity SVM (C = 62.5, c = 0.5) SVM grid-search ANN

Effectiveness SD Effectiveness SD Effectiveness SD

1—left leg Gait 95.63 7.34 96.34 5.89 97.27 17.82

No gait 97.66 7.76 97.86 7.57 97.00 7.90

1—right leg Gait 95.06 17.65 94.93 18.69 94.86 17.97

No gait 96.96 8.82 97.18 8.87 96.04 8.06

2—legs Gait 96.71 13.27 97.51 10.91 98.00 5.73

No gait 98.86 3.16 98.62 4.23 96.82 7.28

2—right leg, chest Gait 97.15 9.71 98.24 6.97 96.35 14.00

No gait 96.67 9.48 97.75 7.08 95.88 9.73

3—legs, chest Gait 98.82 2.03 99.19 1.66 85.49 20.82

No gait 98.12 6.08 98.01 6.04 77.10 16.77

3—left hand, right leg, chest Gait 97.02 6.74 98.01 4.96 91.02 13.63

No gait 97.33 6.51 97.31 6.95 86.28 17.81

5—legs, hands, chest Gait 96.94 6.86 97.16 6.65 34.35 28.99

No gait 99.24 1.91 98.36 3.71 83.89 19.60

Table 3 Results of gait recognition—cross-validation method

Accelerometers’ configuration Type of activity SVM (C = 62.5, c = 0.5) SVM grid-search ANN

Effectiveness SD Effectiveness SD Effectiveness SD

1—left leg Gait 97.47 1.14 97.03 0.97 97.42 1.39

No gait 98.39 0.88 98.31 0.86 98.30 0.76

1—right leg Gait 98.37 0.89 98.65 0.51 97.50 1.30

No gait 99.09 0.54 99.01 0.71 98.58 0.76

2—legs Gait 98.89 0.44 98.99 0.72 98.68 0.90

No gait 99.53 0.41 99.50 0.46 98.55 0.79

2—right leg, chest Gait 98.62 1.07 99.14 0.46 98.66 0.67

No gait 99.26 0.42 99.16 0.53 97.77 1.41

3—legs, chest Gait 99.37 0.37 99.69 0.42 90.54 8.01

No gait 99.78 0.26 99.69 0.29 89.10 12.95

3—left hand, right leg, chest Gait 98.49 1.65 98.91 1.19 92.64 8.13

No gait 99.36 0.34 99.35 0.31 85.04 19.11

5—legs, hands, chest Gait 98.38 2.35 98.99 1.29 38.51 16.23

No gait 99.65 0.37 99.69 0.27 94.04 7.48
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5.2 Hand movement recognition results

Tables 4 and 5 present the results obtained during

algorithm tests of hand movement recognition. Apart

from the effectiveness of classification and standard

deviation, we also used the false-negative error values,

which is a number (percentage) of erroneously classified

examples of a given class. The tables contain the values

pertaining to globally the best effectiveness and the best

efficiency obtained for a given configuration of

accelerometers.

Based on a comparison of results it can be observed that

in the case of cross-validation (Table 5) the best effec-

tiveness of movement category recognition was obtained

for the SVM classifier. However, the test conducted with

the leave-one-out method shows that it is the neural net-

work that has the best capability to generalize (in almost all

cases shows the highest effectiveness).

As the data in Tables 4 and 5 show, the best results of

hand movement classification were obtained when using

the neural network and analyzing only the signals recorded

by the sensors on subject’s wrists.

6 Virtual TouchPad

This section describes a device called a VTP, which is

based on hand image analysis. It is still being tested and

has not yet been used in clinical studies.

Recently, more and more study groups have been

working on finding possible solutions that would allow for

automatic assessment of hand motor activity in patients

with PD (Okuno et al. 2006; Shima et al. 2008). Hand

motor activity is assessed by specialist physicians within

the UPDRS tests (pertains to UPDRS23—‘‘Finger tapping

test’’, UPDRS24—‘‘Hand movements test’’, UPDRS25—

‘‘Alternating hand movements test’’). Automation of these

tests allows the patient to perform them on his/her own at

home and send the results to a specialist, who can analyze

them at any moment. The assessment of hand activity

includes the UPDRS mentioned above.

Most of the proposed solutions are based on technolo-

gies that require different types of sensors (e.g. acceler-

ometers or proximity sensors) to be fastened to patient’s

fingers or palm. Such systems are not comfortable and their

use may cause problems for patients with advanced PD.

Thus, methods that do not involve sensors are used as well.

They are predominantly based on the analysis of hand

image recorded by a video camera during test performance.

Such a solution was used in the study by the MSD, GUT.

The hardware layer of the system includes a computer and

an Internet video camera on a specially-designed stand.

The camera must be located in such a way that it can record

the image of a hand placed parallel do the surface of a

table/desk. Figure 3 presents a photo showing how to

locate the camera on a stand. Specially designed algorithms

of image processing allow for the detection of gestures

made by a patient. The analysis of gestures then allows for

presenting the result in the form of a diagram showing time

taken by each gesture.

6.1 Image processing with VTP

The algorithms of image processing were implemented with

the use of the OpenCV library. The processing of the image

involves seizing the picture form the video camera, recog-

nizing hand gestures and producing results describing the

movement. Image processing consists of two main steps:

hand detection from the image and gesture recognition. The

tests are conducted with the use of a specially-designed

application which prompts how a given test should be per-

formed and shows the results. Figure 4 presents sample

screenshots from the application designed for hand tests.

6.1.1 Hand detection in VTP

Hand detection is based on the algorithms of background

removal and contour detection based on the captured

Table 4 Results of hand movement recognition—leave-one-out method

Accelerometers’ configuration Type of activity SVM (C = 60, c = 0.5) ANN

Effectiveness SD 2nd order error Effectiveness SD 2nd order error

2 sensors—subject’s wrists Left 76.33 35.90 1.43 81.56 33.55 4.46

Right 74.88 35.31 0.44 77.85 38.02 1.54

Both 93.15 13.15 4.30 90.89 18.69 5.36

No mov. 99.41 0.91 50.06 99.63 0.84 38.70

3 sensors—subject’s wrists, chest Left 70.41 35.74 1.76 77.22 33.03 6.68

Right 71.50 37.75 0.36 74.95 39.96 2.37

Both 90.40 15.96 4.64 86.21 23.15 7.30

No mov. 99.69 0.60 61.23 98.92 3.15 46.35
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video. The algorithm of background removal is based on a

static model of a scene, which is built at the so-called

algorithm initialization stage requiring 50 video frames.

The background model is a set of two values representing

each of the image pixels, i.e. the mean pixel value des-

ignated from the initializing images and the averaged

differences between the same pixels in successive frames.

A given pixel is considered a foreground object, if the

value of its intensity exceeds the range of the defined

model. Once the background is removed, we obtain a

binary mask representing the foreground. The unusual

location of a video camera results in a shadow, which

adds to the image with removed background. This makes

hand detection more difficult. Thus, it is then necessary to

apply the algorithm of shadow removal. The implemen-

tation involved using a typical algorithm based on image

thresholding in YCrCb colour space, where the compari-

son is conducted by analyzing the background pixels and

objects from the foreground (Prati et al.). Once the sha-

dow is removed, a morphological operation of closing is

carried out on the image mask, thanks to which any

defects are eliminated from the image. Finally, the algo-

rithm of contour recognition designates a hand contour.

When the picture is being analyzed, it is presupposed that

the image of the hand should have a surface of at least

5000 pixels.

Fig. 3 Mounting the camera on a stand

Table 5 Results of hand movement recognition—cross-validation method

Accelerometers’ configuration Type of activity SVM (C = 60, c = 0.5) ANN

Effectiveness SD 2nd order error Effectiveness SD 2nd order error

2 sensors—subject’s wrists Left 92.12 3.34 3.94 81.81 4.10 3.47

Right 89.93 2.88 2.64 70.62 5.19 1.04

Both 93.60 2.30 0.95 81.00 4.44 3.80

No mov. 99.89 0.05 16.94 99.69 0.13 58.57

3 sensors—subject’s wrists, chest Left 88.52 3.22 2.94 82.12 4.92 3.46

Right 90.12 3.56 3.27 75.70 2.21 1.35

Both 96.51 1.64 0.99 87.53 2.49 8.01

No mov. 99.96 0.04 17.72 99.74 0.11 42.11

Fig. 4 Application for hand movement tests
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6.1.2 Gesture recognition in VTP

The algorithm of gesture recognition analyses the image

mask which contains a designated hand contour. Gesture

classification involves the SVM method. Just as in the case

of hand movement analysis described in Sect. 4.2, for the

detection of a number of gesture classes we used the one-

versus-all method. Three independent classifiers were

established. Each of them was supposed to recognize dif-

ferent gestures depending on the type of UPDRS test in

which it was used. The designed classifiers distinguished

the following types of gestures: adjoining fingers/separated

fingers (Fig. 5a, b) in the finger tapping test (UPDRS 23),

opening fist/closing fist (Fig. 5c, d) in the hand movement

test (UPDRS 24), pronation–supination movements of

hands (Fig. 5e, f) in the alternating hand movements test

(UPDRS 25).

The mask of a hand contour was exposed to parame-

terization that involved finding the number of points in the

image that contain the 1 value. The pixels were counted at

the section from the centre of the image mask to the edge.

180 sections were defined and each successive one was

turned from the previous one by 2�. As a result, 180

parameters were obtained describing each image mask.

Fig. 5 Gestures recognized by

the classifiers: (a, b) finger

tapping test (UPDRS 23),

(c, d) opening fist/closing fist

(UPDRS 24), (e, f) pronation–

supination hand movements

(UPDRS 25)

Fig. 6 Example of results obtained
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The training of the SVM classifier was conducted

independently for each of the users. 35 frames containing a

given gesture were used to train each gesture.

6.2 Assessment of hand motor activity using VTP

The hand motor activity test was carried out with the use of

the application described in Sect. 6.1. It allowed for con-

ducting three independent UPDRS tests. Each of the tests

was performed independently for left and right hand. Fig-

ure 6 presents a screenshot from a program with the UP-

DRS 23 test results.

In this case, it can be observed, that the test was per-

formed correctly (no problems with performing the activ-

ity), since at this stage of the study only healthy subjects

with no disturbances of motor function were tested. The

application does not provide assessment in the UPDRS

scale but records objective parameters allowing the doctor

to interpret them. The result of each of the tests was pre-

sented in a form of a diagram showing the interrelation

between a particular gesture and time, as well as a table

with a number of gestures performed during the test, mean

number of gestures performed in one second and time

taken for each gesture.

7 Summary

As presented in this paper, owing to the analysis of bio-

medical signals and Internet video camera images, it was

possible to monitor movement activity of patients with PD.

The results obtained in experiments show that it is possible

to identify motor activity of a PD patients based on the

analysis of the acceleration signals. The high effectiveness

and scalability of the described approach makes it practi-

cally feasible for a 24-h monitoring of patients. They may

also constitute a basis for designing algorithm of a higher

level, for example, for the analysis of PD symptoms such

as FOG or slowness of hand movement. In the future, the

algorithms based on video image analysis should allow for

the creation of more objective parameters of patients’

evaluation that will be based on the results of the proposed

tests.
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