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Abstract. In this paper we continue the study of paired-domination in graphs.
A paired—dominating set, abbreviated PDS, of a graph G with no isolated vertex is a
dominating set of vertices whose induced subgraph has a perfect matching. The paired-
-domination number of G, denoted by 7,(G), is the minimum cardinality of a PDS of G.
The upper paired—domination number of G, denoted by I',(G), is the maximum cardinality
of a minimal PDS of G. Let G be a connected graph of order n > 3. Haynes and Slater in
[Paired-domination in graphs, Networks 32 (1998), 199-206], showed that v,(G) < n—1 and
they determine the extremal graphs G achieving this bound. In this paper we obtain analo-
gous results for ', (G). Dorbec, Henning and McCoy in [Upper total domination versus upper
paired-domination, Questiones Mathematicae 30 (2007), 1-12] determine I'y(P,), instead in
this paper we determine I'p,(C). Moreover, we describe some families of graphs G for which
the equality 7,(G) = I'p(G) holds.
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1. INTRODUCTION

Domination and its variations in graphs are now well studied. The literature on this
subject has been surveyed and detailed in the two books by Haynes et al. [5, 6].
Paired-domination in graphs was introduced by Haynes and Slater [7] as a model for
assigning backups to guard for security purposes. This concept of domination is well
studied (see [1-4,8-10]).

Let G = (V,E) be a graph which is finite, undirected, without loops, multiple
edges and isolated vertices. The number of vertices of G is called the order of G and
is denoted by n(G). When there is no confusion we use the abbreviation n(G) = n.
Let H be a connected graph. Then we denote by mH, m > 1, the graph consisting of
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m components Hy, ..., H,,, where H; = H for i = 1,...,m. A matching in a graph
G is a set of independent edges in G. A perfect matching M in G is a matching in
G such that every vertex of G is incident to an edge of M. A paired-dominating set,
abbreviated PDS, of a graph G is a set S = {uy,...,us,v1,...,v:} of vertices of G
such that every vertex is adjacent to some vertex in S and the subgraph (S) induced
by S contains a perfect matching M = {eq,..., e}, where e; = u;v; for i = 1,...,¢t.
Two vertices u; and v; joined by an edge of M are said to be paired. Let S, be the set of
paired vertices in S, that is S, = {{u;,v;}| where i = 1,...,¢}. The paired-domination
number of G, denoted by 7,(G), is the minimum cardinality of a PDS. A PDS S of
G is minimal if no proper subset of S is a PDS of G. The upper paired-domination
number of G, denoted by I'),(G), is the maximum cardinality of a minimal PDS. A
minimal PDS of G of cardinality I',(G) we call a T'),(G)-set.

2. GRAPHS WITH EQUAL ~, AND T,

The aim of this section is describing graphs G for which 7, (G) =T',(G) = n — i for
i=0,1,2.
We start from the following statement.

Observation 2.1. For a graph G, T',(G) = n if and only if G is mK,.

Proof. Obviously, I'y(mK3) = 2m = n, since for G = mK, the unique PDS of G
is V(G).

Now, suppose that I',(G) = n and G # mKs,. Then, n is even and all the vertices
of G are paired in Sy,. Since G # mK,, without loss of generality we may assume
that vertex u; is adjacent to vertex vy, where j # k. But then the vertices of V(G) —

{vj,ur} form a paired-dominating set, which is a contradiction with minimality of
S =V(Q). O

The subdivided star K7, is the graph obtained from a star Kj, by subdividing
every edge once. In [7] we have the following notation and statements. Let F be the
collection of graphs Cs,C5 and the subdivided stars K7 ;.

Theorem 2.2 ([7]). If G is a connected graph of order n > 3, then v,(G) <n — 1.
Furthermore v,(G) =n — 1 if and only if G € F.

We can reformulate Corollary 8 of [7] and then we obtain the following statement.

Corollary 2.3. Let G be a graph with n > 3. Then v,(G) = n — 1 if and only if
G =HUrKs, where H € F andr > 0.

Let K f% be the graph obtained by attaching zero or more triangles to the central
vertex of K7, (see Figure 1). Now let F24 = {Cj3,C5, K{4'}.

Now we establish a bound on I',(G) for connected graphs G. Moreover, we deter-
mine extremal graphs achieving this bound.

Theorem 2.4. If G is a connected graph of order n > 3, then I'y(G) < n — 1.
Furthermore, T,(G) = n — 1 if and only if G € FA.
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Fig. 1. The graph Kf’%,

Proof. Since G is a connected graph with n > 3, by Observation 2.1 we have that
I,(G) <n—1. It is casy to see that I',(Cs) = 2, T',(C5) = 4 and Tp(K;$) =n —1,
and so T',(G) =n — 1 for G € FA.

Now assume that G is a connected graph with n > 3 such that I',(G) = n—1. Let S
be aT,(G)-set and let V —S = {x}. Since S dominates G, x has at least one neighbour
in S, say u1. If I,(G) = 2, then G is ether P3 = K}, or C3, 80 G € F C F2. Thus we
may assume that I', (G) > 4. Now we state that S—{u1, v1 } induces an independent set
of edges. Let us assume that there is on the contrary. Then without loss of generality
we may suppose that vertex u; is adjacent to vertex vy, where 2 < i < k. It follows
that S — {v;,ux} is a PDS of G with S, — {{wi, v}, {wk, vk} } U {{ui, vx}} as a set
of paired vertices, that contradicts the minimality of S. Furthermore, if the pair
{u;,v;} € Sp — {{u1,v1}} has a common neighbour in S, then S — {u;,v;} is a PDS,
contradicting the minimality of S. Suppose that w; is adjacent to u;, where i > 2.
Then, S, — {{u1,v1}, {vi, v;}}U{{u1,u;}} is a set of paired vertices for a PDS which
is S — {v1,v;}, again contradicting the minimality of S. Hence N(u1) = {x,v1}.
By connectivity, exactly one vertex from each pair {u;,v;} € S, — {u1,v1} must be
adjacent to vy or vertices from {u;,v;} must be adjacent to x.

Now assume that v; is adjacent to u; for ¢ > 2. If N(x) N (S — {u1,v;}) # @, then
the vertices in the pairs of S, — {{u1,v1}, {w;,v;}} U {{w;,v1}} form a PDS of G, a
contradiction. Hence, if zv; € F(G) then N(v1) = {u1,u;} and N(z) = {u1,v;} and
G =Cs.

Thus we have the remaining cases:

(1) exactly one vertex from each pair {u;,v;} € S, — {{u1,v1}} is adjacent to v; and
we obtain G = K7,

and

(2) at least one vertex from {u;,v;} is adjacent to x and then we obtain G = Ki%.
This completes the proof of the theorem. O

Corollary 2.5. Let G be a graph with n > 3. Then I',(G) = n — 1 if and only if
G = HUrK,, where H € F» andr > 0.
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Now, let us consider the following problem: for which graphs G the equality
vp(G) = T',(G) holds? In this paper we present a solution of the above problem
for large parameters.

By Theorem 6 of [7] and Observation 2.1 we obtain the following statement.

Fact 2.6. Let G be a graph. Then v,(G) =T',(G) = n if and only if G = mK,.
Since F C F%, by Corollary 2.3 and Corollary 2.5, we obtain the following result.

Corollary 2.7. Let G be a graph satisfying n > 3. Then v,(G) =T,(G) =n -1 if
and only if G = HUrKs, where H € F and r > 0.

Now we determine graphs G for which v,(G) =T',(G) =n — 2.
In [10] we showed that only the graphs in family G (see Figure 2) are connected
and satisfy the condition ~,(G) =n — 2.

Theorem 2.8. Let G be a connected graph of order n > 4. Then v,(G) = n — 2 if
and only if G € G.

Corollary 2.9. If G is a graph of order n > 4, then v,(G) = n — 2 if and only if:

1) ezactly two of the components of G are isomorphic to graphs of the family F given
in Theorem 2.2 and every other component is Ko or

2) exactly one of the components of G is isomorphic to a graph of the family G given
in Theorem 2.8 and every other component is Ks.

Next, we describe graphs with the paired-domination and the upper
paired-domination numbers two less than their order.

Corollary 2.10. If G is a graph of order n > 4, then v,(G) =T',(G) =n —2 if and
only if G is a graph given in Theorem 2.8 and Corollary 2.9.

Proof. It follows from the former theorems that the condition v,(G) = n — 2 holds
if and only if G € G or G is the graph described in Corollary 2.9. It follows the
necessity. Now let G € G or G be a graph from Corollary 2.9. Since G is a graph
of even order, moreover I',(G) > v,(G) and G # mKs, then by Observation 2.1 we
conclude that I'y)(G) = 7,(G). But then by Theorem 2.8 and Corollary 2.9 we obtain
the sufficiency. O

3. I', FOR PATHS AND CYCLES

Dorbec et al. [2] established the upper paired-domination number of the path.

Proposition 3.1. Forn > 2 an integer,
Iy(P,) =8[(n+1)/11] + 2[((n + 1) mod 11)/3].

In this paper we determine the upper paired-domination number for the cycle.
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Proposition 3.2. For n > 3 an integer,
I,(Cy) =8|n/11] +2|(n mod 11)/3|

forn#5 and T',(C5) = 4.

Proof. For 3 <n <12 we can detemine the values of I',(C,) = 2,2,4,4,4,4,6,6,8,8,
respectively. Thus, the statement holds.

For n > 13, let f(n) =8|(n+1)/11] + 2| ((n + 1) mod 11)/3].
Then we proceed with the following statement.

Claim 1. For n > 3 an integer, f(n —1) > 2|n/3].

Proof of Claim 1. Let n = 33k + r, where 0 < r < 33. Then f(n — 1) = 24k + rq,
2|n/3] = 22k + ro and r1 > ry. Hence we can obtain the desired result.

Now, for the path P, of order n, we costruct a special I',(P,,) — set.

Claim 2. Let P, be the path vi,vs,...,v, of order n, where n > 2 and n # 4. Then
there exists a T',)(P,)-set S such that vy € S.

Proof of Claim 2. Assume that vy, vs, ..., v, are consecutive vertices on the path P,.
We construct a set S as follows. Let S, = A;, be a set of paired vertices in S for the
path P,. First we define A,, for 2 < n < 10. Let

Az = Az = {{v1,v2}}, Ay = {{v2,v3}},
As = {{v1,v2}, {va, vs}}, Ag = A7 = {{v1,v2}, {vs,v6}},
Ag = Ag = {{Ul,’Ug}, {1}3,1}4}, {U7, Ug}}, AlO = Ag U {{’Ug,’l)lo}}.

Now, we determine A,, for n = 11k + r, where £k > 1 and 0 < r < 11. At first we
define the sets B; for ¢ > 0 as follows:

Bi = {{U1+11i7 U2+11i}a {U3+11i; 'U4+11i}’> {'U7+11ia U8+11i}7 {U9+11i7 'U10+11i}}-

Next, we define A,, as follows: A4,, = Uf:_ol B;forr=0, A, = Uf:_ol B;UA, forr>2
and

k—1
A, = U B; — {{vi1k—2,v116—-1}} U {{v11k, v11841}} for r=1.
i=0

It is clear that the above set S is a PDS of P,. Now we show the minimality of
S. For this purpose suppose that S’ C S and S’ # S, next consider two possibilities.
If " =5 —{vj,vj41}, where {v;,vj41} € S, = A,,, then S is not a PDS of P,.
Now assume that {v;,vj4+1}, {vj12,vj43} € Sp. Then S’ = S — {v;, vj43} with paired
vertices v; 41 and v;j42, is not a PDS of P, again. Now we calculate the size of S. Let
n =11k +r, where K > 1 and 0 < r < 11. Then consider the following cases.

Case A. r = 0. Then we have |S| = (8/11)n = 8k, but on the other hand

F(n) = 8[(11k +1)/11] + 2| ((11k + 1) mod 11)/3) = 8k.


http://mostwiedzy.pl

Wiodzimierz Ulatowski

132

4

G

G: £

Gy

1A X

6

G

Ay

Gy

10

G

Gis

Gy

Giz

&

(dAzpamasow woiy papeolumod AZAAIM LSOW </


http://mostwiedzy.pl

Downloaded from mostwiedzy.pl

A\ MOST

The paired-domination and the upper paired-domination numbers of graphs 133

C O O O O
Ggg GQS
G4 Gozs Goag

Fig. 2. Graphs in family G

Case B. r > 2. Now we obtain
|S| =8k + f(r) =8k +8[(r+1)/11] + 2| ((r + 1) mod 11)/3].
Case B.1. r < 10. Then
|S] =8k + 2[((r + 1) mod 11/3| = f(n).
Case B.2. r = 10. Then
|S| =8k + f(r) =8k +8=8[(n+1)/11] = f(n).
Case C. r = 1. In this case we have |S| = 8k, but on the other hand
F(n) =8| (11k +2)/11] + 2| ((11k + 2) mod 11)/3| = 8k.

Thus, in every case we have that [S| = f(n) and S is a ', (P, )-set.

Now let v1,...,v, are consecutive vertices on the cycle C,, and consider the path
P,_1 = C,, — v,. By Claim 2, we conclude that there exists a I',(P,_1)-set S such
that v; € S. It is obvious that S is a PDS of C),. Now suppose that there exists a
proper subset S’ of S such that S’ is a PDS of C,,. Since v, ¢ S’, then S’ would be
a PDS of P,_;, contradicting the minimality of S. Therefore, S is a minimal PDS
of C,,.

Hence we obtain

FP(Pn—l) < Fp(cn)'

Now we show that I',(C),) < T',(P,—1).
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At first assume that there exists a I'y(Cy)-set S’ such that for all vertices v;, v;11
paired in §', v;_1 ¢ S’ and v;42 ¢ S’. Then we have I',(C),) < 2|n/3|. Hence and by
Claim 1 we obtain I'y,(Pn,—1) > T',(Ch).

So we may assume that for every I',,(C),)—set S’ there exist vertices v;, v;41 paired in
S’ and such that at least one vertex v;_1,v;1o is in S".

Without loss of generality we may assume that vertices v,,_1, v, are paired in S’ and
at least one among vertices v, _a, v is in S’. It follows from the minimality of S’ that
exactly one of v,_o,v; belongs to S’. Let v; ¢ S’ and v,,_o € S’. Hence v,,_3 € 5.
Note that v,—4 ¢ S’, because vertices v,_4,v,_5 would be paired in the opposite
case, which contradicts the minimality of S”.

Now consider the following cases.

Case 1. v € S'. Then v,_5 ¢ S’, because the set S’ — {v,,—3,v,} would be a PDS of
C,, in the opposite case, which contradicts the minimality of S’. Now S’ is a minimal
PDS of P,_; = C,, — v1. Really, suppose that S”, where S” C S and 8" # 5, is a
PDS of P,,_;. Then S” must include vertices v,,_3, Vp_2, Up_1, Un, therefore S” would
be a PDS of C,,, a contradiction.

Case 2. vo ¢ S’. Then vz € S’.

Case 2.1. v,_5 € S’. Then consider the path P,_; = C,, — v,_4. By reasoning similar
to that in Case 1 we conclude that S’ is a minimal PDS of P,,_;.

Case 2.2. vp,_5 ¢ S’. Then S’ is a minimal PDS of P,_; = C,, — v;1. Really, suppose
that S”, where S” C S" and S” # S’, is a PDS of P,,_1. Then S” must include vertices
Un—3,Un—2,Un_1,V, and vs, therefore S would be a PDS of C,,, a contradiction.

In all cases we have that S’ is a minimal PDS of P,_; and so I',(Cy,) < T'p(Pn—1).
This completes the proof of the statement. O

Now let us consider the problem when

’YP(G) = FP(G)

for G =P, or G =C,.
Since v,(Pn) = 7(Cn) = 2[n/4] (see [7]), by Proposition 3.1 and by Proposi-
tion 3.2 one can obtain the following statements.

Proposition 3.3. v,(P,) =T, (P,) if and only if n =2,3,4,5,6,7 or 9.
Proposition 3.4. ,(C,) =T',(C,) if and only if n = 3,4,5,6,7,8,9,10 or 13.
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