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Abstract. In the paper we give some theoretical and computational results on
the third strong power of cycle-powers, for example, we have found the independence
numbers α((C2

10)
⊠3) = 30 and α((C4

14)
⊠3) = 14. A number of optimizations have been

introduced to improve the running time of our exhaustive algorithm used to establish
the independence number of the third strong power of cycle-powers. Moreover, our
results establish new exact values and/or lower bounds on the Shannon capacity of
noisy channels.
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1 Introduction and basic definitions

The values of the independence numbers of the strong products of graphs are strictly
related to the problem of calculation the Shannon capacity of a noisy channel and its
characteristic graph. The problem was posed by Shannon [9]. He found the capacities
of small graphs on n ≤ 5 vertices, except the value of this measure for the cycle on
5 vertices. Twenty three years later Lovász [8] proved that the Shannon capacity of
the cycle on 5 vertices is equal to

√
5. But after a half century, we still do not know

the Shannon capacity of odd cycles on n ≥ 7 vertices.
In the paper we present some theoretical observations allowing for better assess-

ment of the Shannon capacity of a noisy channel. We have established new exact
values of the Shannon capacity of some classes of noisy channels from the known re-
sult on the channels corresponding to the cycle on 5 vertices. We also present results
of computational experiments that take advantage of these observations and provide
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exact solutions for some special cases, for example, we have found the independence
numbers α((C2

10)
⊠3) = 30 and α((C4

14)
⊠3) = 14.

We begin by introducing definitions needed in the rest of the paper. In particular
we give a formal definition of the Shannon capacity. For a deeper discussion of this
subject we refer the reader to [7, 9, 8].

Let G = (V (G), E(G)) be a finite undirected graph. A set of vertices S of G
is said to be an independent set of vertices if they are pairwise nonadjacent. The
independence number of G, denoted by α(G), is defined to be the size of a largest
independent set of G.

In this paper we use the following operations on graphs.

Definition 1.1. Given a graph G and a positive integer k. The k-power Gk of G is
the graph on the same set V (G) in which two vertices are adjacent if and only if they
have the distance at most k in G.

Definition 1.2. Given two graphs G = (V (G), E(G)) and H = (V (H), E(H)), the
strong product G⊠H is defined as follows. The vertices of G⊠H are all pairs of the
Cartesian product V (G)× V (H). There is an edge between (v, v′) and (w,w′) if and
only if one of the following holds:

• {v, w} ∈ E(G) and {v′, w′} ∈ E(H),

• v = w and {v′, w′} ∈ E(H),

• v′ = w′ and {v, w} ∈ E(G).

We write G⊠n to denote G⊠G⊠ · · ·⊠G, where G occurs n times.
For a discrete noisy channel Γ with an input alphabet A, we define the following

notion. The characteristic graph of a channel Γ is a graph G = (V,E) such that the
vertex set V = A and {v, w} ∈ E if and only if Sv ∩ Sw 6= ∅, where Sv is the set of
letters attainable on output, when there is v on input.

Baumert et al. [3] and independently Hales [6] established the exact formula on the
strong product of two cycles. Recently, Badalyan and Markosyan [2] generalized this
result to the strong product of cycle-powers. Because we are interested in calculating
the Shannon capacity, we present their results under the assumption that the same
n-vertex cycle Cn appears in the strong product.

Theorem 1.1 (Badalyan and Markosyan [2]). Given an arbitrary cycle Cn and a
positive integer k, we have

α(Ck
n ⊠ Ck

n) =

⌊

n

k + 1

⌊

n

k + 1

⌋

⌋

, (1)

where Ck
n is the k-th power of Cn.

Recently, Bachoc et al. [1] have found some new results on the so-called Lovász
number for cycle-powers , which are strongly related to the considered problem. Let
G be a graph of order n, and let AG be the set of real symmetric matrices A indexed
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by V (G) that satisfy Avw = 1, if v = w or if v and w are non-adjacent. The Lovász
number ϑ(G) is defined as

ϑ(G) = inf
A∈AG

λ1(M), (2)

where λ1(M) denotes the largest eigenvalue of M [8]. It is well known that

α(G⊠i) ≤ ϑi(G) (3)

for any positive integer i.
In 1956, in his seminal paper [9], Shannon introduced the notion of a capacity of

a noisy channel in a reliable transmission.

Definition 1.3. The Shannon capacity of a discrete noisy channel Γ with the char-
acteristic graph G is defined as

Θ(G) = sup
n

n

√

α(G⊠n). (4)

The next theorem follows immediately from the definition of the Shannon capacity.

Theorem 1.2 (Shannon [9]). Let G be a graph and let i be a positive integer. Then

Θ(G) ≥ i

√

α(G⊠i). (5)

It turns out that there exist graphs for which Θ(G) > α(G). From the information
theory point of view, the graphs fulfilling the sharp inequality describing channels
facilitate an advantage in the zero-error communication [7].

It is interesting that the exact value of the Shannon capacity of C7 is still unknown.
Vesel and Žerovnik showed that 3.2237 ≤ Θ(C7) ≤ 3.3176 [10].

2 Some theoretical aspects

In this section we will present some theoretical facts that we have used as the first
approximation in our computational experiments.

Note that an independent set of the strong products of a cycle-power (Ck
n)

⊠p can
be represent by the packing of p-dimensional cubes of side k+1 into the n×n× · · ·×n
torus, where n occurs p times (see Fig. 1).

Using this interpretation of an independent set of (Ck
n)

⊠p, we get the following
observations.

Observation 2.1. Given a cycle Cn and positive integers k, p, we have

α
(

(Ck
n+1)

⊠p
)

≥ α
(

(Ck
n)

⊠p
)

(6)

Observation 2.2. Given a cycle Cn and positive integers k, p, q, we have

α
(

(C(k+1)q−1
qn )⊠p

)

= α
(

(Ck
n)

⊠p
)

(7)

and
Θ
(

C(k+1)q−1
qn

)

= Θ
(

Ck
n

)

. (8)
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Figure 1: On the left-hand side we present graph (C1
5 )

⊠2. The graph is embedded in
the torus represented as the square in which opposite sides are identified. On the right
hand-side we show an independent set {{0, 0}, {1, 2}, {3, 4}} and the corresponding
packing. The independent vertices are placed in upper-left corners of 2-dimensional
cubes of side 2, hence are not adjacent to each other. It is easy to generalize this idea
to p-dimensional cubes of side k + 1.

For example, from α
(

(C1
5 )

⊠3
)

= 10, α
(

(C1
7 )

⊠3
)

= 33 and the above observations, we

obtain α
(

(C5
15)

⊠3
)

= 10, α
(

(C3
14)

⊠3
)

= 33, respectively. The old and new results on

(Ck
n)

⊠3 are gathered in Table 1 of the next section. Moreover, from Θ(C5) =
√
5 [8]

and the equality (8), we have Θ
(

C2i−1
5i

)

=
√
5 for i ∈ N.

The next proposition gives another upper bound on the independence number of
the strong product of cycle-powers and it is an extension of the result due to Baumert
et al. [3].

Proposition 2.3. For a given cycle Cn and positive integers k, p such that k < n,
we have

α
(

(Ck
n)

⊠p
)

≤
⌊

n

k + 1
α
(

(Ck
n)

⊠(p−1)
)

⌋

, (9)

where α((Ck
n)

⊠0) = 1.

Proof. Notice that a packing of p-dimensional cubes of side k+1 into the np-torus may
be considered as the composition of n packings of (p − 1)-dimensional cubes of side
k+1 into the np−1-torus. Also, remember that a p-dimensional cube and an np-torus
are composed of (k+1)p and np cells, respectively. Because a maximum packing into
the np-torus consists smaller (or the same) number of cells than n maximum packings
into the np−1-torus, so

(k + 1)pα
(

(Ck
n)

⊠p
)

≤ n(k + 1)p−1α
(

(Ck
n)

⊠(p−1)
)

. (10)

We divide both sides of the above inequality by (k+1)p, and the proof is complete.
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Corollary 2.4. Given a cycle Cn and positive integers k, p such that (k + 1)|n, we
have

α
(

(Ck
n)

⊠p
)

=
( n

k + 1

)p

(11)

Proposition 2.3 gives us, for example, the following inequalities α
(

(C2
13)

⊠3
)

≤ 73 and

α
(

(C3
19)

⊠3
)

≤ 90.

3 Computational experiments

The following results were obtained by using an exhaustive search algorithm. The
state of the algorithm was encoded within a 3-dimensional cube of size n3 representing
the state of each vertex – either it belonged to the neighborhood of the current
independent set or not (see Fig. 2).

Each vertex was assigned its coordinates (x, y, z), where 0 ≤ x, y, z ≤ n − 1. As
the value of n did not exceed 32 in any test, the whole row of the cube (all vertices
with the same coordinates y and z) could be stored in one machine word (using one
bit per vertex).

A number of optimizations have been introduced to improve the running time of
the algorithm. To reduce the overhead of creating a new state for the next level in
search tree, each row had a stack associated to it and before changing the value of the
row, previous content was pushed onto stack. Restoring the previous state required
retrieving previous content of the modified rows from stack. This method reduced
the number of copied machine words to create the new state from n2 to (2k + 1)2.

The second improvement to the algorithm was added to reduce the size of search
tree. We used the fact that any vertex at given level z (a level contains all vertices
with the same coordinate z) affects only up to k levels above and k levels below this
level. Since we are filling our cube in the top-down order (from z = 0 to n − 1) the
bits that have impact on computations on the following levels of the search tree are

Level 0 Level 1 Level 2 Level 3 Level 4 Level 5 Level 6

1110011     1110011     1110011     0000000     0000000     1110011     1110011 

1110011     1110011     1110011     0000000     0000000     1110011     1110011 

1110011     1110011     1110011     0000000     0000000     1110011     1110011  

0000000     0000000     0000000     0000000     0000000     0000000     0000000 

0000000     0000000     0000000     0000000     0000000     0000000     0000000

1100011     1100011     1100011     0000000     0000000     1100011     1100011

1100011     1100011     1100011     0000000     0000000     1100011     1100011

Figure 2: Contents of the cube (C2
7 )

⊠3 (for n = 7 and k = 2) with the vertex (0, 0, 0)
added. The value 1 represents positions that are forbidden, the value 0 means that a
vertex can be added to the independent set at this place.
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those that occupy current level and k levels below the current level (in other words,
only k previous levels are important, as these are the only levels that contain vertices
that influence the current bit setup). Therefore, for a given configuration of bits in
level z and k following levels, the number of vertices that the algorithm was able to
add to the independent set on levels z, . . . , n − 1 was remembered and any time the
same configuration of bits was observed on levels z, . . . , z+ k (all indexing arithmetic
is done modulo n), the stored value was retrieved. If the current independent set
enlarged by the retrieved value was not greater than the best known independent set
size, the branch of the search tree was cut (Steps 16–22 in Algorithm 1).

Algorithm 1

1: procedure FindIndependentSet()
2: best = IS = {}
3: add vertex (0, 0, 0) to IS
4: Explore(1, 0, 0, 0, IS, best)
5: return best

6: procedure Explore(step, prevx, prevy, prevz , IS, best)
7: if step > |best| then
8: best = IS
9: if distribution is known then

10: obtain z for vertex number level from distribution
11: else

12: repeat steps 13 . . .23 for each z = prevz , . . . , prevz + k + 1

13: for each coordinate x, y on level z that are allowed do

14: if level = 1 and (y > n/2 or x < y or x > n/2) then continue

15: add vertex at (x, y, z) to IS and forbid all neighbor positions
16: if configuration C of bits on levels z, . . . , z + k is not known then

17: num = Explore(step+ 1, x, y, z, IS, best)
18: remember num for C
19: else

20: num=value remembered for C
21: if level+ num > |best| then
22: Explore(step+ 1, x, y, z)

23: remove vertex (x, y, z) from IS

Another observation that was employed allowed us to remove some of symmetric
cases. The first vertex was always placed at position (0, 0, 0). The second one could
only occupy positions (x, y, z) where x ≤ n/2 and x ≤ y ≤ n/2, since all other
configurations of those two coordinates can be obtained by symmetric reflections
and translations (Step 14 in Algorithm 1). Finally, for some problems we calculated
allowed distributions, as follows. For a given independent set, create a vector of length
n, where the i-th element is equal to the number of vertices with coordinate z equal to
i. Such a vector will be called a distribution. Since every level of our cube represents
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a copy of (Ck
n)

⊠2, the number of vertices with the same z coordinate cannot exceed
α
(

(Ck
n)

⊠2
)

. Moreover, since vertex on level i affects all levels from i − k to i + k,

the total number of vertices on levels i − k, . . . , i + k cannot exceed α
(

(Ck
n)

⊠2
)

, for

i = 0, . . . , n. Knowing the value of α
(

(Ck
n)

⊠2
)

and assuming a number of vertices in
the independent set, we can compute all possible distributions of these vertices. For
example, given the problem (C11

2 )⊠3 with 40 vertices, the only possible distribution
is {3, 4, 3, 4, 4, 3, 4, 4, 3, 4, 4}, with respect to rotations and reversion of the sequence.

When allowed distributions were computed, they were used to determine z coor-
dinates of each vertex. For example, knowing that the distribution is {3, 4, 3, 4, 4,
3, 4, 4, 3, 4, 4}, we know that three first vertices should have z coordinate equal to 0,
another four vertices should have z = 1 and so on. When there were more than one
possible distributions, all of them were tested. When distribution was not given, the
maximal allowed difference of the z coordinate between two consecutive vertices was
not allowed to exceed k + 1 (Step 12 in Algorithm 1). In cases when the number of
possible distributions was large, distributions were not used since using them would
not improve the running time of the algorithm.

All the results took about 100 hours of computation on a quad-core Intel i5-3550
3.3GHz. They are summarized in Table 1.

Table 1: Exact values and bounds for (Ck
n)

⊠3. The previously known values are
placed in the second column and are taken from [3, 5, 4]. Symbols: a – Algorithm 1,
o – Observation 2.1, o’ – Observation 2.2, p – Proposition 2.3, c – Corollary 2.4 and
ϑ – Inequality (3).

n \ k 1 2 3 4 5 6

4 8 1 1 1 1 1

5 10 1 1 1 1 1

6 27 8c 1 1 1 1

7 33 8a 1 1 1 1

8 64 12a 8c 1 1 1

9 81 27c 8ϑa 1 1 1

10 125 30a 10o
′

8c 1 1

11 148 40p
30o 13pa 8po 1 1

12 216 64c 27c 8a 8c 1

13 247 73p
64o

29p
27o 10a 8po 1

14 343 84p
64o 33o

′

14a 8a 8c

15 390
382 125c 41p

33o 27c 10o
′

8po

In particular, the newly found independent sets and lower bounds on the Shannon
capacity (Theorem 1.2) are as follows:
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• α((C2
7 )

⊠3) = 8 (the set of size 9 does not exist)
{(0, 0, 0), (3, 0, 0), (0, 3, 0), (3, 3, 0), (0, 0, 3), (3, 0, 3), (0, 3, 3), (3, 3, 3)},

• α((C2
8 )

⊠3) = 12 (the set of size 13 does not exist)
{(0, 7, 5), (1, 2, 1), (2, 6, 0), (2, 4, 5), (3, 7, 3), (3, 1, 6), (4, 3, 2), (5, 6, 6),
(6, 2, 7), (6, 0, 2), (7, 5, 1), (7, 3, 4)},
Θ((C2

8 )
⊠3) ≥ 2.2894,

• α((C2
10)

⊠3) = 30 (the set of size 31 does not exist)
{(0, 0, 0), (3, 0, 0), (1, 3, 1), (9, 7, 1), (8, 4, 2), (2, 6, 2), (7, 1, 3), (4, 2, 3),
(5, 5, 3), (6, 8, 3), (3, 9, 3), (0, 1, 4), (9, 8, 4), (1, 4, 5), (8, 5, 5), (3, 0, 6),
(7, 2, 6), (4, 3, 6), (5, 6, 6), (2, 7, 6), (6, 9, 6), (0, 1, 7), (9, 8, 7), (1, 4, 8),
(8, 5, 8), (7, 2, 9), (4, 3, 9), (5, 6, 9), (2, 7, 9), (6, 9, 9)},

• α((C3
10)

⊠3) = 10 (the set of size 11 does not exist)

{(0, 0, 0), (4, 2, 1), (8, 4, 3), (0, 0, 5), (4, 2, 5), (2, 6, 5), (6, 8, 5), (8, 4, 7),
(2, 6, 9), (6, 8, 9)},

• α((C3
11)

⊠3) = 13 (equal to the upper bound)
{(0, 0, 0), (4, 2, 0), (8, 4, 1), (1, 7, 2), (5, 9, 3), (1, 3, 4), (5, 5, 5), (9, 8, 6),
(6, 1, 7), (2, 10, 7), (10, 4, 8), (3, 6, 9), (7, 8, 10)},
Θ((C3

11)
⊠3) ≥ 2.3513,

• α((C4
12)

⊠3) = 8 (the set of size 9 does not exist)
{(0, 0, 0), (5, 0, 0), (0, 5, 0), (5, 5, 0), (0, 0, 5), (5, 0, 5), (0, 5, 5), (5, 5, 5)},

• α((C4
13)

⊠3) = 10 (the set of size 11 does not exist)
{(0, 0, 0), (5, 0, 0), (0, 5, 0), (5, 5, 2), (0, 0, 5), (10, 5, 5), (7, 10, 5),
(5, 2, 7), (2, 7, 7), (7, 7, 10)}

• α((C4
14)

⊠3) = 14 (equal to the upper bound)
{(0, 6, 9), (1, 9, 4), (2, 12, 13), (3, 1, 8), (4, 4, 3), (5, 7, 12), (6, 10, 7),
(7, 13, 2), (8, 2, 11), (9, 5, 6), (10, 8, 1), (11, 11, 10), (12, 0, 5), (13, 3, 0)},
Θ((C4

14)
⊠3) ≥ 2.4101,

• α((C5
14)

⊠3) = 8 (the set of size 9 does not exist)
{(0, 0, 0), (6, 0, 0), (0, 6, 0), (6, 6, 0), (0, 0, 6), (6, 0, 6), (0, 6, 6), (6, 6, 6)},

• 10 ≤ α((C5
16)

⊠3) ≤ 12 (the set of size 13 does not exist)
{(0, 0, 0), (6, 0, 2), (2, 6, 2), (8, 8, 4), (12, 2, 6), (0, 12, 6), (2, 4, 8),
(6, 14, 8), (8, 8, 10), (0, 10, 12)}

• α((C6
20)

⊠3) = 14 (equal to the upper bound)
{(0, 0, 1), (7, 3, 2), (14, 8, 4), (1, 11, 5), (8, 16, 7), (15, 1, 8), (2, 4, 9), (9, 9, 11),
(16, 14, 12), (3, 17, 14), (10, 2, 15), (17, 7, 17), (4, 10, 18), (11, 15, 19)},
Θ((C6

20)
⊠3) ≥ 2.4101.
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