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Abstract- The paper is dedicated to a new method of ship’s 
resistance prediction using Artificial Neural Network (ANN). In 
the initial stage selected ships parameters are prepared to be used 
as a training and validation sets. Next step is to verify several 
network structures and to determine parameters with the highest 
influence on the result resistance. Finally, other parameters 
expected to impact the resistance are proposed. The research 
utilizes parameters of 7 already built off-shore vessels, with 
model parameters available as a result of tests conducted on 
European towing tanks. Thus, the reference is used to assess ship 
resistance prediction with the artificial neural network approach. 

I. INTRODUCTION 

   Prediction of resistance of the ship at the initial design stage 
is of a great value for evaluating the ship’s performance and 
for estimating the required propulsive power. The resistance 
and the total propulsive efficiency have to be determined with 
the highest possible accuracy. Essential inputs include the 
basic hull dimensions and the boat velocity expressed 
indirectly as a Froude number, expressing the flow inertia, i.e. 
speed–length ratio [17]. 
   The resistance is important for ship owners and customers to 
reduce fuel consumption, and minimize the cost of model 
tests. In this study the main focus is on off-shore vessels due 
to the rising interest of the industry, and growing demands. 
Such ships are highly technologically advanced and last 
decades indicate great competition in this field. Trying to find 
more accurate and more up-to date methods for ship resistance 
estimation, an artificial neural network (Alyuda 
NeuroIntelligence) will be used [1], offering proven 
techniques for network design and optimization, a variety of 
training algorithms, including back propagation, conjugate 
gradient descent, Quasi-Newton and Levenberg-Marquardt 
methods. 

II. SHIP RESISTANCE PREDICTION

   Our work involves four types of off-shore vessels (Platform 
Supply Vessel (PSV), Anchor Handling Tug Supply Vessel 
(AHTS), Off-shore Construction Vessel (OCV), Seismic 
Support Vessel (SSV)). 19 parameters are available, and the 
most decisive were used for the ANN training.  
   Ship resistance is a result of two factors: main one, well 
defined and studied friction resistance, and pressure (residual) 
resistance. In accordance with International Towing Tank 
Conference Model-Ship Correlation Line [9] the CF is defined 
by: 
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where: 
CF – friction resistance coefficient, depends only on the
Reynolds number. 
Rn  – Reynolds number:
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where: 
v  – vessel speed, relative flow velocity between the
ship and the sea [m/s], 
LWL – length of waterline of ship [m],
υ – kinematic viscosity [m2/s].

 Thus, the total resistance coefficient CT of a ship can be 
described as: 

CT(Rn,Fn)=CF(Rn)+Cr(Fn)   (3) 
where: 
Cr – pressure (residual) resistance coefficient, depends
on the Froude number, 
Fn  – Froude number:
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and g  – gravity of Earth [m/s2]. 
    Due to the precise and widely accepted definition of CF (1), 
only the residual resistance coefficient as a function of Froude 
number Cr(Fn) was estimated by the ANN in our work. From 
the model tests the Cr is available for a significant number of 
data points, and can be compared with the ANN result.  
    To find the optimum neural network configuration a 
random sample of the population was performed and 
independent data sets were created: a training set, a validation 
set, and a test set. For available 89 records data partition was 
established (Table I). 

TABLE I 
 DATA PARTITION 

Partition sets using No. records Percentage 
Total 89 100% 
Training set 61 68.54% 
Validation set 14 15.73% 
Test set 14 15.73% 

A. Application of Artificial Neural Networks
ANN comprises a set of interconnected “artificial neurons”,

being a computational model inspired by natural neurons. 
Neurons receive signals through synapses, usually carrying 
encoded numeric data. When received signals are strong 
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enough (surpass a certain threshold), the neuron is activated 
and emits an output signal through the axon. This signal might 
be sent to another synapse and might activate other neurons 
[16]. The artificial neuron model is highly abstract, consists 
inputs (synapses), multiplied by weights (strength of 
respective signals), and then transformed by a function 
determining the neuron activation. ANNs combine artificial 
neurons in order to process information. 
   ANN must be developed with a step-by-step procedure of 
adjusting weights, the process known as a training/learning 
rule. The input/output training data is fundamental for these 
networks as it conveys the information which is necessary to 
discover the optimal network state. Since the first neural 
model by McCulloch and Pitts (1943) there have been 
developed hundreds of different models considered as ANNs, 
differing in functions, accepted values, topology, and learning 
algorithms. ANNs were also used for creating an 
approximation model to an unknown non-linear function 
describing dependency between object (ship) parameters and 
result feature (resistance).  

B. Ship Resistance Calculation Methods
Numerous tests conducted by every manufacturer,

employing physical model of the ship indicate that numerical 
descriptions can’t replace the experimental studies because of 
general divergences in the results (not necessarily high). On 
one hand the model test is an expensive procedure, providing 
precise results, but always subjectively interpreted by the 
researcher, and biased by his knowledge. On the other hand, 
prediction by numerical method gives rough estimation – 
proof of concept at the investment stage. 
    Widely known methods of ship resistance and propulsion 
model, such as Holtrop-Mennen [11][12] and its 
implementation as ANN [13], and Hollenbach [10] are shortly 
presented below. It is worth noting the Holtrop and Mennen’s 
study performed 31 years ago haven’t distinguished off-shore 
vessels yet, therefore the Authors’ goal is to validate similar 
approaches for this new type of ships. 
   The Holtrop-Mennen method is used at the design stage 
for estimating ships resistances: 1+k expressing the form 
factor, and CW – the wave’s coefficient. A statistical 
evaluation of model test results was performed for data of 
Netherlands Ship Model Basin, by applying multiple 
regression analysis to each component for 1707 resistance 
measurements results, of 147 ship models, and 82 trial 
measurements made on board 46 real ships, resulting in 
R2=0.636 for the form factor, and R2=0.886 for the wave’s 
coefficient. The method seems to track the experimental 
measurements approximately well, and the R2 values are 
acceptable [11][12]. R2 is coefficient of determination, 
expressing a degree of fitness between model and data.  
    Ortigosa et al. [13] presented an ANN predicting the same 
ship’s parameters. Results shown suitability of applying the 
ANN, encouraging further research. A multilayer perceptron 
(MLP) with a sigmoid hidden layer and two linear outputs was 
used. Selected training algorithm was a quasi-Newton method 
with Broyden–Fletcher–Goldfarb–Shanno algorithm (BGFS) 

update [6] and Brent optimization [3][4]. This network was 
trained with generated data and experimental data to provide 
an estimation of the empirical model of output (1+k and CW) 
as functions of hull geometry coefficients and the Froude 
number, thus comprising 5 inputs (Cp, Cstem, L/B, B/T, and Fn). 
   The output values were calculated by Holtrop and Mennen’s 
method for all possible combinations of input variables, thus 
forming the training data. The 20,664 generated cases were 
divided into a training (82%) and a validation (18%) subsets. 
Different numbers of neurons in the hidden layer were tested, 
and the network architecture providing best generalization 
properties for the validation data set was adopted. The result 
neural network was a 5:9:2 MLP, tested against experimental 
data of Beaver et al. [2], ITTC-Quality Manual [8], in order to 
assess the network performance and compare with Holtrop 
and Mennen’s method. The linear regression yielded R2=0.950 
for the form factor, and R2=0.998 for the wave’s coefficient. 
    The ANN proposed by Ortigosa [13] improved the 
prediction over the entire range of data, comparing to Holtrop-
Mennen approach. 
   The Hollenbach method [10] is based on regression 
analysis of 433 ships with varying main dimensions and forms 
coefficients. All data are from the Vienna Ship Model Basin, 
covering years 1980 to 1995. This analytical method is 
nowadays mostly used for calculating off-shore ship 
resistance, as it has proven the estimation results align with 
model test results. The regression is based on a length over 
surface parameter [16]. The method requires the aft body form 
and ship propulsion system to be specified.  

III. PROPOSED ANN CONFIGURATION

Network architecture 
    Usually it is recommended to use only one hidden layer, as 
most of the problems can be solved by such an architecture. 
Input and output layers are determined based on the input data 
dimensionality and required output, thus the number of hidden 
layer neurons can be estimated as a geometric mean (5) [3]:  

hl il olN N N   (5) 

where: 
Nhl - a number of neurons in a hidden layer, 
Nil - a number of neurons in an input layer, 
Nol - a number of neurons in an output layer. 
    However, a performed automatic network architecture 
exploration revealed the Nhl = 24 gives the best accuracy. 
Therefore, several hidden layer configurations were tested, to 
investigate possible impact of architecture on the results. 

Activation function 
    Empirically, a hyperbolic tangent activation function was 
chosen, characterized by a sigmoid shape curve, calculated 
using the formula: F(x)=(ex-e-x)/(ex+e-x) (Fig. 1). Its output 
range is limited to <–1; 1>, therefore it suits the needs of 
modeling of also limited values. 
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Fig. 1. Activation function hyperbolic tangent 

Error function 
    Minimization of the error function is the main objective of 
the neural network training. The value of the error function is 
used to rate the quality of the neural network. Sum-of-
Squared-Errors is the most common error function used for 
classification and regression problems. It is calculated as a 
sum of the squared differences between the actual value 
(target value) and observed neural network output:  

SSE = N
i=1(xi–ẋi)2  (6) 

where: 
xi is the actual target value, 
ẋi is the estimated or forecasted value (output value). 

Training algorithm 
 7 training algorithms were evaluated: 
 Quick Propagation, 
 Conjugate Gradient Descent, 
 Quasi-Newton Programming, 
 Limited Memory Quasi-Newton, 
 Levenberg-Marquardt, 
 Online Back Propagation, 
 Batch Back Propagation. 

    A training algorithm best suiting the solved problem should 
be selected. Alyuda developers [1] suggest that for a network 
with a small number of weights (usually, up to 300), 
Levenberg-Marquardt algorithm is efficient, and it often 
performs considerably faster and finds better optima than 
other algorithms, however its memory requirements are 
proportional to squared number of weights, and it is 
specifically designed to minimize the SSE and cannot be used 
for other types of network error functions [15]. 
    For networks with a moderate number of weights Quasi-
Newton and Limited Memory Quasi-Newton [5] algorithms 
are efficient. But their memory requirements are also 
proportional to squared number of weights. 
    If the network has a large number of weights, it is 
recommend to use Conjugate Gradient Descent [7], as it has 
nearly the convergence speed of second-order methods, while 
avoiding the need to compute Hessian matrices. Its memory 
requirements are proportional to the number of weights.  
    For networks of any size also Incremental and Batch Back 
Propagation algorithms can be used. Back Propagation is the 
most popular algorithm for training of multi-layer perceptrons 
and is often used by researchers and practitioners. Its main 
drawbacks are: slow convergence, necessity to tune up the 
learning rate and momentum parameters, and high probability 

of training being caught in a local minima. Incremental Back 
Propagation can be efficient for large datasets if researcher 
properly selects the learning rate and momentum. It usually 
performs better than Batch Back Propagation [3]. 

IV. EXPERIMENTS

    For this research seven training algorithms were tested, and 
the following assumptions were made: network was retrained 
3 times, stopping at iterations 10,000 and 100,000. Finally the 
network with best results was chosen. Results of the study are 
presented below in the Table II. 

TABLE II 
RESULTS OF THE TRAINING ALGORITHMS 

10,000 iterations 100,000 iterations 

 Training algorithms 
Corre- 
lation 

R2 AE 
Corre-
lation 

R2 AE 

Batch Back Propagation  0.977 0.953 147.854 0.992 0.984 43.832 
Conjugate Gradient 
Descent 

0.994 0.988 27.141 0.999 0.998 41.599 

Levenberg-Marquardt 0.997 0.994 42.235 0.996 0.994 42.236 
Limited Memory Q 
Newton  

0.988 0.975 28.292 0.999 0.998 21.413 

Online Back 
Propagation 

0.997 0.994 34.347 0.997 0.994 24.999 

Quasi Newton  0.999 0.998 22.494 0.999 0.998 22.495 
Quick propagation 0.999 0.997 21.770 0.998 0.998 16.737 

where: AE – absolute error, R2 – coefficient of determination 

Fig. 2. Results of the training algorithms for available training algorithms and 
given number of iterations 

    For Levenberg-Marquardt algorithm, despite the set number 
of iterations, the training stopped much earlier, as it is 
sensitive to local minima. It changes network weights using a 
quadratic approximation of error surface. Such approximation 
can help finding a minimum quickly, nevertheless it increases 
the possibility of converging into a local minimum. For Quasi-
Newton algorithm anomalies occurred and number of 
iterations had to be decreased. 
    Quick Propagation gives the most promising results for 
correlation between target and output values, R2 and absolute 
validation error. Therefore further study will be conducted for 
this algorithm, and it is briefly described below. 
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    Quick Propagation calculates the weights change Δw by 
using the parabolic function f(x)=x2. Two error values are 
obtained by applying two weights, being points of a secant. 
Relating the secant to the function, its minimum can be found 
f ’(x) = 0. The x-coordinate of the minimum point is a new 
weight value [14]. The slope in this particular point is 
calculated as: 

( )
( )i

E
S t

w t





 (7) 

Then, it can be assumed that: 
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and finally, a formula for Quick Propagation adjustments of 
the weights based on the previous (t-1)-th iteration: 

( )
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For normal backpropagation it was: 
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where for equations (7–11): 
w  – weight, 
E – error function, 
t  – time (training step), 
  – learning rate. 
   To avoid too large changes during the training the maximum 
weight adjustment was  finally limited by applying: 

( ) ( 1)i iw t w t       (12) 

where:  – maximal weight change factor. 
   Once the used algorithm was selected, the next step was to 
find best network architecture. For this purpose several cases 
were considered with 4, 6, 9, 12, 15, 18, and 24 neurons in a 
hidden layer. 24 neurons give the lowest absolute validation 
error (Fig. 3), therefore the network architecture 20-24-1 was 
used in the further study.  

Fig. 3. Absolute validation error to number of neurons 

 The overall accuracy is presented in Fig. 4, as a scatter plot. 

Fig. 4. Scatter plot, revealing strong correlation of obtained output and target 
values 

Training summary is presented in Table III. 

TABLE III 
TRAINING SUMMARY OF NETWORK ARCHITECTURE 20-24-1 

Target Output AE ARE 
Mean 1273.64 1274.03 9.54 0.10 
Std deviation 794.01 788.98 8.85 0.65 
Min 7 42.36 0.013 0.00001 
Max 4869 4823.56 45.44 5.05 

where: 
 Target – the target value taken from input data file,  
 Output – the output produced by the network, 
 AE and ARE – absolute error and absolute relative error. 

The difference between the actual value of the target column 
and the corresponding network output. 
    As a sample results, two vessels, PSV no.6 and AHTS no. 
79 are discussed here. Following values (Table IV) of the 
residual resistance coefficient were obtained. 

TABLE IV 
RESULTS OF RESIDUAL RESISTANCE COEFFICIENT FOR OFF-SHORE VESSELS 

PSV no. 6 AHTS no. 79 

Fn [-] 
Cr·10E-6 [-] 

Target 
C r·10E-6 [-] 

Output 
Fn [-] 

C r·10E-6 [-
] Target 

C r·10E-6 
[-] Output 

0.139 547 546 0.170 1411 1557 
0.157 581 581 0.188 1451 1442 
0.174 542 569 0.205 1538 1462 
0.192 509 514 0.222 1695 1693 
0.209 540 531 0.239 1954 1943 
0.227 705 710 0.256 2358 2364 
0.244 959 1074 0.273 2965 2959 
0.262 1597 1596 0.290 3849 3652 
0.279 2762 2762 - - - 

 where: 
Fn – Froude number,
Cr – residual resistance coefficient.
    The correspondence between actual and predicted values of 
Cr for selected two vessels is presented in Fig 5–6. The model 
is not able to correctly match target values for medium Fn in 
case of PSV6 and low and high Fn for AHTS79. 
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Fig. 5. Residual resistance coefficient as a function of Froude number, PSV 
no. 6 

Fig. 6. Residual resistance coefficient as a function of Froude number, AHTS 
no. 79 

V. FURTHER STUDY – NEW PARAMETERS RECOMMENDATION

Four additional parameters describing the shape of the bulb,
and potentially influencing the residual resistance were 
proposed by the Authors.  New parameters are (Fig. 7): 
- Bulb bow cross-section on the forward perpendicular

ABFP [m2]
- Bulb bow middle cross-section ABM [m2]
- Distance between forward perpendicular and the most

forward point on the bulb bow LB [m]
- Height of the bulb bow measured on the forward

perpendicular HB [m].
Instead of using absolute values, two ratios were derived: 
ABFP/ ABM, and LB/HB. Due to the software limitation of 
handling up to 20 input data, these coefficients had to replace 
inputs with the smallest level of importance, i.e. LCB and LWL.  

TABLE V  
PROPOSED PARAMETERS DESCRIBING BULB BOW 

Lp. 
Ship 
no. 

Type of 
off-

shore 
vessel 

ABFP 
[m2] 

ABM 
[m2] 

ABFP/ 
ABM [-] 

LB 
[m] 

HB 
[m] 

LB/ 
HB [-] 

1 6 PSV 14.10 7.37 0.52 5.11 6.47 0.79 
2 21 OCV 27.94 14.50 0.52 6.84 9.90 0.69 
3 46 SSV 11.34 6.71 0.59 3.84 6.13 0.63 
4 50 OCV 20.62 11.18 0.54 5.53 7.89 0.70 
5 69 AHTS 23.42 13.53 0.58 5.00 7.96 0.63 
6 72 OCV 26.34 13.41 0.51 6.45 9.11 0.71 
7 79 AHTS 24.10 12.32 0.51 5.70 7.94 0.72 

Fig. 7. Parameters values of LB, HB, ABFP. Ship OCV no. 50 

After retraining with new parameters, the accuracy of the 
neural network slightly increased. Therefore, it is 
recommended that proposed variables should be taken into 
account while calculating the residual resistance coefficient. 
Detailed results for selected off-shore vessels are presented in 
(Table VI). 

TABLE VI 
RESULTS OF RESIDUAL RESISTANCE COEFFICIENT FOR OFF-SHORE VESSELS

PSV no. 6 AHTS no. 79 

Fn [-] 
Cr·10E-6 [-

] Target 
C r·10E-6 [-] 

Output 
Fn [-] 

C r·10E-6 [-] 
Target 

C r·10E-6 [-] 
Output 

0.139 547 403.844455 0.170 1411 1410.77756 
0.157 581 580.332409 0.188 1451 1444.517449 
0.174 542 550.116745 0.205 1538 1536.88167 
0.192 509 495.809705 0.222 1695 1695.663287 
0.209 540 546.825623 0.239 1954 1952.705234 
0.227 705 704.413058 0.256 2358 2412.467895 
0.244 959 1004.604662 0.273 2965 2964.692068 
0.262 1597 1595.903934 0.290 3849 3932.515262 
0.279 2762 2761.925053 - - - 

The correspondence between actual and predicted values of Cr 
with new parameters applied in the training phase, for selected 
two vessels is presented in Fig 8–9. 
Comparing results of initial parameters set (Fig. 5–6) with 
accuracy for new parameters including bulb bow geometry 
(Fig. 8–9) it can be noted an improvement was achieved, and 
SSEinit=80.266, SSEnew=32.849, MSEinit=4.722, and 
MSEnew=1.932. The improved model matches target values 
better, especially in case of AHTS79. 

Fig. 8. Residual resistance coefficient as a function of Froude number, PSV 
no. 6 
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Fig. 9. Residual resistance coefficient as a function of Froude number, AHTS 
no. 79 

VI. CONCLUSIONS

    Neural networks had proven to be a very useful tool for 
data modeling tasks. Numerical descriptions of ship 
performances, namely Holtrop-Mennen and Hollenbach 
methods are widely used in a maritime world. Model tests play 
a very important role in the initial ship design. Results from 
the numerical methods for off-shore vessels often need to be 
tuned based on the similar vessels from a preceding model 
test. It can be expected that in the future it will be possible for 
numerical description to replace the model tests. The next 
acknowledged method of developing a numerical description 
of ship performance, using basic hull dimensions, might be 
Artificial Neural Network.  
    The proposed and trained network shown satisfactory 
accuracy compared with the results from the model tests. 
Nevertheless, the architecture might be improved and further 
study of this approach should be undertaken. 

   Proposed new parameters improved the accuracy of obtained 
results, and involving other parameters in future studies is 
advised. 
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APPENDIX 1: Off-shore vessels types 

a)  b)

c)  d)
Contours of off-shore vessels: a) Platform Supply Vessel (PSV), b) Anchor Handling Tug Supply Vessel (AHTS), 

c) Off-shore Construction Vessel (OCV), d) Seismic Support Vessel (SSV).
Sources: 
PSV (https://commons.wikimedia.org/wiki/File:PSV_Skandi_Texel.jpg) 
AHTS (https://commons.wikimedia.org/wiki/File:Normand_Master.jpg) 
OCV (https://commons.wikimedia.org/wiki/File:The_North_Sea_Giant_in_Bangor_Bay_01.jpg) 
SSV (https://commons.wikimedia.org/wiki/File:Polarcus_Amani.jpg) 
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