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Abstract. We are concerned with a planar autonomous Hamiltonian sys-
tem §-+VV(q) = 0, where a potential V: R?\ {¢} — R has a single well
of infinite depth at a point £ and a unique strict global maximum 0 at
a point a. Under a strong force condition around the singularity &, via
minimization of an action integral and using a shadowing chain lemma
together with simple geometrical arguments, we prove the existence of
infinitely many homotopy classes of 71 (R?\ {¢}) containing at least two
geometrically distinct homoclinic (to a) solutions.
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1. Introduction

In this paper we are concerned with the second order Hamiltonian system
i+ VV(qg) =0, (HS)

where © = %, g € R? and VV denotes the gradient of a potential V. We

denote by | - | the norm in R? induced by the standard inner product (-,-).

Throughout the paper we assume that the potential V satisfies the following

conditions:

(V1) thereis ¢ € R? such that V € C1(R?*\{¢},R) and lim, ¢ V(z) = —oc,

(Vo) there are a neighbourhood A" C R? of the point ¢ and a function U €
CLN\ {¢},R) such that |U(z)| — 0o as & — € and |VU (z)]? < =V (z)
for all z € N\ {¢},

(V3) V(z) < 0 and V has a unique maximum at a point a € R? \ {¢},
V(a) =0,

) Birkhauser


http://crossmark.crossref.org/dialog/?doi=10.1007/s11784-015-0212-9&domain=pdf

A\ MOST

302 M. Izydorek and J. Janczewska JFPTA

Under the above assumptions, applying a variational approach we study the
existence and multiplicity of (nonstationary) homoclinic solutions of (HS)
which, as t — 400, are asymptotic to the stationary point ¢ and omit the
singularity £. In other words, we are looking for solutions such that ¢(t) # &£
for all t € R, ¢(t) — a and ¢(t) — 0 as t — +o0.

Condition (V3), known in the literature as the strong force condition or
Gordon’s condition, was introduced by W. B. Gordon in [7]. It governs the
rate at which V(z) — —oo as  — £ and holds, for example, if a > 2 for
V(z) = —|x — &7 nearby & If V: R?\ {£} — R satisfies (V3), then VV :
R?\{¢} — R? s called a strong force, and (HS) is said to be a strong force sys-
tem. Moreover, (V3) implies that the system (HS) does not possess solutions in
VV&)C2 (R,R?), entering the singular point ¢ in finite time. Gordon’s condition
excludes the gravitational case and leads to the disclosure of certain differ-
ences between the behaviour of strong force systems and gravitational ones.

Condition (V}) can be replaced by somewhat weaker assumption:

In [5], under assumptions (V1)—(V}) and some geometric condition () on V'
due to Bolotin (see [2]), Caldiroli and Jeanjean proved the existence of infin-
itely many homoclinics of (HS), each one being characterized by a distinct
winding number around the singularity £.

The aim of this work is to show by the use of minimization arguments
that under hypotheses (V4 )—(V4) and somewhat stronger geometric condition
than Bolotin’s one, there are infinitely many homotopy classes of 71 (R?\ {¢})
containing at least two geometrically distinct homoclinic solutions of (HS).

The existence of homoclinic orbits is an important problem in the study
of the behaviour of dynamical systems. Their existence may give the horse-
shoe chaos (see, for example, [18] and the references therein). The presence
of infinitely many geometrically distinct homoclinic or heteroclinic orbits is
an indication of nonintegrability and chaotic behaviour for the system (HS)
(see [2, 3]).

There have been several other papers in recent years which use varia-
tional methods to find homoclinic or heteroclinic orbits of autonomous strong
force Hamiltonian systems (see [1, 4, 6, 9, 11, 12, 19]) and periodically forced
ones (see [10, 16]). Moreover, Rabinowitz obtained homoclinic and multi-
bump solutions for both periodically and almost periodically forced singular
Hamiltonian systems (see [14, 15, 17]).

(Va) there is a negative constant Vp such that limsupj,|_,

2. Multiplicity results

At the beginning we set up notation and terminology. It is well known that
the Sobolev space

p={aewi2®E): [ liwPd <o

— 00
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equipped with the norm given by

lal? = [ latP e+ o)

— 00

is a Hilbert space. Let
a. =inf{-V(z): ¢ B.(a)},

where 0 < e < %|a —¢| and B:(a) denotes the ball of radius ¢ around a. By
(V1), (V3) and (V4) it follows that a. > 0. For g € E, set

I(q) = /OO <;|q(t)2 — V(q(t))) dt.

— 0o

Let
A= {q € E: lim q(t) =a, ¢q(R) C R?\ {f}}

t—too
Lemma 2.1. Suppose that ¢ € E and q(t) ¢ B:(a) for each t € Ui;l[ri,si],
where [r;, s;] N [r;,s;] =0 fori#j. Then

k
I(q) = V2o, Z lq(si) — q(ri)].

An easy proof of this lemma can be found in [8].

To shorten notation, ¢(+o00) = lims—, 4 ¢(t). Applying Lemma 2.1 one
can prove that if I(q) < oo, then ¢ € L®(R,R?) and ¢(+o0) = a (cf. [8,
Corollary 2.2 and Lemma 2.4]). Furthermore, if [¢, s] is an interval such that

q([t, s]) € N\ {&}, then by (V2),
U(a(s))| = [U(a(®)] < V2 I(q),

which implies that ¢(t) # € for t € R (cf. [16, eq. (2.21)]). Thus, if I(q) < oo,
then ¢ € A. Consequently, ¢ describes a closed curve in R? \ {¢} that starts
and ends at a. Hence its homotopy class [q] represents an element of the
fundamental group 71 (R? \ {£}).

Let us remind that two elements ¢g,q1 € A are homotopic if and only
if there exists a continuous map h: [0,1] — A such that

h(0) =¢qo and h(l)=q.

The rotation number (the winding number) rot¢(¢) of ¢ around ¢ is constant
on every connected component of A and induces an isomorphism

ot : w1 (B2 \ {€)) = Z,  rotu([q]) = rote(q).

Equivalently, A is a sum of its path-connected components labeled by the
integers.
We define the family F as follows. A set Z C A is a member of F if and
only if
e for each ¢ € Z and for each ¢ € C§°(R, R?) there exists § > 0 such that
if s € (=9,9), then ¢+ sy € Z.
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Let us remark that if ¢ is a minimizer of I on a set Z € F, then

oo

iI(q +5¢)]s=0 =0= / ((d@), %) = (VV(a(1)), (1)) dt,

ds .

and consequently, ¢ is a weak solution of (HS). Analysis similar to that in the
proof of Proposition 3.18 in [13] shows that ¢ is a classical solution of (HS).
Finally, using (HS), (V1) and (V3) as in [12] gives ¢(+o0) = 0.

Let I(s) be the line through a and £ parameterized by s € R in such a way
that a and & correspond to s = 0 and s = 1, respectively. The line / divides R?
into two half-planes II*. To be more precise, if (a_é, €) is a positively oriented
orthogonal basis in R?, then & € II*.

Let

G={qe A: q(t) #aforall t € R},

the set of curves in A that do not achieve ¢ in finite time.

Definition 2.1. We say that qo,q1 € G are homotopic (in G) if there is a con-
tinuous map h: [0,1] — G with h(0) = ¢o and h(1) = q.

In other words, ¢y and ¢; are homotopic in G if and only if they belong
to the same path-connected component of G. The homotopy class of ¢ € G is
denoted by [g], and T is the set of homotopy classes. The inclusion ¢: G — A
induces a surjective map

b D= m(R2\{€}),  w(la]) = [dg]-

In fact, for every [q] € m1(R? \ {¢}) the inverse image ¢, ([g]) contains infin-
itely many elements. We are going to describe the set T'.

Lemma 2.2. FEvery homotopy class v € I' can be represented by q € G that
has at most finitely many intersection points with the line [.

Proof. Let v = [q] for some loop g € G. Choose T' € R such that
lg(t) —al <|a—¢| for |t| > T.

By standard transversality (or simplicial approximation) arguments there is
a perturbation gg of ¢ in G that has at most finitely many intersection points
with the line [ on the interval [T, T] and qo(—T), qo(T) ¢ I. Let us introduce
the polar coordinate system in R? with the pole a and the polar axis [ whose
orientation agrees with the orientation of the plane. In this coordinate system
one has qo(t) = (r(t) cos p(t), r(t) sin p(t)). Clearly, there is no uniqueness of a
function ¢(t). Since go(t) is continuous we can assume that ¢(t) is continuous.
Furthermore, () > 0 for every t € R. Consider the restriction of go(¢) to the
interval t > T'. Define a map H: [T, 0) x [0,1] — R?,

H(t,s) = (r(t)cos ((1 — s)p(t) + s@(T)), r(t) sin (1 — s)p(t) + s¢(T))).
Thus, H(¢t,0) = qo(t), and H(t,1) = (r(t) cos(eo(T)),r(t) sin(¢(T))) has no
crossing points with the line I. Moreover, if we put ¢s(t) = H(t, s), then

| P ac= [T 020 - spewracs [P i<

T
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Consequently,
Qs(t) = .
gs(t) ift>T,
is a homotopy in G. The case t < —T is analogous. O

Given a homotopy class [¢], assume that ¢ has a minimal number, k > 0,
of crossing points with the line [. Thus there are t; < t5 < --- < t§ such that
q(t;) = I(s;) for certain s; € R, ¢ =1,..., k. We associate with ¢ a word w of
length k& as follows. If ¢ crosses the line [ at time ¢;, leaving II~ and entering
IT", then at the ith place in w we will write

u ifs; > 1,
v f0<s; <1,
w if s; < 0.

If ¢ crosses [ living II™ and entering I1~, then we use letters i, ¥, @, respec-
tively. If [¢] € T, then the corresponding word w has the following properties:

e w begins and ends at the letter u (with or without a bar, i.e., @, u),
e two consecutive letters in w are never the same,
e every second letter in w appears with a bar.

The set of words satisfying the above conditions is denoted by 2. Additionally,
a contractible loop is represented by the empty word. For every w € Q we
define @ € Q as follows. We remove all bars from the word w. Next we put
bars over letters that appear in w without bars and finally we write letters in
the opposite order. For instance, if w = uwuvu, then w = dvtuwu. It is clear
that w is represented by a loop ¢(t) if and only if @ is represented by q(—t).

Proposition 2.3. The procedure described above defines a bijection

B:Q—T.

The proof is left to the reader.

Given a word w €  of length k. Assume that the letter u (with or with-
out a bar) appears at ith and jth places in w and there is no u at places with
indices between ¢ and j. We define a derived from w sequence of words wy Uws
as follows. The word w; is a sequence of the first ¢ elements of w and ws is
a sequence of the last kK — j 4+ 1 elements of w. Clearly, wi,ws €  and the
decomposition depends on the choice of 7 and j. This procedure can be iter-
ated, and any sequence w1 U - - - Uwy obtained in this way is called a derived
from w sequence of words. Let u appear u(w) times and @ appear 4(w) times
in a word w.

Set

Pw = u(w) + a(w).
Consider the composition
ind¢ =rotyot, 0 B: Q = Z.

Proposition 2.4. For every w € Q one has ind¢ (w) = u(w) — a(w).
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Proof. Given w € §, choose g € G such that B(w) = [¢] and ¢ has a minimal
number of crossing points with the line . Then

inde (w) = rot, (e+([q])) = rot.([g]) = rote(q) = u(w) — a(w). O
Corollary 2.5. If wy U---Uwy is a derived from w sequence of words, then
d d
inde (w) = Z inde (w;) and p, = Z P, -
i=1 i=1

For each w € Q, let
I, ={q€@G: [¢] =Bw)},

a path-connected component of I'. It is easily seen that for every w € Q, I',,
is a member of the family F. Define

Ao =inf{I(q): ¢ €T}

Clearly, if wy U -+ Uwg is a derived from w sequence of words, then

d
VD PP
i=1
In particular, since A\, = Az, one has
)\w < pw)\u
Corollary 2.6. Let w1 U - - Uwy be a derived from w sequence of words. If
Aw = PwAu, then Ay, = pu; A for every i =1,2,...,d.
Analogously to the proof of Lemma 3.2 in [9] one proves the following

version of the shadowing chain lemma.

Theorem 2.7 (Shadowing chain lemma). Let w € Q. Under conditions (V1)—
(Vy), there are a derived from w sequence wiU- - -Uwg and homoclinic solutions
Qu, €Ty, 1=1,...,d, of the Hamiltonian system (HS) such that

d d
Mo = T(Qu) =Y Ao
=1 =1

Assume that

(x) there exist T € (0,00) and p € WH2([0,T],R? \ {¢}) such that p(0) =
p(T), rote(p) = 1 and

/ ' (502 = v ) e < .

This geometric condition has been introduced by Bolotin [2].
Under conditions (V1)—(V4) and (%) it has been proved in [5] (cf. Theo-
rem 1.1) that

there is ko € N such that for every k > ko there exists a homoclinic

solution Qi € A of (HS) with rote(Qy) = k.

Let us introduce somewhat stronger Bolotin’s type assumption on the
geometry of V. Namely, assume that
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(B) for i = 1,2 there exist 7; € (0,00) and p; € W2([0,7;],R? \ {a,&})
such that p;(0) = p;(T;) and
(B1) rotq(p1) =0, rotg(p1) = 1 and

T 1
[ (5P = Vi) de < .
0

(B2) rotq(p2) = rote(p2) = 1 and

Ts 1
[ (G - v ) ar <.
0

For each n € N, define two sequences of words in () as follows:

)n—l )n—l

i, = (ud u and v, = (uw U.
Notice that p,, = p, =n, hence A, <nA, and A, <nA, for n € N,

Set
mo =sup{n € N: A\, =n),} and no=sup{n e N: ), =n\,}.
One can easily prove the following proposition.
Proposition 2.8. If (B) is satisfied, then both numbers my and ng are finite.

We can now formulate our main result.

Theorem 2.9. Let V: R?\ {¢} — R satisfy (V1)—(Va) and (B).
e If (B1) holds, then for every k > mq there exists P, € T, such that
I(Py) = Ay, - Moreover, Py is a homoclinic solution of (HS).
e If (B2) holds, then for every k > ng there exists Qi € Ty, such that
I(Qr) = A\y,. Moreover, Qy, is a homoclinic solution of (HS).

We prove both cases (B1) and (B2), following ideas of the proof of
Lemma 4.2 in [5]. That proof relies on the following lemma due to Rabinowitz
(cf. [16, Proposition 3.41]).

Lemma 2.10. Under hypotheses (V1)—(Va4), if g € Ty, with ind¢(w) > 2 and
I(q) = inf{I(q): q € Ty}, then there exist t,s € R such thatt < s, q(t) = q(s)
and rote(q),s) = 1.

In fact, every loop ¢ satisfying rote(g) > 2 contains a subloop with the
rotation number equal to 1. The proof of this topological property will be
given in the appendix.

Sketch of the proof of Theorem 2.9. Let us observe that in case (B1) a closed
orbit P existing by Proposition A.3 (see the appendix) can be chosen in such
a way that rot,(P) = 0, whereas in case (B2), there is a closed orbit @ such
that rot,(Q) = 1. Lemma 4.2 of [5] implies the following inequalities:

1 1 1
)\UZE,\M:...ZHTO “mo>mA“m0+l>”' (2.1)

and 1 1 1
Aunguzz"':%AV7Lo>m)‘”no+l>"" (2.2)
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For a fixed n > mg consider a derived from pu,, sequence of words
wiU---Uwy, d>1.

Then, for any ¢ = 1,...,d, we have w; = p;, for some j; < n and 2?21 Ji=n.
Thus, by (2.1),

d .
Ji
DRVED DRI Z = N = M
i=1 =1 =1
Now the existence of a homoclinic solution P, €T, of (HS) follows from The-
orem 2.7. Similar argumentation applied to v,, n > ng, together with (2.2)

gives the existence of a homoclinic solution @, € T', of (HS). O

Remark 2.11. Each homotopy class [¢] € w1 (R? \ {¢}) with a sufficiently
large rotation contains at least two geometrically distinct homoclinic solutions
of (HS).

Observe that one family of solutions is represented by words containing
u’s and v’s, whereas another family is represented by words containing u’s
and w’s. It would be interesting to know if, except the above quite specific
families of solutions, there exist solutions represented by more “complicated”
words, in particular, words containing three letters. To this purpose let us
modify condition (B). Assume that
(B') for i = 1,2 there exist T; € (0,00) and p; € W12([0,T;], R? \ {a,&})

such that p1(0) = p1(T1) = p2(0) = p2(T3) and

(B'1) rote(p1) =0, roteg(pr) =1 and

T 1
[ (G- v )ar <.
0

(B'2) rotq(p2) = rote(pz) =1 and

Ty
/ (2|P2| - V(Pz)) dt < Ay.
0

Define two sequences of words in €2 as follows. For n € N,
® 7, = uwuv...u consists of 2n — 1 letters, u appears at every second
place, w and ¥ appear at every fourth place,
® 0, = uDuW...u is obtained from 7, by interchanging w with 2.
Clearly, p-, = po, =n, hence A\;, <nA\, and A\,, <n\, forn € N.
Set
kr =sup{n: A\;, =nA,} and k, =sup{n: A\, =nA,}.
Proposition 2.12. If (B’) is satisfied, then both numbers k, and k, are finite.
The proof is straightforward.

Theorem 2.13. Let V: R?\ {¢} — R satisfy (V1)-(Vy) and (B'). Let 2 <
k: < k,. In addition to the families of solutions given by Theorem 2.9, there
exists Q € A, for which I(Q) = A, where k = k, + 1. Moreover, Q is a
homoclinic solution of (HS).
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Proof. Set k = k;+ 1. The inequality A,, < pr, A, follows from the definition
of k. It is enough to show that for any derived from 75 sequence of words
w1 U---Uwyg with d > 1 one has

Aw; = Pu; Au- (2.3)

Then the conclusion follows from Theorem 2.7. If w; # u, then (2.3) follows
from Corollary 2.6 applied to the word 7. If wy = u, then (2.3) is a conse-
quence of Corollary 2.6 applied to oy, - O

Remark 2.14. Clearly, if 2 < k, < k., then (HS) possesses a homoclinic solu-
tion P € 'y, k = ks + 1. Furthermore, if 2 < k, = k,, then (HS) possesses
two homoclinic solutions @) € I';, and P € I',, .

Appendix

Let o: [0,1] — R2\ {¢} be a loop; i.e., ¢(0) = ¢(1). A point p € o([0,1]) is
a simple crossing point if there are exactly two numbers ¢, s € [0, 1] such that
p = o(t) = o(s). A loop o is regular if it possesses at most finitely many
crossing points each of which is simple. If o(a) = o(b) for some numbers
a,b € [0,1], a < b, then ojq) is a subloop of 0. Removing a subloop o|j4
from the loop o, we obtain a new loop 7: [0,1 — (b —a)] — R?\ {¢},

e ift <a,
CT(t)_{a(t—l—b—a) ift > a.

We will write ¢ = 0 — 04,5 Our aim is to prove the following proposition.

Proposition A.1. If q is a loop in R? \ {£} with rote(q) > 2, then there exist
t,s € [0,1] such thatt < s, q(t) = q(s) and rote(q)i,s)) = 1.

Lemma A.2. Let o: [0,1] — R?\ {¢} be a regular loop with rote o > 2. Then
there are 0 < t < s < 1 such that o(t) = o(s) and rotg o = 1.

Proof. Let k be a number of crossing points of o. Thus there are 0 < t; <
<o < tp < 1and aset {s1,...,8,} C [0,1] such that p; = o(t;) = o(s;), for
i=1,...,k, are simple crossing points. We do not consider pg = o(0) = o(1).
If rote o4,.s,) < 0, then the loop 0’ = o — oy, 5,] has at most k — 1 simple
crossing points and rotg ¢’ > 2. Choose the smallest ¢ € [0,1+a —b], ¢ > 0,
for which there is s € [0,1 4 a — ] such that o’'(t) = o’(s). If rote oy, <0,
then we define 0” = o' — oy 5) which has at most k& — 2 simple crossing
points and satisfies rote 0’/ > 2. As a consequence of this procedure there
exists ¢; such that rotg oy, ;) > 1. Otherwise we end up with a loop that has
a rotation number greater than or equal to two and has no crossing points.
If rote oy(4,,5,) = 1, then we are done. If it is not the case, we apply the above
procedure to the loop o1 = oy, ,) that has at most k& — 1 simple crossing
points. Thus oy contains a subloop o3 such that rot¢ oo > 1 and oy has at
most k — 2 crossing points. This procedure can be repeated at most k times
and finally we obtain a loop o}, such that rotg o) > 1 and oy, has no crossing
points. Hence rot¢ o, = 1. (I
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Proof of Proposition A.1. Choose ng € N such that

1

— < dist (¢([0,1]),€).

o
For every n > ng let 0,,: [0,1] — R?\ {¢} be a regular loop with

1
llo = onllsup < n

By Lemma A.2 there is a sequence of pairs {(t,, sn)}, tn < Sn, tn, sn € [0,1],
n > ng such that rote o4, 5,1 = 1. Going to subsequences if necessary, one

has t = lim,,_yo0 t, and 5 = lim,_, o S,. It is an elementary exercise to show
that t < 5, o(t) = 0(5) and rote oy75 = 1. O

Let I = [a,&] C [ and let j,: m(R?*\ I) — 71 (R?\ {a,£}) be a map
induced by the natural inclusion.

Proposition A.3. If o: [0,1] — R2\ {a,&} is a loop satisfying [q] € imj.
and rotg g > 2, then there exist t,s € [0,1] such that t < s, q(t) = q(s) and
rota(q)t,s)) = rote(q),s)) = 1.

The proof is omitted.

Remark A.4. Similar results can be proven if one replaces a loop o: [0, 1] —
R?\ {€} by ¢: R — R?*\ {¢} with lim;, 1 q(t) = p € R?\ {a, &}
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