
Uniform Model Interface for Assurance Case

lntegration with System Models

Andrzej Wardzińsk:i1
·

2
 and Paul Jones3

1 Gdańsk University of Technology, Gdańsk, Poland

Andrzej.Wardzinski@pg.edu.pl
2 Argevide, Gdańsk, Poland

3 US Food and Drug Administration, Silver Spring, MD, USA

Paul.Jones@fda.hhs.gov

Abstract. Assurance cases are developed and maintained in parallel with

corresponding system models and therefore need to reference each other.

Managing the correctness and consistency of interrelated safety argument and

system models is essential for system dependability and is a nontrivial task. The

model interface presented in this paper enables a uniform process of establishing

and managing assurance case references to various types of system models.

References to system metamodels are specified in an argument pattem and then

used for assurance case instantiation. The proposed approach perrnits incre­

menta! development of assurance cases that maintain consistency with corre­

sponding system models throughout the system development life cycle.

Keywords: Assurance case · Safety case · System models · Argument pattem

1 lntroduction

When developing systems, engineers necessarily rely on models to facilitate compre­

hension, analysis, and collllllunication of complex development details. Such models

may represent design and development processes, system component architecture,

behavior, and other types of development abstractions. We refer to each of these types

of models in this paper collectively as system models.

Assurance cases may mirror these system models to varying levels of detail and

refer to their elements. It is important that these references are unambiguous, complete,

and correct so that someone creating, modifying or reviewing an assurance case can be

confident of being directed to the right element or property. When a few assurance

cases are developed for components of the system (e.g. system of systems) it is critical

to ensure that the assurance cases refer to the same concepts, system models, model

interfaces, and properties.

Our goal is to develop a generic model interface between an assurance case and

system models which will allow establishing and maintaining assurance case references

to elements of various system models. The interface should provide system model

referencing services desired by the assurance case user (developer, assessor etc.) while

hiding unnecessary details that may not add to comprehension. The idea is to not have

DOI: 10.1007/978-3-319-66284-8_ 4

the assurance case user track model element references manually but rather to assist the

user by providing required information describing the desired system model(s). The

proposed model interface provides:

A uniform way of specifying assurance case references to system model elements,

The ability to specify restrictions in a form of relations between referenced model

elements to strengthen assurance case consistency,

A mechanism for maintenance of the argument references when the models are

modified,

The possibility to develop an assurance case incrementally when system models are

evolving throughout the system life cycle (the argument instantiation does not have

to be carried out all at once, some parts of the pattern may stay un-instantiated until

the corresponding system models are available).

Use of a uniform model interface for establishing and maintaining assurance case

relations to system models will make it simpler to manage consistency between the

two. The initial cost of this approach is in the development of the model interface. It

must be implemented for each system model type to which the assurance case refer­

ences. The implementation will depend on the specific data format used by each type of

system model. System models can be represented in XML, a database, "fiat" text file or

a structured document. The system model can be also managed by any application with

an API offering access to the model data (for example OSLC interface - Open Services

for Lifecycle Collaboration).

In the next section, we will analyze the generał problem of managing relations

between assurance cases and system models. The concept of a model interface is

presented in the third section. Section 4 describes the process how the model interface

is used in assurance case integration with system models. We summarize the approach

in Sect. 5.

2 Assurance Case Integration with System Models

Assurance cases may refer to many aspects of systems like systems goals and

requirements, risks and mitigations, system structure, elements properties, life cycle

activities and their products. The most common approach is to use textual references

and manually manage their consistency with system models and real world artefacts.

For example, textual references were proposed in developing assurance cases for

software model-driven development [1].

One of the initial studies on managing explicit assurance case references to external

models or ontologies was described in a safety argument for hospital treatment [2].

Górski et al. used UML to represent a claim model and a related context model.

Evidence argument elements can also be used to represent elements of system

models. Sljivo et al. presented an extension of assurance case metamodels enabling

use of evidence element references to a system component and safety contract

metamodel [3]. D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Currently the most advanced solution for use of models to describe the context of

an assurance case is a weaving metamodel proposed by Hawkings et al. [4] and applied

in the D-MILS project [5]. The weaving metamodel captures dependencies between

role bindings specified in an assurance case pattem and system models. Abstract

dependency information captured in the weaving metamodel is used in the argument

instantiation process.

The weaving metamodel describes:

system model classes specific for a given system perspective (e.g. AADL or FMEA

model),

relations between model classes specified as UML associations,

role bindings in the argument pattems, that is terms used in pattem element names

to denote specific system model elements (e.g. "System" in a claim "{System}

safety policy is enforced"),

relations between role bindings resulting from the pattem argument structure (they

are directed relations which describe the scope of a binding role context),

relations between role bindings and system model classes.

The approach presented in this paper is similar to the use of the weaving model,

however, we use two separate elements in place of the weaving model. The first one is

a model interface describing system models in a unified way and the second one is a

reference table describing argument relations to system models. This approach o:ffers

new possibilities described in the next sections.

3 The Concept of the Model Interface

The concept of a model interface arose from the observation that assurance cases refer

to di:fferent types of system models but assurance case developers would prefer a

standard way to establish and maintain the references. The model interface has been

designed to satisfy these needs and facilitate a uniform reference management process

in assurance case development and maintenance. The concept has been developed as an

extension of a reference mechanism described in [6].

References to system models are first specified on an abstract level when an

argument pattem is developed. Argument pattems may refer to abstract concepts like

subsystems, components, events or hazards. To ensure abstract references are unam­

biguous, they should be specified in a context of a formally defined system metamodel.

UML class models can be used for such specification. References to metamodel ele­

ments will be sufficiently precise to ensure unambiguity.

The argument pattem serves as a basis for development of a "well formed" argu­

ment appropriate for a specific system model. In the assurance case instantiation

process each abstract reference should be replaced with a reference to an existing

system model element which satisfies the conditions imposed by the abstract reference.

Use of a formally defined system metamodel in abstract references helps ensure the

consistency of the instantiated argument with the referred system. The model interface

should operate on both levels: abstract system metamodels and concrete system models

that describe a real system.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

The model interface serves as an intermediary between the assurance case and

system models. As presented in Fig. 1 it provides an interface for assurance cases (on

the left of the diagram) to access system models. The model interface does not keep any

information on the assurance case argument references to system models. All the

reference data is stored in the assurance cases in an abstract and a concrete reference

table.

'
'

i Assurance case pattern i
' ,-----� r------,

'

! : l_ Abwact Abctcact •

: Model interface !:

Abstract
t-,---

Fig. 1. Assurance case instantiation metamodel

System
meta model

System
model

Y ou can notice two levels of the model interface presented on the diagram. The

upper part works on an abstract level, i.e. the system metamodel used for argument

pattem references. The lower part provides an interface to system models used when

the concrete argument is instantiated. On the abstract level the model interface services

return:

(a) a list of available model types,

(b) a list of element types for a given model type,

(c) a list of relations for a specific model element type.

Abstract functions of the model interface do not need ex1stmg system models to

function because they return data on a metamodel level. To work with the concrete

model interface one first needs to initiate it with a specific model (for example provide

a model file name) and then the interface functions can be called to return:

(d) a list of models of a given type,

(e) a list of model elements of a given type,

(f) a list of elements which satisfy a given relation,

(g) detailed data of a given element (when its identifier is provided).

The presented set of functions is sufficient to specify abstract references in argu­

ment pattems and then instantiate them to produce concrete assurance cases. This

process will be presented in the next section.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

4 Process of Assurance Case Integration with System Models

The integration process consists of steps performed in two phases. The first phase is

performed on the abstract level when the assurance case pattem is developed but no real

system exists yet. This is what might be called a pre-development phase. Here, an abstract

argument pattem with references to a system metamodel is established. The second phase

is what might be called a development phase when an assurance case is instantiated with

references to models of the developed system and then maintained throughout the system

life cycle. In the following subsections, we will describe the steps of this process.

• Pre-development phase steps

1. System metamodel specification

2. Model interface development

3. Argument pattem development

• Development phase steps

4. System modeling

5. Assurance case development

6. System models and assurance case maintenance (iteration of steps 4 and 5)

The process covers the whole assurance case life cycle from the moment an argument

pattem is created in the context of an abstract metamodel, to assurance case mainte­

nance after a product has been placed on the market.

Details of the integration process are presented below with the use of a sample

argument fragment that references a system risk model. The referenced system is a

Patient Control Analgesia (PCA) infusion pump [7].

4.1 Step 1: System Metamodel Specification

The first step of the process is to specify a system risk metamodel and its data format to

allow implementation of model interface functions.

In our example, we will use a risk metamodel presented in Fig. 2. as a UML class

diagram (for simplicity class' attributes are not shown on the diagram). The risk model

describes system hazards, their causes and control measures. The structure of the

Hazardous Cause Control Safety

situation
caused_by controlled by

measure
justified_by decision

1 O .. • 1 O .. • 1 0 .. 1 rationale

o
/ \.

1; \1

0 .. 1 0 .. 1 verified_by validat
\

«enumeration» «enumeration» O .
.
• I o .. •

Severity Probability

Catastrophic Frequent Verification of Validation

Critical Probable effectiveness
Serious Occasionat
Minor Remote
Negligible tmprobable

Fig. 2. The system risk metamodel

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

metamodel is based on the hazard table format specified in [8]. The model data format

is an XML file and the XML schema is based on the presented risk metamodel.

The result of this step is a set of system metamodels along with detailed technical

data on the model format necessary for implementing the model interface as described

in the next step.

4.2 Step 2: Model Interface Development

A model interface is, in generał, a software module that provides a uniform interface

for access to any type of system models. It is assumed that the model interface is only

allowed to read system models and cannot modify them. Access to system models is

realized by instantiations of abstract classes ModelType, ElementType and Expression.

An implementation of these classes is required for each system metamodel intended to

be referenced from the assurance case.

Modellnterface

+ getModelTypes(): ModelType-list

Mode/Type ElementType

+ id: String + id: String
+ name: String + name: String

+ getElementTypelist(): ElementType-list + getExpressionlist(): Expression-list
+ addModel(String, String): void + getElementlist(): Element-list
+ getModels(): Model-list + getElement(int): Element
+ getModel(int): Model

li
,, o.·/� I I

parameterType resultType

Expression

Model + id: String
Element + name: String

+ id: String -----

+ name: String + id: String + getParameters(): ElementType-list

+ reference: String + name: String + getElementlist(Element-list): Element-list

Fig. 3. Model interface metarnodel

The model interface implementation for the risk metamodel presented in Fig. 2

encompasses an instantiation of ElementType class for each risk model element like

Hazard, Cause, Severity. The model interface should also include implementation of

the Expression class for each relation specified in the metamodel. For example it may

contain an expression causesOfHazard(Hazard) to denote the relation caused_by

between classes HazardousSituation and Cause. This interface function takes one

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

parameter of Hazard type and retums a set of elements of Cause type. Given that the

risk models are represented in XML files, we chose to use XQuery scripts to implement

access to the model data.

for $causeid in doc($Mode1Ref)//relationship[@source
=$Hazardid]/@target

for $cause in doc($ModelRef)//hazardElement[@xmi:id
=$causeid and @xsi:type="HA:Cause"]

return <result><id>{data($cause/@xmi:id) }</id>

<name>{data($cause/@content) }</name></result>

The script retums the result in XML format, for example:

<result><id>Cl</id><name>Sensor failure to detect air

bubble</name></result>

<result><id>C2</id><name>Safety subsystem failure to stop

the pump</name></result>

<result><id>C4</id><name>Pump does not stop on request

</name></result>

The result consists of model elements identifiers and names. This is transformed

into a collection of Element objects and retumed by the model interface. The element

name will be presented for the assurance case user and the identifier will be used for

traceability of the referenced model element.

The complete model interface implements all the functions specified in Sect. 3 and

its scope covers all the system model classes and relations between them. The pre­

sented example refers to a risk model, but model interface implementations for other

types of models (e.g. AADL, EAST-ADL) are also possible.

4.3 Step 3: Argument Pattern Development

In this step an argument pattem with references to the system metamodel is developed.

The model interface should provide operations which return available system model

types, their element types and relation, perrnitting the user to specify correct references

[:J Claim1: Hazardous situation {H:HModel:Hazard} is mitigated

Context1: Severity: {Sev:HModel:SeverityOfHazard(H)}

Context2: Hazard {H} description

Argument1: Argument strategy over hazard causes

• Justification1: Hazard is mitigated by providing control measures for all its causes

+ [:J [1 . .*] Claim1.1: Cause {C:HModel:CausesOfHazard(H)} is addressed by control measures

Fig. 4. Argument template

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

to a system metamodel. A definition of an abstract reference consists of three attributes:

a reference name, a model type and an element selector. The reference name is used

intemally in the assurance case pattem while the model type and the element selector

are used to identify the referred element of the metamodel. For example, reference "H"

in Claiml in Fig. 4 refers to elements of the Hazard class in HModel. The presented

argument fragment uses textual hierarchical notation. Labels of the argument elements

indicate the type for each element.

Once a reference is specified, it can also be used for other argument elements. It can

be used directly as a reference, for example Context2 refers to the same hazard H as

Claiml. A reference can also be used as a parameter for a selector. Hazard H is used as

a parameter for references in Contextl and Claiml.l (Fig. 4). This method of reference

specification ensures that instantiated Claiml.l will refer only to causes of a hazard

specified by the instantiation of its parent Claiml.

Model interface operation getModelTypes() (compare Fig. 3) helps to ensure that

the argument pattem references relate to existing model types. Operations

getModelElementTypeList(), getExpressionList() and getParameterList() assist in

managing correct references to the system metamodel.

All the abstract references defined in the argument pattem are recorded in the

abstract reference table (Table 1) which is an integral part of the assurance case

pattem.

Table 1. Abstract reference table

Pattern element id Reference name Model type Element selector

Claiml H HModel (the risk model) Hazard

Context2

Contextl Sev HModel (the risk model) SeverityOtlłazard(H)

Claiml.1 C HModel (the risk model) CausesOfHazard(H)

The result of the pattem development step is a complete argument pattem with

references to the system metamodel represented in the abstract reference table. The

pattem is not specific to any system and it can be used for developing assurance cases

for a class of systems.

4.4 Step 4: System Modeling

The development phase begins with the system modeling step. The goal is to develop

models of a real system that comply with the corresponding system metamodels to

which the assurance case will refer. Each system model, when ready, can be used for

building safety arguments (described in the next step).

One of system models often used in safety critical systems is the risk model. In

Table 2 we present a fragment of the risk model in the form of a hazard table.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Table 2. Excerpt of the PCA infusion pump hazard table

Hazardous Severity Cause Control measure

situation

Air in line Critical Sensor failure to detect Sensor failure rate lOE-6 for air

air bubble bubbles with the size greater than 1 ml

Safety subsystem failure Safety subsystem failure rate l0E-6/h

to stop the pump

Pump does not stop on Pump design ensures stopping the

request flow in the absence of control signal

The risk model is recorded in an XML file and its file format is based on the

metamodel presented in Sect. 4.1. The model interface will read these XML files to get

information on referenced model elements. An XML file excerpt is presented below:

<hazardElement content="Air in line"

xsi:type="HA:HazardousSituation" xmi:id="Hl"/>

<hazardElement

content="Sensor failure to detect air bubble"

xsi:type="HA:Cause" xmi:id="Cl"/>

<hazardElement

content="Safety subsystem failure to stop the pump"

xsi:type="HA:Cause" xmi:id="C2"/>

<relationship xsi:type="HA:CausedBy" xmi:id="SlCl"

source="Hl" target="Cl"/>

<relationship xsi:type="HA:CausedBy" xmi:id="S1C2"

source="Hl" target="C2"/>

The result of this step of the process is a set of system models in a format

readable by the model interface. One does not need to have all the system models

developed before starting the argument instantiation. An assurance case can be

developed incrementally and can refer to models or parts of a model that are ready at a

given time.

4.5 Step 5: Assurance Case Development

The objective of this main step is to develop an assurance case based on the argument

pattem (see step 3) and establish references to models of a particular system. To do this

the model interface must be initialized with concrete models of a real system. The user

selects an argument pattem and then specifies the file locations or links to system

models to which the assurance case will refer.

The instantiation process is performed top down starting with the top pattem ele­

ment. For each abstract reference and multiplication operator the user has to decide

how a given pattem element should be instantiated. For each abstract reference the

model interface can search existing system models for elements which satisfy the

reference conditions and the user may choose a model element for instantiated

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

(concrete) reference. When a multiplication operator is used, a separate argument

section can be created for each reference value (e.g. for all causes of a hazard).

The risk model fragment presented in Table 2 consists of one hazard and three

causes. The instantiation process starts with the top claim (Fig. 4). It refers to a model

element H of class Hazard. The model interface function getElementList() returns a list

of hazards defined in the hazard table and the user can select any hazard from the list.

The reference can be instantiated to the hazard 'air in line' specified in the hazard table.

The next argument element to be instantiated is Contextl. It refers to a model element

of Severity class in relation to hazard H. The model interface will return an element

with value 'Critical'. For the next pattem element Claiml.1 the multiplication operator

[1.. *] enables the user to choose a set of referenced elements. The model interface will

return a list of causes for hazard H and all of them can be used in the claim instanti­

ation. The result is presented in Fig. 5 (the identifiers of the instantiated argument have

been reset).

(J C1: Hazardous situation 'Air in line' is mitigated

Ctxt1: Severity: 'Critical'

Ctxt2: Hazard 'Air in line' description

A1: Argument strategy over hazard causes

• J1: Rationale: Hazard is mitigated by providing control measures for all its causes

+ (J C2: Cause 'Sensor fai Iure to detect air bubble' is addressed by control measures

+ (J C3: Cause 'Safety subsystem failure to stop the pump' is addressed by control measures

+ (J C4: Cause 'Pump does not stop on request' is addressed by control measures

Fig. 5. Instantiated argument

The finał result of this step is the instantiated argument along with the reference

table describing all the relations to system models. The reference table specifies model

element values and identifiers which can be used to track model changes (Table 3).

Table 3. Concrete reference table

Argument Reference Model name Model Element name

element id name element id

Cl H PCAHazardTable.xrnl Hl Air in line

Ctxt2

Ctxtl Sev PCAHazardTable.xrnl Sł Critical

C2 C PCAHazardTable.xrnl Cl Sensor failure to detect air

bubble

C3 C PCAHazardTable.xrnl C2 Safety subsystem failure to

stop the pump

C4 C PCAHazardTable.xrnl C4 Pump does not stop on

request

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

4.6 Step 6: System Models and Assurance Case Maintenance

The objective of this step to accommodate the evolution of assurance cases throughout

the system life cycle. An assurance case is usually not developed all at once; rather it is

developed gradually during system development and is subject to many changes.

System models are also developed gradually. In fact, a change in one often affects a

change in the other.

Steps 4 and 5 can be repeated to gradually develop system models and the cor­

responding assurance case. The model interface provides features to facilitate this

process in the following way:

References to new models can be added at any time in the assurance case main­

tenance process. The user can change an existing reference to malce it refer to a new

model or add a new argument branch in the paltem where a multiplication operator

is used. The new argument section can refer to new or already existing system

model elements.

Assurance case reference consistency with system models can be verified at any

moment of time. For each reference the model interface functions getElementList()

and getElement() (compare Fig. 3) can be used to check if the current reference

value refers to a correct model element. The model interface can also return the

current list of model elements which satisfy the condition specified by the abstract

reference. When the system model is modified then new model elements can be

reported. The user may want to add new argument elements with such new refer­

ences. In some cases the model interface may report that an existing reference value

is not a valid model element. Broken or inconsistent references can be reported to

allow the user to correct them.

In case the system model element name is changed, the assurance case can be

automatically updated. The model element identifier stored in the reference table

can be used as a parameter for the function getElement() to get its current data.

When the system model element name is modified, it can be updated in the

assurance case. In this way changes in system models can be propagated to the

assurance case.

Use of a model interface allows keeping the assurance case up to date with systems

models and to evolve in accordance with progress in system development throughout

the system life cycle.

5 Summary

The presented concept of the model interface and the integration process facilitates

assurance case consistency with system models. In particular it enables:

A uniform process of definition and instantiation of assurance case relations to

various system models independent of technical model representations (XML for­

mat, databases, files or extemal systems) provided that a model interface is

implemented. This simplifies managing references to diverse system model types by

the assurance case developer.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Improved interna! assurance case consistency by use of explicitly defined relations

between system model elements. Those relations help in managing consistency

between different references in the argument.

lmproved assurance case maintainability thanks to the possibility of incrementa!

assurance case instantiation and establishing references to new system models.

Better traceability because specified model element references can be verified for

changes at any moment.

Improved verifiability of the assurance case thanks to the possibility of analysis of

consistency between the assurance case and system models.

The presented approach has been verified with a prototype tool that implements the

model interface for the risk model and a subset of AADL models developed with

Osate2. The prototype performs assurance case instantiation and exports the argument

in XML format compliant with OMG SACM metamodel.

The model interface metamodel can be compared to the terminology classes in

OMG SACM 2.0 metamodel [9]. The terminology classes in SACM consist of Cat­

egory class which can correspond to a model type, Term class which can relate to

model elements and Expression class which can be equivalent to Expression class in

the model interface. Further research is required to determine if OMG SACM 2.0

should be extended to cover the model interface and references to models.

The presented process assumes that the argument pattem is static when the

assurance case is developed for a given system. Usually system evolutionary life cycles

span years requiring changes in the argument structure. Such changes would be

introduced to the argument pattem as well and then propagated to the assurance case.

Maintaining assurance case consistency with an evolving argument pattem may be

challenging and requires further work.

The presented concept of a model interface is new to assurance case development.

It offers the possibility of more robust assurance cases that map directly to system

models, facilitating the development of unambiguous arguments.

References

1. Jee, E., Lee, I., Sokolsky, O.: Assurance cases in model-driven development of the pacemaker

software. In: Margaria, T., Steffen, B. (eds.) ISoLA 2010. LNCS, vol. 6416, pp. 343-356.

Springer, Heidelberg (2010). doi:10.1007/978-3-642-16561-0_33

2. Górski, J., Jarzębowicz, A., Leszczyna, R., Miler, J., Olszewski, M.: Trust case justifying trust

in an IT solution. Reliab. Eng. Syst. Saf. 89, 33-47 (2005)

3. Sljivo, I., Gallina, B., Carlson, B., Hansson, H., Puri, S.: A method to generate reusable safety

case argument-fragments from compositional safety analysis. J. Syst. Softw. 131, 570-590

(2017). doi:10.1016/j.jss.2016.07.034. Elsevier

4. Hawkins, R., Habli, I., Kolovos, D., Paige, R., Kelly, T.: Weaving an assurance case from

design: a model-based approach. In: IEEE 16th International Symposium on High Assurance

Systems Engineering (2015)

5. Compositional assurance cases and arguments for distributed MILS, D-MILS Project

deliverable D4.2, University of York (2015)

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

6. Wardziński, A., Jarzębowicz, A.: Towards safety case integration with hazard analysis for

medical devices. In: Skavhaug, A., Guiochet, J., Schoitsch, E., Bitsch, F. (eds.) SAFECOMP

2016. LNCS, vol. 9923, pp. 87-98. Springer, Cham (2016). doi:10.1007/978-3-319-45480-1_8

7. Larson B.R., Hatcliff, J.: Open Patient-Controlled Analgesia fufusion Pump System

Requirements, Kansas State University, SAnToS TR 2014-6-1 (2014)

8. Jones, P.L., Taylor, A.: Medical device risk management and safety cases. Bio-Med. fustrum.

Technol. 49, 45-53 (2015)

9. Structured Assurance Case Metamodel (SACM), version 2.0 - Beta, Object Management

Group (2016)

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

