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Abstract: In this work we present computation of the magnitude of 
complex numbers using a modified version of the CORDIC 
algorithm that uses only five iterations. The relationship between 
the computation error and the number of CORDIC iterations are 
presented for floating-point and integer arithmetics. The proposed 
modification of CORDIC for integer arithmetic relies upon the 
introduction of correction once basic computations are performed 
in order to reduce the maximum error. The correction value is 
derived using the coordinate and magnitude values obtained after 
the fifth iteration. The correction allows to reduce the maximum 
error by about 79%. The exemplary FPGA implementation of the 
modified algorithm is also presented.   

 
Keywords: magnitude of complex number, CORDIC, FPGA. 

 
1. INTRODUCTION 

 
Computation of the magnitude of complex numbers is 

necessary in these algorithms of digital signal processing 
(DSP) which have the complex output signal. The important 
applications are fast Fourier transform (FFT) and complex 
finite impulse response (FIR) filters. Computation of the 
magnitude of complex samples at the output of an FFT 
processor requires squaring of real and imaginary parts with 
the successive square-rooting (SR). Generally, the square 
root belongs to the s.c. arithmetic standard functions. In 
general purpose computers for their calculation the relevant 
procedures from numerical libraries are used or arithmetic 
coprocessors that intercept arithmetic instructions from the 
code generated by compiler. However, in FFT processors 
and complex FIR filters such approaches does not allow to 
fulfill requirements with respect to the processing speed 
because of the required computation time. Moreover, the 
pipelining with frequencies on the order of hundreds of MHz 
required in certain applications, is not achievable. 

The important factor that facilitates such tasks is a 
relatively small number range commonly limited to 12-16 
bit. In this work we propose the computation of the 
magnitude of complex numbers using the CORDIC 
(Coordinate Rotation Digital Computer) with five iterations 
only and with the final correction. The exemplary FPGA 
architecture is also given. 

In Section 2 we review selected methods of square 
rooting, in Section 3 the CORDIC algorithm is presented and 
in Section 4 results of numerical experiments are shown and 

in Section 5 the CORDIC FPGA architecture is described. 
This work is an extended and modified version of [15]. The 
modifications pertain mainly to the new FPGA architecture, 
number range and results of numerical simulation. 

 
2. REVIEW OF MAGNITUDE COMPUTATION  
    METHODS 

 
For computation of the magnitude of complex numbers 

one of the SR algorithms can be utilized. There exists 
several SR algorithms such as those based on expansion in 
Taylor series [1] and rough estimation [2]. However, these 
algorithms are not used in hardware implementations 
because of the excessive number of arithmetic operations.  

The review of SR algorithms used for hardware 
implementations was given in [3]. Usually, in such 
implementations modified variants of non-restoring 
techniques are applied [4,5]. These algorithms can be 
implemented in a pipelined form, however, this form may 
introduce a substantial delay because of the required number 
of computational steps. The introduced delay can be 
sometimes longer than the acceptable computation time.  In 
hardware implementations the computation results with a 
given accuracy can be obtained within the fixed number of 
clock cycles as opposed to iteration methods. Nevertheless, 
the iteration methods such as Newton-Raphson algorithm [6] 
can be transformed to the non-iterative form by loop-
unrolling, i.e., by the realization of the chosen number of 
iterations in the sequential stages of the circuit with each one 
performing computation for one iteration. The substantial 
obstacle in the hardware implementation of this algorithm is 
the necessity to perform multiplication and division which 
not only slows down the algorithm execution but also 
substantially increases the hardware complexity. Moreover, 
the computation error for the fixed number of stages depends 
on the selected starting point. Thus the accuracy can vary.  

If the radicand is a sum of squares as it is the case when 
computing the magnitude of complex numbers the alpha 
max and beta min algorithm can be applied [7].  In its 
original version this algorithm does not require neither 
division nor iterations and uses one or two approximation 
regions. For one approximation region the maximum error 
does not exceed 3.95% and 1% for two regions. The 
extended version of this algorithm was presented in [8]. This 
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version allows for a theoretically unlimited number of 
approximation regions and thus the reduction of 
approximation error to the acceptable level.  

The other class of SR algorithms are those based on the 
CORDIC [9,10,11]. The CORDIC has been widely applied 
for computation of various arithmetic functions. Its basic 
advantage is the lack of multiplications which are replaced 
by binary shifts if coefficients are negative powers of 2. The 
development summary of CORDIC was presented in [12]. 
Typically one CORDIC stage calls for 2 adders and the same 
number of shift registers. In its direct form CORDIC 
requires minimum eight stages. After execution the division 
by a constant is needed because vector pseudorotations are 
used that increase the vector length. When implementing 
CORDIC the important problem is the choice of arithmetic. 
For FPGAs there exist s.c. CORDIC cores [13] that include 
the choice of arithmetic, number range and the type of 
architecture. For example, Xilinx LogiCORE IP CORDIC 
can implement vector rotation, translation, calculation of 
functions such as sin, cos, sinh, cosh, arctan and square root. 
For magnitude computation this core uses the simplified 
form of CORDIC because the radicand is not negative. The 
input Xin and output Xout numbers (coordinates) are 
represented as unsigned fractions or integers. For unsigned 
fractions the input number range is limited to 

 20  < X in and for unsigned integers to   < X l
in 20  .  

 
3. CORDIC ALGORITHM 

 
CORDIC performs vector rotations that with the 

suitable formulation allow to obtain the realization of the 
required function. Assume, that we have a vector X=Rej and 
we want to rotate it clockwise by the angle  to obtain 
X'=Rej+. We receive the following relationship between the 
coordinates of these vectors 

 
 δyδxx' sincos  ,                         (1a) 

δyδxy' cossin  .                       (1b) 

 

For small  we may adopt δδ sin and δδ cos . We then 

obtain the modified rotations of the following form 
 

         δyxx'   ,                               (2a) 

        δxyy'  .                          (2b) 

 
This transformation changes the vector length R and the 
rotation angle. We receive the new R’ vector of the length 
 

        2' 1  RR .                        (3) 
 

The coordinates of the new vector ),('
ww yxR   are as 

follows 
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Now we can determine the vector rotation angle  as the 
result of (2) as 

 

       
21

sin





 ,                     (5a) 

                  
21

1
cos





  .                   (5b) 

so δα tan  and  δα arctan . 

Transformations as in (2) can be applied to compute 
22 yx  . This can be done by performing rotations in such 

a manner so as to bring down the y coordinate to zero. For 
this purpose we can use the following relationships 
 

      iiii yxx 1 ,                          (6a) 

       iiii xyy 1 ,                         (6b) 

 
and i = ± 0.5i, i = 0, 1, 2, 3...,n. The choice of i as a 
negative power of 2 allows to perform multiplication in (6), 
as the binary right shift. 

In order to obtain the reduction of the absolute value of 
yi in each iteration step, the sign must be selected, in such a 
way that the product on the right-hand side had the opposite 
sign with respect to yi. We then have for y i< 0, i = 0.5 i, and 
for  y i> 0  i =  – 0.5 I. The final yi has to be divided by the 

cumulation factor 21 δ . 
 

4. NUMERICAL RESULTS OF CORDIC ERROR  
    ANALYSIS 
 

The aim of this work was the FPGA CORDIC 
hardware implementation using the modified form of 
CORDIC. Such implementation requires several 
assumptions with respect to the type of arithmetic, input 
word length, maximum absolute error and related number of 
iterations as well as the form of the circuit. In this 
implementation the number of iterations directly translates to 
the number of stages of the circuit, which should be as small 
as possible because this gives the smaller delay. 12-bit 
unsigned representations have been assumed for the input 
signal and 15-bit as the internal wordlength. These 
representation lengths result from the prospective application 
of the circuit to compute the magnitude of the complex 
samples at the output of the pipelined FFT processor. 

The maximum magnitude error at the CORDIC output 
results from the number of required iterations and the type of 
arithmetic.  Generally,  for practical purposes it is enough to 
assume the maximum magnitude error as the maximum 
difference between the output of the floating-point arithmetic 
sqrt standard function and the value obtained for the 
assumed n CORDIC iterations for all possible pairs of 
integer arguments from the given number range. sqrt is 
usually computed using 64-bit floating-point double type 
and has 15-16 significant decimal digits. 

The maximum absolute magnitude error, emax , can be 
defined as 

 

)(
]12,1[,

max ),(),(max
1 nCORDICf

yx
yxRyxRe

m


 
 ,       (7) 

 
where the Rf(x,y) – the magnitude for sqrt  and RCORDIC(n) - 
the magnitude for n CORDIC iterations.  
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The designed circuit, because of speed requirements, 
will use integer arithmetic. For this reason (6) is modified to 
the form  

      iiii yxx 
  21 ,                      (8a) 

      iiii xyy 
  21 .                      (8b) 

 
The binary right-shift in (8) represents the integer 

division with a truncation of the fractional part of the result. 
This truncation may cause considerable errors, hence it is 
necessary to analyze the numerical behavior of the integer 
version of the algorithm. 

A simple simulator has been written that allows to 
determine the magnitude error for floating-point and integer 
point arithmetics and the variable number of iteration steps. 
The magnitude errors have been calculated by searching the 
space of possible arguments.   

It may be conjectured for the CORDIC algorithm with 
truncation that the magnitude error depends in general on the 
magnitude value and also on iy , that can be treated as a 

form of a remainder. It was stated as the effect of simulation 
that the magnitude error generally depends on y5 and the 
value of the calculated magnitude. The calculated magnitude 
is evidently smaller than that for floating-point because of 
truncation and the resulting difference should be 
compensated.   

Initially the corrections have been chosen 

experimentally with the following form: if 25
1  )(

e RR  

and ify5>256 then 412  ee RR  Re2=Re1 + 4 (v1 – 

correction). The results with and without correction are 
given in Table 1.    

 In order to reduce the maximum error an alternative 
correction method has been introduced that estimates the 
rotation angle cor and the additional rotation of R vector by 
that angle is performed. The important fact is that the 
approximate calculation of this angle can be carried out with 
the ROM addressed with arguments of the reduced length. 
The performed simulation indicated that the correction 
should be halved that results in its final form as follows 

 
  2/][][ corrcorr nynxx  ,                         (9) 

 
where ])[/][arctan( nxnycorr  . 

 
Table 1. Results of CORDIC simulations 
 
Algorithm 

version 
No. of  

steps, n 
Correction Error 

max 
Pemax Qemax 

truncation 5 no 11,.99 3371 4082 
truncation 5 yes (v1) 5,99 3371 4082 
truncation 6 no 4,56 3264 3961 
truncation 6 yes (v1) 3,64 1203 1882 
double 5 no 10,63 3382 4088 
double 6 yes (v1) 2,57 3823 4075 
truncation 5 yes (v2) 2,45 275 378 
truncation 6 yes (v2) 2,84 663 814 
double 5 yes (v2) 0,67 4057 4078 
double 6 yes (v2) 1,17 4073 4091 
truncation 5 yes (v3) 1,49 2587 4077 
truncation 5 yes (v4) 2,49 82 444 

 
v2 – angle correction using (9), 

v3 – angle correction using 3 msb bits for arctan 
computation and multiplication by full-length (9 bit) y[n] 
representation, 
v4 - angle correction using 3 msb bits for arctan 
computation and multiplication by  3 bit msb bits of y[n]  
representation. 
For this correction emax has been reduced to 2.49. 
 
5. HARDWARE FPGA ARCHITECTURE  
    FOR MODIFIED CORDIC 

 
The elaborated system performs the following 

algorithm 
Algorithm 1.                                                                     (10) 

xk+1= xk + yk ls s , 
if  y1> =0   
then yk+1 = (y1  – x1) shift-right-arithmetic   
if   y1<0     
then     yk+1 = (x1  – y1) shift-right-arithmetic  

  
for k=1,2,3,4.  For k=0 there is no shift. 

In Figure 1 the circuit architecture is depicted. 
 

BA1 BA2

x1δ1 

MUX

y1δ1 

BA3 BA4

INV

INV

x0 y0

x2 y2

SII

SIII

x3 y3

SIV

x4 y4

MUX

INV

ROM1

BA

11 11

14 14

14 14 1

3 msb 3 msb

12

xcorr

x5 y5

1 msb

SI

S0

1

1

MULT1

ycorr

 
 

Fig. 1. Architecture of CORDIC magnitude calculator 
 
For k=0 the addition in (10) is performed using 12-bit 

unsigned numbers by the BA1 adder. In order to implement 
subtraction, the two’s complement representation of –x0 is 
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formed by negation of x0 and introduction of 1 as a carry to 
the lsb position of the BA2 adder. At the output of BA2 
13-bit representation is extended by two 0-bits to obtain 
two’s complement representation. The block denoted as “x1 
ls 1” shifts right x1 representation by 1 bit and analogically 
the block “y1 ls 1” shifts right arithmetically two’s 
complement representation of y1 (the sign bit is retained and 
the msb bit is set to 1 to preserve the value of the number).  

At the output of INV1 one’s complement 
representation of the shifted x1 is formed. The MUX1 selects 
x1 or -x1 in dependence upon the sign of y1. BA3 performs 
addition for x1 nonnegative and y1 negative and BA4 
inversely. 1 needed to obtain two’s complement 
representation from one’s complement is introduced as a 20 
position of BA4 in order to form the proper –x1 
representation.  

The final correction is implemented using ROM1 
addressed by 3 msb bits of x5 and y5. The use of only three 
bits for both operands allows to apply 6-bit address for the 
LUT block. Denote 512512][{3 }/nx_msb=x_ and 

64]/64}[{3 ny_msb=y_ , where { .} denotes rounding-off. 

The ROM1 using   x_3_msb and y_3_msb computes 

msby
msbx

msby
y _3_

_3_

_3_
arctan =corr 








. Finally y_3_msb is 

multiplied by the inverse of the cumulation factor 

6076.011 2   using MULT1. The architecture from 

Fig.1 has been implemented in the Xilinx FPGA. The 
elaborated FPGA implementation attains 100 MHz 
processing speed. 

 
6. CONCLUSIONS 

 
We have presented a modified CORDIC algorithm and 

its FPGA implementation. The algorithm uses unrolled five 
CORDIC iterations and a suitable correction after the fifth 
stage. It allows to limit the magnitude error to 2.47 for 12-bit 
integer range. The implementation uses only one multiplier 
by a constant in series. However, the use of the second 
multiplier would give the error reduction to 1.49. 
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OBLICZANIE MODUŁU LICZB ZESPOLONYCH W FPGA  
PRZY ZASTOSOWANIU ALGORYTMU CORDIC 

 
W pracy zaprezentowano obliczanie modułu liczb zespolonych przy zastosowaniu zmodyfikowanego algorytmu 

CORDIC, który wykorzystuje tylko pięć iteracji. Podano związek między błędem aproksymacji a liczbą iteracji dla 
arytmetyki zmiennoprzecinkowej i całkowitej. Zaproponowana modyfikacja algorytmu CORDIC dla arytmetyki całkowitej 
polega na wprowadzeniu korekcji po zakończeniu podstawowych obliczeń w celu zmniejszenia błędu maksymalnego. 
Korekcja jest wprowadzana na podstawie współrzędnych otrzymanych po piątym stopniu algorytmu. Pokazano także 
przykładową implementacje algorytmu w FPGA. 

 
Słowa kluczowe: moduł liczby zespolonej, CORDIC, FPGA. 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

