

Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej Nr 47

Politechnika Gdańska

Wydział Elektrotechniki i Automatyki

Gdańsk 2015

FPGA COMPUTATION OF MAGNITUDE OF COMPLEX NUMBERS
USING MODIFIED CORDIC ALGORITHM

Maciej CZYŻAK1, Robert SMYK2

1. Politechnika Gdańska, Wydział Elektrotechniki i Automatyki

tel.: 58 347-15-02 e-mail: maciej.czyzak@pg.gda.pl
2. Politechnika Gdańska, Wydział Elektrotechniki i Automatyki

tel.: 58 347-13-32 e-mail: robert.smyk@pg.gda.pl

Abstract: In this work we present computation of the magnitude of
complex numbers using a modified version of the CORDIC
algorithm that uses only five iterations. The relationship between
the computation error and the number of CORDIC iterations are
presented for floating-point and integer arithmetics. The proposed
modification of CORDIC for integer arithmetic relies upon the
introduction of correction once basic computations are performed
in order to reduce the maximum error. The correction value is
derived using the coordinate and magnitude values obtained after
the fifth iteration. The correction allows to reduce the maximum
error by about 79%. The exemplary FPGA implementation of the
modified algorithm is also presented.

Keywords: magnitude of complex number, CORDIC, FPGA.

1. INTRODUCTION

Computation of the magnitude of complex numbers is

necessary in these algorithms of digital signal processing
(DSP) which have the complex output signal. The important
applications are fast Fourier transform (FFT) and complex
finite impulse response (FIR) filters. Computation of the
magnitude of complex samples at the output of an FFT
processor requires squaring of real and imaginary parts with
the successive square-rooting (SR). Generally, the square
root belongs to the s.c. arithmetic standard functions. In
general purpose computers for their calculation the relevant
procedures from numerical libraries are used or arithmetic
coprocessors that intercept arithmetic instructions from the
code generated by compiler. However, in FFT processors
and complex FIR filters such approaches does not allow to
fulfill requirements with respect to the processing speed
because of the required computation time. Moreover, the
pipelining with frequencies on the order of hundreds of MHz
required in certain applications, is not achievable.

The important factor that facilitates such tasks is a
relatively small number range commonly limited to 12-16
bit. In this work we propose the computation of the
magnitude of complex numbers using the CORDIC
(Coordinate Rotation Digital Computer) with five iterations
only and with the final correction. The exemplary FPGA
architecture is also given.

In Section 2 we review selected methods of square
rooting, in Section 3 the CORDIC algorithm is presented and
in Section 4 results of numerical experiments are shown and

in Section 5 the CORDIC FPGA architecture is described.
This work is an extended and modified version of [15]. The
modifications pertain mainly to the new FPGA architecture,
number range and results of numerical simulation.

2. REVIEW OF MAGNITUDE COMPUTATION
 METHODS

For computation of the magnitude of complex numbers

one of the SR algorithms can be utilized. There exists
several SR algorithms such as those based on expansion in
Taylor series [1] and rough estimation [2]. However, these
algorithms are not used in hardware implementations
because of the excessive number of arithmetic operations.

The review of SR algorithms used for hardware
implementations was given in [3]. Usually, in such
implementations modified variants of non-restoring
techniques are applied [4,5]. These algorithms can be
implemented in a pipelined form, however, this form may
introduce a substantial delay because of the required number
of computational steps. The introduced delay can be
sometimes longer than the acceptable computation time. In
hardware implementations the computation results with a
given accuracy can be obtained within the fixed number of
clock cycles as opposed to iteration methods. Nevertheless,
the iteration methods such as Newton-Raphson algorithm [6]
can be transformed to the non-iterative form by loop-
unrolling, i.e., by the realization of the chosen number of
iterations in the sequential stages of the circuit with each one
performing computation for one iteration. The substantial
obstacle in the hardware implementation of this algorithm is
the necessity to perform multiplication and division which
not only slows down the algorithm execution but also
substantially increases the hardware complexity. Moreover,
the computation error for the fixed number of stages depends
on the selected starting point. Thus the accuracy can vary.

If the radicand is a sum of squares as it is the case when
computing the magnitude of complex numbers the alpha
max and beta min algorithm can be applied [7]. In its
original version this algorithm does not require neither
division nor iterations and uses one or two approximation
regions. For one approximation region the maximum error
does not exceed 3.95% and 1% for two regions. The
extended version of this algorithm was presented in [8]. This

36 Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki PG, ISSN 2353-1290, Nr 47/2015

version allows for a theoretically unlimited number of
approximation regions and thus the reduction of
approximation error to the acceptable level.

The other class of SR algorithms are those based on the
CORDIC [9,10,11]. The CORDIC has been widely applied
for computation of various arithmetic functions. Its basic
advantage is the lack of multiplications which are replaced
by binary shifts if coefficients are negative powers of 2. The
development summary of CORDIC was presented in [12].
Typically one CORDIC stage calls for 2 adders and the same
number of shift registers. In its direct form CORDIC
requires minimum eight stages. After execution the division
by a constant is needed because vector pseudorotations are
used that increase the vector length. When implementing
CORDIC the important problem is the choice of arithmetic.
For FPGAs there exist s.c. CORDIC cores [13] that include
the choice of arithmetic, number range and the type of
architecture. For example, Xilinx LogiCORE IP CORDIC
can implement vector rotation, translation, calculation of
functions such as sin, cos, sinh, cosh, arctan and square root.
For magnitude computation this core uses the simplified
form of CORDIC because the radicand is not negative. The
input Xin and output Xout numbers (coordinates) are
represented as unsigned fractions or integers. For unsigned
fractions the input number range is limited to

 20 < X in and for unsigned integers to < X l
in 20  .

3. CORDIC ALGORITHM

CORDIC performs vector rotations that with the

suitable formulation allow to obtain the realization of the
required function. Assume, that we have a vector X=Rej and
we want to rotate it clockwise by the angle  to obtain
X'=Rej+. We receive the following relationship between the
coordinates of these vectors

 δyδxx' sincos  , (1a)

δyδxy' cossin  . (1b)

For small  we may adopt δδ sin and δδ cos . We then

obtain the modified rotations of the following form

 δyxx'  , (2a)

 δxyy'  . (2b)

This transformation changes the vector length R and the
rotation angle. We receive the new R’ vector of the length

 2' 1  RR . (3)

The coordinates of the new vector),('
ww yxR  are as

follows

22 11 



 





yx
xw , (4a)

22 11 



 





xy
yw . (4b)

Now we can determine the vector rotation angle  as the
result of (2) as

21

sin





 , (5a)

21

1
cos





 . (5b)

so δα tan and δα arctan .

Transformations as in (2) can be applied to compute
22 yx  . This can be done by performing rotations in such

a manner so as to bring down the y coordinate to zero. For
this purpose we can use the following relationships

 iiii yxx 1 , (6a)

 iiii xyy 1 , (6b)

and i = ± 0.5i, i = 0, 1, 2, 3...,n. The choice of i as a
negative power of 2 allows to perform multiplication in (6),
as the binary right shift.

In order to obtain the reduction of the absolute value of
yi in each iteration step, the sign must be selected, in such a
way that the product on the right-hand side had the opposite
sign with respect to yi. We then have for y i< 0, i = 0.5 i, and
for y i> 0 i = – 0.5 I. The final yi has to be divided by the

cumulation factor 21 δ .

4. NUMERICAL RESULTS OF CORDIC ERROR
 ANALYSIS

The aim of this work was the FPGA CORDIC
hardware implementation using the modified form of
CORDIC. Such implementation requires several
assumptions with respect to the type of arithmetic, input
word length, maximum absolute error and related number of
iterations as well as the form of the circuit. In this
implementation the number of iterations directly translates to
the number of stages of the circuit, which should be as small
as possible because this gives the smaller delay. 12-bit
unsigned representations have been assumed for the input
signal and 15-bit as the internal wordlength. These
representation lengths result from the prospective application
of the circuit to compute the magnitude of the complex
samples at the output of the pipelined FFT processor.

The maximum magnitude error at the CORDIC output
results from the number of required iterations and the type of
arithmetic. Generally, for practical purposes it is enough to
assume the maximum magnitude error as the maximum
difference between the output of the floating-point arithmetic
sqrt standard function and the value obtained for the
assumed n CORDIC iterations for all possible pairs of
integer arguments from the given number range. sqrt is
usually computed using 64-bit floating-point double type
and has 15-16 significant decimal digits.

The maximum absolute magnitude error, emax , can be
defined as

)(
]12,1[,

max),(),(max
1 nCORDICf

yx
yxRyxRe

m


 
 , (7)

where the Rf(x,y) – the magnitude for sqrt and RCORDIC(n) -
the magnitude for n CORDIC iterations.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki PG, ISSN 2353-1290, Nr 47/2015 37

The designed circuit, because of speed requirements,
will use integer arithmetic. For this reason (6) is modified to
the form

  iiii yxx 
  21 , (8a)

  iiii xyy 
  21 . (8b)

The binary right-shift in (8) represents the integer

division with a truncation of the fractional part of the result.
This truncation may cause considerable errors, hence it is
necessary to analyze the numerical behavior of the integer
version of the algorithm.

A simple simulator has been written that allows to
determine the magnitude error for floating-point and integer
point arithmetics and the variable number of iteration steps.
The magnitude errors have been calculated by searching the
space of possible arguments.

It may be conjectured for the CORDIC algorithm with
truncation that the magnitude error depends in general on the
magnitude value and also on iy , that can be treated as a

form of a remainder. It was stated as the effect of simulation
that the magnitude error generally depends on y5 and the
value of the calculated magnitude. The calculated magnitude
is evidently smaller than that for floating-point because of
truncation and the resulting difference should be
compensated.

Initially the corrections have been chosen

experimentally with the following form: if 25
1 )(

e RR

and ify5>256 then 412  ee RR Re2=Re1 + 4 (v1 –

correction). The results with and without correction are
given in Table 1.

 In order to reduce the maximum error an alternative
correction method has been introduced that estimates the
rotation angle cor and the additional rotation of R vector by
that angle is performed. The important fact is that the
approximate calculation of this angle can be carried out with
the ROM addressed with arguments of the reduced length.
The performed simulation indicated that the correction
should be halved that results in its final form as follows

 2/][][corrcorr nynxx  , (9)

where])[/][arctan(nxnycorr  .

Table 1. Results of CORDIC simulations

Algorithm

version
No. of

steps, n
Correction Error

max
Pemax Qemax

truncation 5 no 11,.99 3371 4082
truncation 5 yes (v1) 5,99 3371 4082
truncation 6 no 4,56 3264 3961
truncation 6 yes (v1) 3,64 1203 1882
double 5 no 10,63 3382 4088
double 6 yes (v1) 2,57 3823 4075
truncation 5 yes (v2) 2,45 275 378
truncation 6 yes (v2) 2,84 663 814
double 5 yes (v2) 0,67 4057 4078
double 6 yes (v2) 1,17 4073 4091
truncation 5 yes (v3) 1,49 2587 4077
truncation 5 yes (v4) 2,49 82 444

v2 – angle correction using (9),

v3 – angle correction using 3 msb bits for arctan
computation and multiplication by full-length (9 bit) y[n]
representation,
v4 - angle correction using 3 msb bits for arctan
computation and multiplication by 3 bit msb bits of y[n]
representation.
For this correction emax has been reduced to 2.49.

5. HARDWARE FPGA ARCHITECTURE
 FOR MODIFIED CORDIC

The elaborated system performs the following

algorithm
Algorithm 1. (10)

xk+1= xk + yk ls s ,
if y1> =0
then yk+1 = (y1 – x1) shift-right-arithmetic
if y1<0
then yk+1 = (x1 – y1) shift-right-arithmetic

for k=1,2,3,4. For k=0 there is no shift.

In Figure 1 the circuit architecture is depicted.

BA1 BA2

x1δ1

MUX

y1δ1

BA3 BA4

INV

INV

x0 y0

x2 y2

SII

SIII

x3 y3

SIV

x4 y4

MUX

INV

ROM1

BA

11 11

14 14

14 14 1

3 msb 3 msb

12

xcorr

x5 y5

1 msb

SI

S0

1

1

MULT1

ycorr

Fig. 1. Architecture of CORDIC magnitude calculator

For k=0 the addition in (10) is performed using 12-bit

unsigned numbers by the BA1 adder. In order to implement
subtraction, the two’s complement representation of –x0 is

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

38 Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki PG, ISSN 2353-1290, Nr 47/2015

formed by negation of x0 and introduction of 1 as a carry to
the lsb position of the BA2 adder. At the output of BA2
13-bit representation is extended by two 0-bits to obtain
two’s complement representation. The block denoted as “x1
ls 1” shifts right x1 representation by 1 bit and analogically
the block “y1 ls 1” shifts right arithmetically two’s
complement representation of y1 (the sign bit is retained and
the msb bit is set to 1 to preserve the value of the number).

At the output of INV1 one’s complement
representation of the shifted x1 is formed. The MUX1 selects
x1 or -x1 in dependence upon the sign of y1. BA3 performs
addition for x1 nonnegative and y1 negative and BA4
inversely. 1 needed to obtain two’s complement
representation from one’s complement is introduced as a 20
position of BA4 in order to form the proper –x1
representation.

The final correction is implemented using ROM1
addressed by 3 msb bits of x5 and y5. The use of only three
bits for both operands allows to apply 6-bit address for the
LUT block. Denote 512512][{3 }/nx_msb=x_ and

64]/64}[{3 ny_msb=y_ , where { .} denotes rounding-off.

The ROM1 using x_3_msb and y_3_msb computes

msby
msbx

msby
y _3_

3

3
arctan =corr 








. Finally y_3_msb is

multiplied by the inverse of the cumulation factor

6076.011 2   using MULT1. The architecture from

Fig.1 has been implemented in the Xilinx FPGA. The
elaborated FPGA implementation attains 100 MHz
processing speed.

6. CONCLUSIONS

We have presented a modified CORDIC algorithm and

its FPGA implementation. The algorithm uses unrolled five
CORDIC iterations and a suitable correction after the fifth
stage. It allows to limit the magnitude error to 2.47 for 12-bit
integer range. The implementation uses only one multiplier
by a constant in series. However, the use of the second
multiplier would give the error reduction to 1.49.

7. REFERENCES

1. Kwon T., Sondeen J., Draper J.: Floating-point division

and square root using a Taylor-series expansion
algorithm, In 50th Midwest Symposium on Circuits and
Systems, MWSCAS 2007, 2007, pp. 305 – 308.

2. Ercegovac M., D.: On Digit-by-Digit Methods for
Computing Certain Functions, In Conference Record of
the 41th Asilomar Conference on Signals, Systems and
Computers, ACSSC 2007, 2007, pp. 338 – 342.

3. Montuschi P., Mezzalama M.: Survey of square rooting
algorithms, Comput. Digit. Tech. IEE Proc. E, Jan.
1990, vol. 137, no. 1, pp. 31– 40.

4. Sutikno T.: An efficient implementation of the
nonrestoring square root algorithm in gate level, Int.
Journal Comput. Theory Eng., 2011, vol. 3, no. 1, pp. 46
– 51.

5. Sajid Ahmed M., Ziavras S. G.: Pipelined
implementation of fixed point square root in FPGA
using modified non-restoring algorithm, In 2010 2nd
International Conference on Computer and Automation
Engineering (ICCAE), 2010, vol. 3, pp. 226–230.

6. Kabuo H., Taniguchi T., Miyoshi A., Yamashita H.,
Urano M., Edamatsu H., Kuninobu S.: Accurate
rounding scheme for the Newton-Raphson method using
redundant binary representation, IEEE Trans. Comput.,
Jan. 1994, vol. 43, no. 1, pp. 43–51.

7. Filip A. E.: Linear approximations to sqrt(x2+y2) having
equiripple error characteristics, IEEE Trans. Audio
Electroacoustics, Dec. 1973, vol. 21, no. 6, pp. 554–556.

8. Czyżak M., Smyk R.: FPGA realization of an improved
alpha max plus beta min algorithm, Poznan University
of Technology Academic Journals Electrical
Engineering, 2014, vol. 80, pp.151 – 160.

9. Volder J.E.: The CORDIC Trigonometric Technique,
IRE Transactions on Electronic Computers, Sept. 1959,
pp. 330-334.

10. Walther J. S.: A unified algorithm for elementary
functions, In Proc. of Sprint Joint Computer Conference,
May 1971, pp. 379–385.

11. Ye M., Liu T., Ye Y., Xu G., Xu T.: FPGA
Implementation of CORDIC-Based Square Root
Operation for Parameter Extraction of Digital Pre-
Distortion for Power Amplifiers, In 2010 6th
International Conference on Wireless Communications
Networking and Mobile Computing (WiCOM), 2010,
pp. 1– 4.

12. Meher P., K., Vallis J., Tso-Bing Juang, Sridharan K.,
Maharanta K.: 50 Years of CORDIC: Algorithms,
Architectures, and Applications, IEEE Trans. Circuits
Syst. Regul. Pap., vol. 56, no. 9, pp. 1893 – 1907, Sept.
2009.

13. Xilinx: LogiCORE IP CORDIC v4.0. Product
specification, www.xilinx.com, March 2011.

14. Xilinx: Virtex-6, ww.xilinx.com/products/silicon-
devices/fpga/virtex-6.html, Feb. 2015.

15. Czyżak M., Smyk R.: Obliczanie modułu liczby
zespolojnej w FPGA z użyciem algorytmu CORDIC,
FPGA realization of an improved alpha max plus beta
min algorithm. Poznan University of Technology
Academic Journals Electrical Engineering, 2015, vol.
84, pp. 161 – 171.

OBLICZANIE MODUŁU LICZB ZESPOLONYCH W FPGA
PRZY ZASTOSOWANIU ALGORYTMU CORDIC

W pracy zaprezentowano obliczanie modułu liczb zespolonych przy zastosowaniu zmodyfikowanego algorytmu

CORDIC, który wykorzystuje tylko pięć iteracji. Podano związek między błędem aproksymacji a liczbą iteracji dla
arytmetyki zmiennoprzecinkowej i całkowitej. Zaproponowana modyfikacja algorytmu CORDIC dla arytmetyki całkowitej
polega na wprowadzeniu korekcji po zakończeniu podstawowych obliczeń w celu zmniejszenia błędu maksymalnego.
Korekcja jest wprowadzana na podstawie współrzędnych otrzymanych po piątym stopniu algorytmu. Pokazano także
przykładową implementacje algorytmu w FPGA.

Słowa kluczowe: moduł liczby zespolonej, CORDIC, FPGA.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

