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Abstract—Conveyor belt type checkweighers are increasingly
popular components of modern production lines. They are used
to asses the weight of the produced items in motion, i.e., without
stopping them on the weighing platform. The main challenge one
faces when designing a dynamic weighing system is providing
high measurement accuracy, especially at high conveyor belt
speeds. The approach proposed in this paper can be characterized
as a filtering scheme based on the FIR model of the weighing
system response. It is shown that when such a model-based
filtering is applied, the attained weighing accuracy is up to four
times higher than that guaranteed by the currently available
state-of-the-art solutions.

Index Terms—Dynamic mass measurement, conveyor belt type
checkweighers, model-based filtering.

I. INTRODUCTION

C
ONVEYOR belt type checkweighers are increasingly

popular components of modern production lines. They

are used to asses the weight of the produced items in motion,

i.e., without stopping them on the weighing platform. Pre-

cise weight measurement is needed to generate the product

labels (including the price, if the price is weight-dependent)

or to eliminate products that are defective (e.g. incomplete

multipacks) or which do not comply with the desired weight

specification (items that are outside the tolerance are automat-

ically taken out of line) [1]. There are many other applications

of dynamic weighing including weighing of cars [2], [3] and

trains [4], [5].
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Fig. 1. A conveyor belt type checkweigher.
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Fig. 2. Typical responses of the load cell (solid line) and front/end photocells
(dotted line) observed during one weighing cycle. The signal shown in this
figure was obtained for the load m = 300 g under conveyor belt speed v =
1.2 m

s
. The length t4 − t1 of the entire weighing cycle was equal to 400 ms.

An example of the conveyor belt catchweigher is schemat-

ically depicted in Fig. 1. The system is equipped with two

photocells located between the in-feed conveyor and weighing

conveyor, and between the weighing conveyor and the out-feed

conveyor, respectively. Both photocells generate signals that

allow one to precisely localize the three stages of weighing

(see Fig 2): the period [t1, t2] during which the weighed item

slides onto the weighing platform, the period (t2, t3] during

which the entire item remains on the platform, and the period

(t3, t4] during which the item slides off the platform. In our

study we will use the data from the first two stages.

Since the weighed items are transported with a high speed

(often exceeding 1m/s), the signal obtained from the strain

gauge load cell attached to the weighing platform is highly

oscillatory, never reaching its steady state value corresponding

to the item’s static weight. Additionally, the measurements

are corrupted with several kinds of disturbances, such as low

frequency vibrations caused by internal and external sources

(called environmental vibrations) and measurement noise [6],

[7], [8]. For this reason the signal obtained from the strain

gauge must be processed in a special way in order to “extract”

the static weight information from the transient response of the

system.

Basically, two different approaches to dynamic weighing

were described in the literature. In the model-based approach

the measured signal is modeled as a response of a linear

dynamic IIR (infinite impulse response) system with unknown

parameters to a pulse-like excitation. During each weighing

cycle the model is identified based on the collected measure-

ments. The obtained estimates of model parameters are next

used to calculate the steady state response of the weighing

platform to a hypothetical step-like excitation, i.e., the static

weight of the weighed item [9], [2], [4], [10].

The second, model-free filtering approach to dynamic

weighing incorporates digital filters designed so as to reduce
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the noise and attenuate the oscillatory part of the system

response. The weight estimate can be obtained by reading

out the signal observed at the output of the filter at the

instant t3, i.e., at the end of the second weighing stage,

just before the weighed item starts to slide off the weighing

platform. As shown in [11], [12], [13],[14], [15], [16] very

good results can be obtained if the classical time-invariant

filtering scheme is replaced with a time-varying (i.e., variable-

bandwidth) one. Another model-free method, proposed in [17],

is based on subspace identification and does not rely on direct

data filtering. It shares some properties with the model-based

approach, e.g. it does not require pre-tuning.

When optimized, the model-based and model-free time-

variant filtering approaches yield comparable results [10]. In

the case of the model-based approach optimization amounts

to the appropriate choice of the model structure, identification

technique and prefilter used to process the data prior to

identification. In the case of time-variant filtering (model-

free) approach, one has to optimize, for a particular system at

hand, the order and coefficients of a digital filter. The filtering

approach is computationally less demanding but requires off-

line tuning of design parameters. The advantage of the model-

based approach is that it can be operated in a fully autonomous

manner (without pre-tuning) under different operating condi-

tions.

The approach proposed in this paper can be characterized as

a filtering scheme based on the FIR (finite impulse response)

model of the steady state response of the weighing system.

Hence, to some extent, it can be regarded as a combination of

the two techniques described earlier. Similar to all model-free

filtering solutions, the new approach requires off-line tuning

for given operating conditions (conveyor belt speed, sampling

frequency) and a given load range. However, since the model-

based filtering is applied, the attained weighing accuracy is

up to four times higher than that guaranteed by the existing

solutions.

II. WEIGHT ESTIMATION BASED ON GLOBAL MODELING

Denote by Yij(N) = {yij(1), . . . , yij(N)} the j-th re-

alization of the dynamic weight measurement of the load

mi for a given conveyor belt speed v and a given sampling

frequency f . The measurement process starts at the moment

t = t1 = 1 at which the weighed item starts to slide onto

the weighing section, and ends at the instant t = t3 = N at

which it starts to slide off the weighing section [here and later

t = 1, 2, . . . denotes the normalized (dimensionless) discrete

time]. To obtain training data, each load mi, i = 1, . . . , I is

weighed J times. Fig. 3, which shows the superposition of

J = 240 weighings obtained for 3 test loads m1 = 25 g,

m5 = 350 g, m7 = 750 g), 3 conveyor belt speeds (v1 = 0.54
m/s, v2 = 0.94 m/s, v3 = 1.34 m/s) and a sampling rate

f2 = 1600 Hz gives some idea of the data variability and

repeatability. Since it is the conveyor belt transport system,

and not the load cell, that is the main source of nonvanishing

measurement errors, one should not be surprised by the low

signal-to-noise ratio, especially for small loads.

A. FIR model

We will assume that at a given time instant t ∈ T = [1, N ]
the mass of the weighed item can be closely approximated by

a linear combination of past measurements, namely

mi = h
T
nϕ

ij
n (t) + eij(t), i = 1, . . . , I, j = 1, . . . , J (1)

where

hn = [h1, . . . , hn]
T

denotes the vector of unknown model coefficients,

ϕij
n (t) = [yij(t), . . . , yij(t− n+ 1)]T

denotes the regression vector made up of n ≤ t past measure-

ments, and eij(t) denotes the corresponding modeling error.

Since the quantity mi appearing on the left hand side of (1)

is deterministic (as it is the true mass, rather than its measure-

ment), equation (1) does not constitute the classical regression

model, where the quantity eij(t) would be regarded as the

“measurement error”. The term hT
nϕ

ij
n (t) can be interpreted

as a linear approximation of mi in terms of experimental data,

i.e., a linear model of the steady state system response. In the

next subsection we will optimize this model so that the fit is

good in the considered range of loads and a selected range of

t values.

B. Estimation of model parameters

To obtain the global model, covering the entire measure-

ment range, we will combine all available training data:

D(N) = {Yij(N), i = 1, . . . , I, j = 1, . . . , J}. Parameter

estimation will be based on minimization of the following

global performance measure

J [hn,D(N)] =

N∑

t=N−M+1

I∑

i=1

J∑

j=1

[mi − h
T
nϕ

ij
n (t)]

2 (2)

which results in

ĥn(N) = argmin
hn

J [hn,D(N)]

=




N∑

t=N−M+1

I∑

i=1

J∑

j=1

ϕij
n (t)[ϕ

ij
n (t)]

T



−1

×




N∑

t=N−M+1

I∑

i=1

J∑

j=1

ϕij
n (t)mi


 (3)

provided, of course, that the regression matrix in (3) is

nonsingular. Note that the performance measure (2) favors

models that guarantee good fit to experimental data at M
locations ending the weighing period. The main purpose of

adopting M > 1 is to make the model robust to the possible

phase shifts of the scale’s response. The limited repeatability

of this response, evident after examining the plots shown in

Fig. 3, is usually caused by slight changes in the orientation

of weighed items that take place during their transportation

along the conveyor belt system. According to our experiments

M = 20 is a good choice.
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Fig. 3. Superposition of the results of 240 weighings obtained for 3 test loads and 3 conveyor belt speeds under the sampling rate of 1600 Hz. Black lines
show the ensemble averages: ȳi(t) = (1/240)

∑
240

j=1
yij(t), t = 1, . . . , N .

C. Weight estimation

Denote by S(N) = {s(1), . . . , s(N)} the set of mea-

surements collected during normal on-line operation of the

dynamic weighing system. We will assume that the data

set S(N) was obtained under the same operating conditions

(conveyor belt speed, sampling frequency) as those used to

obtain the training data D(N). Based on (1) and (3) the

estimate of the item’s weight can be obtained from

m̂(N) = ĥT
n (N)ψn(N) (4)

where

ψn(N) = [s(N), . . . , s(N − n+ 1)]T

III. MODEL ORDER SELECTION

So far we have assumed that the order n of the model (1)

is known and fixed prior to parameter estimation. Preliminary

experiments, involving real-world data, have shown that the

choice of n can strongly influence accuracy of weight mea-

surement. When the order is set to its maximum allowable

value N −M +1 (which means that all available samples are

incorporated in the estimation process) the obtained results

are not satisfactory. To solve the order selection problem,

three methods were implemented and evaluated: the Akaike

information criterion (AIC) [18], the Bayesian information

criterion (BIC) [19], and the method of cross validation (CV)

[20].

A. Information criteria

The Akaike information criterion is based on maximization

of the penalized log likelihood function of the experimental

data, leading to

n̂(N) = arg min
n∈[1,N−M+1]

AIC(n) (5)

where

AIC(n) = K logRSS(n) + 2n. (6)
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RSS(n) denotes the residual sum of squared modeling errors

RSS(n) =
N∑

t=t−M+1

I∑

i=1

J∑

j=1

[
mi − ĥ

T
n (N)ϕij

n (t)
]2

(7)

and K = IJM denotes the number of different “input-output”

pairs {mi,ϕ
ij
n (t)} incorporated in (3).

In the Bayesian version of the information criterion

BIC(n) = K logRSS(n) + n logK (8)

the “penalty” for overestimation of the model order (n logK)

is stronger than the analogous penalty in the Akaike criterion

(2n). For this reason model orders selected using BIC

n̂(N) = arg min
n∈[1,N−M+1]

BIC(n) (9)

are usually lower than those selected by AIC.

B. Cross validation

Derivation of both information criteria, summarized above,

is based on the assumption that the sequence of modeling

errors {eij(t)} is a realization of white Gaussian noise, which

in the case considered is obviously not true, especially in

the initial phase of weighing. For this reason the indications

of the information criteria should be used with caution. The

method of model order selection that does not rely on such

an unrealistic assumption is based on the concept of cross

validation. In order to use this method, the available data set

D(N) should be divided into two subsets: the one

D1(N) = {Yij(N), i = 1, . . . , I, j = 1, . . . , J/2}

that is used for the purpose of model parameter estimation

only, and another one

D2(N) = {Yij(N), i = 1, . . . , I, j = J/2 + 1, . . . , J}

that is used for the purpose of selection of the most appropriate

model order, i.e., the number of estimated coefficients [we

have assumed that J is an even number; generally, any random

division of D(N) into D1(N) and D2(N) = D(N)−D1(N)
can be applied].

Based on D1(N) the following least squares estimates can

be computed

ĥn(N) = argmin
hn

J [hn,D1(N)]

=




N∑

t=N−M+1

I∑

i=1

J/2∑

j=1

ϕij
n (t)[ϕ

ij
n (t)]

T



−1

×




N∑

t=N−M+1

I∑

i=1

J/2∑

j=1

ϕij
n (t)mi


 . (10)

for different values of n. The obtained models are next

validated using the subset D2(N) (not utilized for estimation

purposes)

n̂(N) = arg min
n∈[1,N−M+1]

SS(n) (11)

where

SS(n) =

N∑

t=t−M+1

I∑

i=1

J∑

j=J/2+1

[
mi − ĥ

T
n (N)ϕij

n (t)
]2

(12)

denotes the sum of squared modeling errors.

Unlike information criteria, the cross validation approach

does not require any specific assumptions about the nature

of modeling errors, except that the sets D1(N) and D2(N)
are two independent samples drawn from the same sample

space. The clear advantage of the cross validation approach is

that it checks an actual performance of the created model on

real data, while the information criteria predict its hypothetical

performance on a virtual (i.e., nonexistent) validation data set.

The clear disadvantage is that only a portion of the available

data is used for parameter estimation purposes.

C. Experimental verification

Our test-stand, depicted in Fig. 4, is an open configuration

of the commercial product of the company RADWAG Wagi

Elektroniczne (www.radwag.com). The weighing conveyor of

length L = 350mm and mass M = 3.5 kg is mounted on a

C3 accuracy class [21] strain gauge load cell operating in the

range 3 kg – 5 kg. This popular industrial force transducer,

consisting of four strain gauges connected in a Wheatstone

bridge, outputs a differential signal proportional to the applied

force. With a 10 V supply, the 2 mV/V electrical sensitivity

bridge offers a full-scale differential signal output to be about

20 mV. In the adopted system the bridge output signal was

interfaced directly to a specialized 20-bit A/D converter.

Our database consisted of multiple sets of independent

measurements obtained for I = 7 test loads (metal bars of the

same active length l = 130mm – see Fig 1) with 7 different

masses (m1 = 25 g, m2 = 50 g, m3 = 100 g, m4 = 200 g,

m5 = 350 g, m6 = 500 g, m7 = 750 g), under 3 conveyor

belt speeds (v1 = 0.54m/s, v2 = 0.94m/s, v3 = 1.34m/s)
and 2 sampling rates (f1 = 800Hz, f2 = 1600Hz). In each

case dynamic weighing was repeated J = 240 times.

To check and compare different variants of model identifica-

tion, the measurements Yij(N), j = 1, . . . , 240 collected for

each mass mi under given operating conditions were divided

into 4 subsets, each of which contained 60 sequences of

measurements

Yi
1(N) = {yij(t), j = 1, . . . , 60, t = 1, . . . , N}

Yi
2(N) = {yij(t), j = 61, . . . , 120, t = 1, . . . , N}

Yi
3(N) = {yij(t), j = 121, . . . , 180, t = 1, . . . , N}

Yi
4(N) = {yij(t), j = 181, . . . , 240, t = 1, . . . , N}.

Models were evaluated using the method of 4-fold cross

validation, which means that validation was repeated 4 times.

During each run one of the subsets Yi
k(N), k = 1, . . . , 4 was

used to check performance of the model obtained using the

remaining 3 subsets. In this way, for each mass mi the set of

240 estimation errors was obtained

Ei = {εil, l = 1, . . . , 240}
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Fig. 4. The experimental test-stand.

where εil = [m̂i(N)]l−mi and [m̂i(N)]l denotes the outcome

of the l-th weighing experiment performed for the mass mi.

The following performance measure was used to quantify

the results of weighing

∆i = |µ̂i|+ 3σ̂i (13)

where µ̂i and σ̂i denote the population mean and standard

deviation, respectively

µ̂i =
1

240

240∑

l=1

εil, σ̂i =

√√√√ 1

239

240∑

l=1

(εil − µ̂i)2.

Such a measure combines information about the bias and

variance components of the estimation error and has a nice

statistical interpretation: under Gaussian assumptions the true

weight lies within three standard deviations of its mean with

a high probability, namely

P (µi − 3σi ≤ εi ≤ µi + 3σi) = 0.997 (14)

where εi = m̂i(N) − mi denotes the estimation error.

Consequently it holds that

P (|εi| > ∆i) ∼= P (|εi| > |µi|+ 3σi) < 0.003 (15)

Based on (13), one can also define a relative performance

index

δi =
∆i

mi
100[%] (16)

Note that, according to (15), the probability that the relative

error |εi|/mi exceeds δi is smaller than 0.003.

Fig. 5 shows the results of comparison of three approaches

to model order selection (AIC, BIC, CV) obtained for 3 test

loads (m1 = 25 g, m5 = 350 g, m7 = 750 g), 3 conveyor

belt speeds (v1 = 0.54m/s, v2 = 0.94m/s, v3 = 1.34m/s)
and 2 sampling rates (f1 = 800Hz, f2 = 1600Hz). The

following order-adaptive version of (4) was used to asses the

item’s weight

m̂(N) = ĥT
n̂(N)(N)ψn̂(N)(N) (17)

where n̂(N) denotes the order selected according to AIC, BIC

or CV1.

In 15 out of 18 cases model order selection based on the

information criteria (AIC, BIC) yielded better results than

selection based on the cross-validatory analysis, which can

be explained by the fact that in the second case only half of

the available test data was used for the purpose of parameter

estimation. This effect is more pronounced when the sampling

rate (i.e., data size) is small - for the higher sampling rate the

differences between the compared approaches are small. In 9

cases the AIC criterion yielded better results (often marginally

better) than the BIC criterion, while the opposite was true in

2 cases only. In the remaining 7 cases both criteria yielded

the same results (after rounding). Based on this evidence, in

all further tests model orders were selected using the AIC

criterion.

As expected, the estimation accuracy increases with growing

sampling frequency. Note, however, that there is no clear

relationship between the estimation accuracy and the conveyor

belt speed – the lower speed (which results in a larger number

of measurements) does not necessarily guarantee the higher

weighing precision – cf. Figs. 5a-5f. Similarly, although the

absolute errors can be expected to increase with the mass of the

weighed object, this is not always the case. One of the possible

explanations of these anomalies is that some combinations of

the mass and speed cause excitation of the internal resonant

modes of the weighing system, which results in larger (locally)

measurement errors.

Denote by N1 = t2−t1+1 the length of the initial transient

weighing phase (during which the item gradually slides onto

the weighing platform) and by N2 = t3−t2 – the length of the

full-load phase (during which the entire item remains on the

platform). Information about N1, N2 and the total number of

measurements available under different operating conditions is

presented in Tab I.

Typical values of the model order selected by the compared

methods under different operating conditions are shown in

Tab. II. Unlike initially expected, the typical values of n̂(N)
exceed N2 and are pretty close to N , which means that the

1Note that in the latter case the method of cross validation was used twice:
first as a tool for model order selection, and then as a method for objective
evaluation of the results of modeling.
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Fig. 5. The values of the performance measure ∆i = |µ̂i|+3σ̂i obtained using the method of 4-fold cross validation, for the global FIR model of the dynamic
weighing system. Model order is selected using the Akaike information criterion (AIC), the Bayesian information criterion (BIC) or the crossvalidatory analysis
(CV)

TABLE I
THE LENGTH OF THE INITIAL TRANSIENT WEIGHING PHASE N1 ,

FULL-LOAD PHASE N2 AND THE TOTAL NUMBER OF MEASUREMENTS

N = N1 +N2 AVAILABLE UNDER DIFFERENT WEIGHING CONDITIONS.

f1 = 800 Hz f1 = 1600 Hz

v N1 N2 N N1 N2 N
v1 = 0.54 [m/s] 194 326 520 388 652 1040

v2 = 0.94 [m/s] 113 187 300 226 374 600

v3 = 1.34 [m/s] 79 131 210 158 262 420

TABLE II
MODEL ORDER SELECTED BY AIC, BIC. AND CV UNDER DIFFERENT

WEIGHING CONDITIONS.

f1 = 800 Hz f1 = 1600 Hz

v AIC BIC CV AIC BIC CV

v1 = 0.54 [m/s] 502 452 282 1013 1011 500

v2 = 0.94 [m/s] 282 265 282 582 582 582

v3 = 1.34 [m/s] 190 189 192 402 402 402

data collected in the initial transient phase of weighing pay an

important role in weight estimation.

IV. MODEL DEBIASING

Fig. 6a shows the results of the 4-fold cross validation of

the global model obtained, for v2 = 0.94m/s, f1 = 800Hz
and all 7 test loads (in the way described earlier, with AIC-

based order selection). Fig 6b provides information about the

mean value µi and standard deviation σi of estimation errors

observed for different values of mi. It can be seen that the

estimator m̂(N) is biased in the range of small values of the

mass. Since for mi < 350 g the bias constitutes a significant

contribution to the overall performance index ∆i, a simple

debiasing technique was designed and experimentally verified.

The bias can be evaluated for each test load using the formula

ĉi(N) =
1

J

J∑

j=1

ĥT
n̂(N)(N)ϕij

n̂(N)(N)−mi. (18)

The debiasing procedure depends on the operating mode

of the checkweigher. In the restricted load mode, the desired

(nominal) weight of the item, say mi, is known prior to

weighing. The checkweigher is used only to eliminate items

that are too heavy or too light – their actual weight, as long

as it differs much from mi is usually less important. The

restricted mode is usually applied in situations where the price

of the merchandise is fixed and the amount can be precisely

dozed (e.g. packages containing loose materials). In such a

case the debiased load estimate can be obtained using the

following simple formula

m̃i(N) = m̂(N)− ĉi(N). (19)

When the weight of the goods/packages cannot be precisely

controlled (as it takes place for fruits, vegetables, portions

of meat etc.) and the price depends on the weight, the

checkweigher is operated in the unrestricted load mode. In

this case we know only that the true weight remains within a

certain range of values, e.g. m ∈ [m1,mI ], and its accurate
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Fig. 6. Results of the 4-fold cross validation of the global model (a) and its
debiased version (c). The remaining two plots show the estimation bias µi

and standard deviation σi (vertical bars) observed for the global model (b)
and for debiased global model (d).

measurement is needed for correct product pricing and/or

labeling. When weighing is performed in the unrestricted load

mode, the necessary bias correction can be worked out using a

piecewise linear interpolation: ĉ(N) = ĉ1(N) if m̂(N) < m1,

ĉ(N) = ĉI(N) if m̂(N) ≥ mI and

ĉ(N) = ĉi(N) +
m̂(N)−mi

mi+1 −mi
[ĉi+1(N)− ĉi(N)] (20)

if mi ≤ m̂(N) < mi+1. Alternatively, the correction can be

based on nonlinear approximation

ĉ(N) = g[m̂(N),α0] (21)

where

α0 = argmin
α

I∑

i=1

{g[mi,α]− ĉi(N)}
2

(22)

and g[m,α] is a nonlinear function of the load m with a

certain number of adjustable parameters α = [a1, . . . , ak]
T.

For example, one can set

g[m,α] = a1 + a2m+ . . .+ akm
k−1.

The bias-corrected estimate takes the form

m̃(N) = m̂(N)− ĉ(N). (23)

Figures 6c-6d show the results obtained for the debiased

estimator (19). Again, the 4-fold cross validation was applied,

which means that the effects of debiasing were verified on

a different set of measurements than that used for model

identification. Note accuracy improvements in the range of

small mass values.

V. WEIGHT ESTIMATION BASED ON LOCAL MODELING

The global model was designed to provide good fit for the

entire range of loads – in the case considered from 25 g to

750 g. In practice it often happens that the checkweigher is

used to verify the weight of only one type of products with a

specified nominal (desired) mass, say mi. Denote by Di(N) =
{Yij(N), j = 1, . . . , J} the set of measurements collected for

the load mi. An obvious question is whether the local model,

i.e., the one based exclusively on the set Di(N), can provide

more accurate load estimates around mi than the global model

based on the set D(N) = {Di(N), i = 1, . . . , I}, described

in the previous section.

Parameters of the local model can be estimated using the

formula

ĥi
n(N) = argmin

hn

N∑

t=N−M+1

J∑

j=1

[mi − h
T
nϕ

ij
n (t)]

2

=




N∑

t=N−M+1

J∑

j=1

ϕij
n (t)[ϕ

ij
n (t)]T



−1

×




N∑

t=N−M+1

J∑

j=1

ϕij
n (t)mi


 (24)

and the order n can be selected by means of minimizing the

AIC statistic

n̂i(N) = argmin
n

AICi(n) (25)

where

AICi(n) = Ki logRSSi(n) + 2n, (26)

Ki = JM and RSSi(n) denotes the residual sum of squares

RSSi(n) =

N∑

t=t−M+1

J∑

j=1

[
mi − [ĥi

n(N)]Tϕij
n (t)

]2
. (27)

The final weight estimates based on the local model tuned in

to the load mi has the form

m̂i(N) = [ĥi
n̂i(N)(N)]Tψn̂i(N)(t). (28)

Table III presents results – absolute performance measures

∆i = |µ̂i| + 3σ̂i and relative performance measures δi =
∆i/ni, evaluated via 4-fold cross validation – observed when

the local model tuned in to the load mi, i = 1, . . . , 7 is

used to estimate the load mk, k = 1, . . . , 7. As expected,

the best performance is achieved when mk = mi and it

gradually deteriorates as the difference |mk − mi| becomes

larger. Importantly, when mk = mi, local models outperform

the debiased global model, i.e., they yield noticeably more

accurate load estimates.

The results obtained for the local model tuned in to the

load m4 = 200 g are shown in Fig. 7. Similarly as in the

case of the global model, the performance of the local model

is limited mainly by bias errors which occur when mk 6= mi.

To remove bias, one can use the technique described in the

previous section. Note that the results yielded by the debiased

local model [Fig. 7c] are better than the analogous results

yielded by the debiased global model [Fig. 6c].
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TABLE III
ABSOLUTE PERFORMANCE MEASURE (∆i = |µ̂i|+ 3σ̂i – UPPER TABLE)

AND RELATIVE PERFORMANCE MEASURE (δi = ∆i/mi – LOWER TABLE),
EVALUATED VIA 4-FOLD CROSS VALIDATION, OBSERVED WHEN THE

LOCAL MODEL TUNED IN TO THE LOAD mi, i = 1, . . . , 7 (HORIZONTAL

AXIS) IS USED TO ESTIMATE THE LOAD mk , k = 1, . . . , 7 (VERTICAL

AXIS).

k 25g 50g 100g 200g 350g 500g 750g

1 0.13g 0.67g 1.71g 3.62g 6.75g 9.80g 13.0g

2 0.40g 0.18g 0.59g 1.52g 2.95g 4.41g 7.20g

3 0.51g 0.41g 0.11g 0.58g 1.27g 2.14g 3.79g

4 0.57g 0.50g 0.32g 0.14g 0.48g 1.04g 2.29g

5 0.59g 0.55g 0.43g 0.30g 0.20g 0.59g 1.34g

6 0.60g 0.60g 0.51g 0.44g 0.42g 0.36g 0.93g

7 0.68g 0.63g 0.57g 0.56g 0.63g 0.65g 0.59g

(a)

k 25g 50g 100g 200g 350g 500g 750g

1 0.52% 1.34% 1.71% 1.81% 1.93% 1.96% 1.73%

2 1.60% 0.35% 0.59% 0.76% 0.84% 0.88% 0.96%

3 2.04% 0.82% 0.11% 0.29% 0.36% 0.43% 0.51%

4 2.27% 1.00% 0.32% 0.07% 0.14% 0.21% 0.30%

5 2.37% 1.10% 0.43% 0.15% 0.06% 0.12% 0.18%

6 2.40% 1.20% 0.51% 0.22% 0.12% 0.07% 0.12%

7 2.71% 1.26% 0.57% 0.28% 0.18% 0.13% 0.08%

(b)
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Fig. 7. Results of the 4-fold cross validation of the local model tuned in to
the load m4 = 200 g (a) and its debiased version (c). The remaining two
plots show the estimation bias µi and standard deviation σi (vertical bars)
observed for the local model (b) and for debiased local model (d).

TABLE IV
ABSOLUTE PERFORMANCE MEASURE (∆i = |µ̂i|+ 3σ̂i – UPPER TABLE)

AND RELATIVE PERFORMANCE MEASURE (δi = ∆i/mi – LOWER TABLE),
EVALUATED VIA 4-FOLD CROSS VALIDATION, OBSERVED WHEN THE

DEBIASED LOCAL MODEL TUNED IN TO THE LOAD mi, i = 1, . . . , 7
(HORIZONTAL AXIS) IS USED TO ESTIMATE THE LOAD mk, k = 1, . . . , 7

(VERTICAL AXIS).

k 25g 50g 100g 200g 350g 500g 750g

1 0.13g 0.16g 0.14g 0.21g 0.33g 0.56g 0.96g

2 0.14g 0.17g 0.12g 0.18g 0.24g 0.48g 0.86g

3 0.13g 0.18g 0.11g 0.15g 0.24g 0.40g 0.66g

4 0.14g 0.17g 0.11g 0.14g 0.20g 0.32g 0.61g

5 0.15g 0.16g 0.12g 0.14g 0.20g 0.36g 0.53g

6 0.15g 0.18g 0.14g 0.16g 0.20g 0.35g 0.47g

7 0.23g 0.23g 0.22g 0.21g 0.28g 0.36g 0.57g

(a)

k 25g 50g 100g 200g 350g 500g 750g

1 0.52% 0.33% 0.14% 0.10% 0.09% 0.11% 0.13%

2 0.54% 0.35% 0.12% 0.09% 0.07% 0.10% 0.11%

3 0.54% 0.35% 0.11% 0.08% 0.07% 0.08% 0.09%

4 0.56% 0.33% 0.11% 0.07% 0.06% 0.06% 0.08%

5 0.60% 0.33% 0.12% 0.07% 0.06% 0.07% 0.07%

6 0.61% 0.37% 0.14% 0.08% 0.06% 0.07% 0.06%

7 0.93% 0.46% 0.22% 0.11% 0.08% 0.07% 0.08%

(b)

Table IV shows results obtained for debiased local mod-

els tuned in to different loads. The accuracy improvements

achieved via debiasing are evident. On the average the best

results are obtained for debiased local models tuned in to loads

placed in the middle of the considered measurement range:

mi
∼= (m1 +mI)/2.

Finally, Fig. 8 presents 3-D visualization of the results

shown in tables III (obtained for local models prior to de-

biasing) and IV (obtained for local models after debiasing) –

note the vertical scale differences between Fig. 8(a) and Fig.

8(d), and between Fig. 8(b) and Fig. 8(e), respectively.

The drawback of the debiasing procedure, originally de-

veloped for the global model, is the large number of test

measurements that must be taken for each test load mi, i =
1, . . . , 7. For example, the results shown in Table IV and

Figs. 8b, 8e were obtained for local models created using 7

sets of 180 measurement sequences (the remaining 7 sets of

60 measurement sequences were used for validation purposes)

– for each load mi one set was used to identify the local

model tuned in to mi, and the remaining sets were used to

estimate bias coefficients for other loads mk 6= mi. A natural

question arises whether such a large number of measurements

is really necessary to obtain a reliable approximation of

the debiasing curve. The two rightmost plots in Figure 8

show comparison of the results yielded by the debiased local

models in the case where the bias curve is approximated

using 180 measurement sequences per each test load [Fig. 8c

is just another view of the 3-D bar plot shown in 8b] and

in the case where only 10 (randomly selected) measurement

sequences per each load are used for the same purpose [Fig.
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Fig. 8. Absolute [∆i = |µ̂i| + 3σ̂i – plots (a) and (b)] and relative [δi = ∆i/ni – plots (d) and (e)] performance measures, evaluated via 4-fold cross
validation, obtained for the local models tuned in to the load mk [plots (a) and (d)] and debiased local models tuned in to the load mk [plots (b) and (e)].
The two rightmost plots [(c) and (f)] present the values of the absolute performance measure obtained for the debiased local models when the bias curve is
approximated based on 180 training sequences per load, and 10 training sequences per load [plots (c) and (f), respectively]. Note that the plots (b) and (c)
visualize the same data.

8f]. Since differences between the two plots are negligible, the

simplified debiasing procedure, based on a small number of

additional measurements taken for the loads other than mi,

can be applied without deteriorating the weighing accuracy.

This also means that the cost of recalibration of the dynamic

weighing system (periodic recalibration is recommended by

metrological standards) is relatively low.

All conclusions drawn in this section, based on the results

obtained under one operating condition (v2 = 0.94m/s,
f1 = 800Hz), extend to other operating conditions – the

corresponding evidence is not shown because of the lack of

space. Therefore, the recommended procedure for tuning the

dynamic weighing system can be summarized as follows:

1) Select the conveyor belt speed v and sampling frequency

f .

2) Choose the load mi so that it holds mi
∼= (m1+mI)/2.

3) Collect J ≥ 100 measurement sequences for the load

mi: D
i(N) = {yij(1), . . . , yij(N), j = 1, . . . , J}.

4) Based on the measurements Di(N) identify the best

local FIR model: use the method of least squares to

estimate model coefficients and the Akaike information

criterion to select the most appropriate model order.

5) Collect a small number of additional measurement se-

quences (e.g. 10) for each test load mk that differs from

the load mi.

6) Use additional measurements to estimate the the corre-

sponding bias coefficients.

When the checkweigher is operated in the restricted load

mode, the steps 5 and 6 need to be taken only when the

nominal load changes, i.e., when a new product with nominal

mass mk 6= mi enters the line. In this case additional

measurements should be collected for the new load only.

VI. COMPARISON WITH THE STATE-OF-THE ART

SOLUTIONS

The FIR-model based approach to dynamic weighing pro-

posed in this paper will be compared with two state-of-the-

art model-free approaches: the subspace identification method

proposed in [17], and the time-variant filtering approach de-

scribed in [15] (which provides similar accuracy as the model-

based approach presented in [10]). Figure 9 shows results

yielded by the subspace identification method (A), the time-

variant filtering approach (B) and four variants of FIR filtering

based on: the global model (C), the debiased global model

(D), the debiased local model tuned in to the load m5 = 350
g (E), and debiased local models tuned in to each test load

mi, i = 1, . . . , 7 (F). As before, the conveyor belt speed was

equal to v2 = 0.94m/s and the sampling frequency was equal

to f1 = 800Hz.
Note that the best results were obtained using the local

modeling approach – the debiased local model tuned in to

the load m5 yielded the best results in two cases (m2,m7)
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Fig. 9. The values of the absolute performance measure ∆i = |µ̂i| + 3σ̂i,
evaluated via 4-fold cross validation, obtained using the method of: subspace
identification (A), time-variant filtering (B), FIR filtering based on the global
model (C), FIR filtering based on the debiased global model (D), FIR filtering
based on the debiased local model tuned in to the load m5 = 350 g (E),
and FIR filtering based on debiased local models tuned in to each test load
mi, i = 1, . . . , 7 (F).

and the selectively tuned local models – in the remaining

four cases (m1, m3, m4, m5). In the case of the load m5

both approaches coincide. Since in all cases the performance

observed for the two variants of local modeling is very similar,

the computationally simpler approach (one model for all loads)

is recommended.

Compared with the time-variant filtering approach the local

modeling approach offers significant accuracy improvements

– the ratio ∆B
i /∆

D
i ranges from 1.54 for i=7 (750 g) to 4.34

for i = 1 (25 g). The debiased global modeling approach is

approximately 50% less effective than its local counterpart.

VII. CLOSING REMARKS

In the most general formulation the problem of dynamic

mass measurement can be stated as a task of finding the

mapping from the set of available data, collected during the

entire weighing cycle [t1, t4], to the mass of the weighed

object. This mapping can be identified or, more adequately,

approximated, in a direct or indirect way. Our paper belongs

to the first category and, as such, it is not based on any

phenomenological model of the dynamic weighing system at

hand.

Given a large number of data sets, one could train a neural

network to capture the relationship between the measurements

and the object’s mass. We do something similar but simpler,

avoiding the large training set problem - we build a high-

order linear approximation of the mapping mentioned above,

followed by a simple nonlinear correction step.

There are two likely reasons that make the proposed ap-

proach work better than the state-of-the-art methods. First,

unlike the indirect, identification-based approaches described

in [15] and [17], the new method is capable of using addi-

tional data from the initial phase of weighing [t1, t2], during

which the weighed object gradually slides onto the weighing

conveyor. Although the direct, time-variant filtering approach

presented in [15] does the same thing (it incorporates mea-

surements from the interval [t1, t3]), it is less flexible as the

applied filter is equipped with a much smaller number of

tunable parameters. Second, unlike the existing approaches,

the proposed method accounts for some nonlinear features of

the dynamic weighing system.

Although the proposed approach was developed for a partic-

ular type of a dynamic weighing system – the conveyor belt

checkweigher – all design steps, including selection of the

number of degrees of freedom (order of the FIR filter), are

data-adaptive, and hence they can be easily extended to other

devices and setups, such as systems for dynamic weighing of

vehicles and trains described in [2] – [5]. Of course, some

additional experimental work would be needed to check and

validate operation of the FIR-model based scheme under such

new circumstances.

VIII. CONCLUSION

The problem of dynamic weighing using conveyor belt type

checkweigher was considered. The proposed solution – the

filtering scheme based on the FIR model of the response of

the weighing system – guarantees up to four times higher

weighing accuracy than the existing state-of-the-art solutions.
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