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a b s t r a c t

The independence number α(H) of a hypergraph H is the maximum cardinality of a set
of vertices of H that does not contain an edge of H . Generalizing Shearer’s classical lower
bound on the independence number of triangle-free graphs Shearer (1991), and consider-
ably improving recent results of Li and Zang (2006) and Chishti et al. (2014), we show that

α(H) ≥


u∈V (H)

fr(dH(u))

for an r-uniform linear triangle-free hypergraph H with r ≥ 2, where

fr(0) = 1, and

fr(d) =
1 +


(r − 1)d2 − d


fr(d − 1)

1 + (r − 1)d2
for d ≥ 1.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Weconsider finite hypergraphs H , which are ordered pairs (V (H), E(H)) of two sets, where V (H) is the finite set of vertices
of H and E(H) is the set of edges of H , which are subsets of V (H). The order n(H) of H is the cardinality of V (H). The degree
dH(u) of a vertex u of H is the number of edges ofH that contain u. The average degree d(H) of H is the arithmetic mean of the
degrees of its vertices. Two distinct vertices ofH are adjacent or neighbors if some edge ofH contains both. The neighborhood
NH(u) of a vertex u of H is the set of vertices of H that are adjacent to u. For a set X of vertices of H , the hypergraph H − X
arises fromH by removing from V (H) all vertices in X and removing from E(H) all edges that intersect X . If every two distinct
edges of H share at most one vertex, then H is linear. If H is linear and for every two distinct non-adjacent vertices u and v of
H , every edge of H that contains u contains at most one neighbor of v, then H is double linear. If there are not three distinct
vertices u1, u2, and u3 of H and three distinct edges e1, e2, and e3 of H such that {u1, u2, u3} \ {ui} ⊆ ei for i ∈ {1, 2, 3},
then H is triangle-free. A set I of vertices of H is a (weak) independent set of H if no edge of H is contained in I . The (weak)
independence number α(H) of H is the maximum cardinality of an independent set of H . If all edges of H have cardinality r ,
then H is r-uniform. If H is 2-uniform, then H is referred to as a graph.
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The independence number of (hyper)graphs is a well studied computationally hard parameter. Caro [4] and Wei [14]
proved a classical lower bound on the independence number of graphs, which was extended to hypergraphs by Caro and
Tuza [5]. Specifically, for an r-uniform hypergraph H , Caro and Tuza [5] proved

α(H) ≥


u∈V (H)

fCT (r)(dH(u)),

where fCT (r)(d) =


d+ 1

r−1
d

−1
. Thiele [13] generalized Caro and Tuza’s bound to general hypergraphs; see [3] for a very simple

probabilistic proof of Thiele’s bound. Originally motivated by Ramsey theory, Ajtai et al. [2] showed that α(G) =

Ω


ln d(G)

d(G)
n(G)


for every triangle-free graph G. Confirming a conjecture from [2] concerning the implicit constant,

Shearer [11] improved this bound to α(H) ≥ fS1(d(G))n(G), where fS1(d) =
d ln d−d+1

(d−1)2
. In [11] the function fS1 arises as a

solution of the differential equation

(d + 1)f (d) = 1 + (d − d2)f ′(d) and f (0) = 1.

In [12] Shearer showed that

α(G) ≥


u∈V (G)

fS2(dG(u))

for every triangle-free graph G, where fS2 solves the difference equation

(d + 1)f (d) = 1 + (d − d2)

f (d) − f (d − 1)


and f (0) = 1.

Since fS1(d) ≤ fS2(d) for every non-negative integer d, and fS1 is convex, Shearer’s bound from [12] is stronger than his bound
from [11].

Li and Zang [10] adapted Shearer’s approach to hypergraphs and obtained the following.

Theorem 1 (Li and Zang [10]). Let r and m be positive integers with r ≥ 2.
If H is an r-uniform double linear hypergraph such that the maximum degree of every subhypergraph of H induced by the

neighborhood of a vertex of H is less than m, then

α(H) ≥


u∈V (H)

fLZ(r,m)(dH(u)),

where

fLZ(r,m)(x) =
m
B

 1

0

(1 − t)
a
m

tb(m − (x − m)t)
dt,

a =
1

(r−1)2
, b =

r−2
r−1 , and B =

 1
0 (1 − t)(

a
m −1)t−bdt.

Note that for r ≥ 2, an r-uniform linear hypergraph H is triangle-free if and only if it is double linear and the maximum
degree of every subhypergraph ofH induced by the neighborhood of a vertex ofH is less than 1. Therefore, since fS1 = fLZ(2,1)
and fS1 is convex, Theorem 1 implies Shearer’s bound from [11]. Nevertheless, since fS1(d) < fS2(d) for every integer d with
d ≥ 2, Shearer’s bound from [12] does not quite follow from Theorem 1.

In [6] Chishti et al. presented another version of Shearer’s bound from [11] for hypergraphs.

Theorem 2 (Chishti et al. [6]). Let r be an integer with r ≥ 2.
If H is an r-uniform linear triangle-free hypergraph, then

α(H) ≥ fCZPI(r)(d(H))n(H),

where

fCZPI(r)(x) =
1

r − 1

 1

0

1 − t
tb(1 − ((r − 1)x − 1)t)

dt

and b =
r−2
r−1 .

Since fS1 = fCZPI(2), for r = 2, the last result coincides with Shearer’s bound from [11].
A drawback of the bounds in Theorems 1 and 2 is that they are very often weaker than Caro and Tuza’s bound [5], which

holds for a more general class of hypergraphs. See Fig. 1 for an illustration.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


1880 P. Borowiecki et al. / Discrete Mathematics 339 (2016) 1878–1883

Fig. 1. The values of fLZ(r,1)(d) (line), fCZPI(r)(d) (dashed line), fCT (r)(d) (empty circles), and fr (d) (solid circles) for 0 ≤ d ≤ 40 and r = 3 (left) and r = 4
(right).

In the present paper we extend Shearer’s approach from [12] and establish a lower bound on the independence number
of a uniform linear triangle-free hypergraph that considerably improves Theorems 1 and 2 and is systematically better than
Caro and Tuza’s bound.

For further related results we refer to Ajtai et al. [1], Duke et al. [7], Dutta et al. [8] and Kostochka et al. [9]. Note that
our main result provides explicit values when applied to a specific hypergraph but that we do not completely understand
its asymptotics. In contrast to that, results as in [1,7,8] are essentially asymptotic statements but are of limited value when
applied to a specific hypergraph.

2. Results

For an integer r with r ≥ 2, let fr : N0 → R0 be such that

fr(0) = 1 and

fr(d) =

1 +


(r − 1)d2 − d


fr(d − 1)

1 + (r − 1)d2

for every positive integer d.

Lemma 3. If r and d are integers with r ≥ 2 and d ≥ 0, then fr(d) − fr(d + 1) ≥ fr(d + 1) − fr(d + 2).

Proof. Substituting within the inequality fr(d) − 2fr(d + 1) + fr(d + 2) ≥ 0 first fr(d + 2) with

1 +


(r − 1)(d + 2)2 − (d + 2)


fr(d + 1)

1 + (r − 1)(d + 2)2

and then fr(d + 1) with

1 +


(r − 1)(d + 1)2 − (d + 1)


fr(d)

1 + (r − 1)(d + 1)2
,

and solving it for fr(d), it is straightforward but tedious to verify that it is equivalent to fr(d) ≥ L(r, d) where

L(r, d) =
(2r − 1)d + 3r
r(d2 + 5d + 5)

.

Therefore, in order to complete the proof, it suffices to show fr(d) ≥ L(r, d). For d = 0, we have fr(0) = 1 > 3
5 = L(r, 0).

Now, let f (d) ≥ L(r, d) for some non-negative integer d. Since (r −1)(d+1)2 − (d+1) ≥ 0, we obtain by a straightforward
yet tedious calculation

f (d + 1) − L(r, d + 1) =
1 +


(r − 1)(d + 1)2 − (d + 1)


f (d)

1 + (r − 1)(d + 1)2
− L(r, d + 1)
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≥
(1 +


(r − 1)(d + 1)2 − (d + 1)


L(r, d)

1 + (r − 1)(d + 1)2
− L(r, d + 1)

=
2(1 + (r − 1)(d + 2)2)

r(d2 + 7d + 11)(d2 + 5d + 5)
,

which is positive for r ≥ 2. Therefore, f (d + 1) ≥ L(r, d + 1), which completes the proof by an inductive argument. �

The following is our main result.

Theorem 4. Let r be an integer with r ≥ 2.
If H is an r-uniform linear triangle-free hypergraph, then

α(H) ≥


u∈V (H)

fr(dH(u)).

Before we proceed to the proof, we compare our bound to the bounds of Caro and Tuza [5], Li and Zang [10], and Chishti
et al. [6]. Fig. 1 illustrates some specific values. An inspection of Li and Zang’s proof in [10] reveals that they actually prove a
lower bound on the so-called strong independence number, which is defined as the maximum cardinality of a set of vertices
that does not contain two adjacent vertices. Therefore, especially for large values of r , Theorem 1 is much weaker than
Theorem 2. In fact, it is quite natural that it is worse by a factor of about r − 1.

As we show now, our bound is systematically better than Caro and Tuza’s bound [5].

Lemma 5. If r and d are integers with r ≥ 3 and d ≥ 2, then fr(d) > fCT (r)(d).

Proof. Note that fr(0) = fCT (r)(0) = 1, fr(1) = fCT (r)(1) =
r−1
r , and fCT (r)(d) =

d
d+ 1

r−1
fCT (r)(d − 1) for d ∈ N, which

immediately implies that fCT (r)(d) < r−1
r for d ≥ 2. Now, if fr(d − 1) ≥ fCT (r)(d − 1) for some d ≥ 2, then

fr(d) − fCT (r)(d) =

1 +


(r − 1)d2 − d


fr(d − 1)

1 + (r − 1)d2
− fCT (r)(d)

≥

1 +


(r − 1)d2 − d


fCT (r)(d − 1)

1 + (r − 1)d2
− fCT (r)(d)

=

1 +


(r − 1)d2 − d


1+(r−1)d
(r−1)d fCT (r)(d)

1 + (r − 1)d2
− fCT (r)(d)

=
1 −

r
r−1 fCT (r)(d)

1 + (r − 1)d2

> 0,

that is, fr(d) > fCT (r)(d), which completes the proof by an inductive argument. �

For r = 2, Lemma 5 would state that Shearer’s bound [12] is better than Caro [4] andWei’s bound [14], which is known.
We proceed to the proof of Theorem 4.

Proof of Theorem 4. We prove the statement by induction on n(H). If H has no edge, then α(H) = n(H), which implies the
desired result for n(H) ≤ r − 1. Now let n(H) ≥ r . If H has a vertex xwith dH(x) = 0, then fr(dH(x)) = 1 and, by induction,

α(H) ≥ 1 + α(H − x) ≥ fr(dH(x)) +


u∈V (H)\{x}

fr(dH−x(u)) =


u∈V (H)

fr(dH(u)).

Hence we may assume that H has no vertex of degree 0.
Since H is r-uniform and linear, for every two edges e1 and e2 with e1 ∩ e2 = {u} for some vertex u of H , the sets e1 \ {u}

and e2 \ {u} are disjoint and of order r − 1. Therefore, for every vertex u of H , there is a set R(u) of r − 1 sets of neighbors of
u such that every neighbor of u belongs to exactly one of the sets in R(u), and |e ∩ R| = 1 for every edge e of H with u ∈ e
and every R ∈ R(u).

If x is a vertex of H and R ∈ R(x) is such that

1 +


u∈V (H)\({x}∪R)

fr(dH−({x}∪R)(u)) ≥


u∈V (H)

fr(dH(u)),
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then the statement follows by induction, because α(H) ≥ 1 + α(H − ({x} ∪ R)). Therefore, in order to complete the proof,
it suffices to show that the following term is non-negative:

P =


x∈V (H)


R∈R(x)


1 +


u∈V (H)\({x}∪R)

fr(dH−({x}∪R)(u)) −


u∈V (H)

fr(dH(u))


.

SinceH is linear and triangle-free, we have dH−({x}∪R)(z) = dH(z)−|NH(z)∩R| for every vertex z in V (H)\({x}∪R). Trivially,
dH−({x}∪R)(z) = dH(z) for z ∉ NH(R), and hence P equals P1 + P2, where

P1 =


x∈V (H)


R∈R(x)


1 − fr(dH(x)) −


y∈R

fr(dH(y))


and

P2 =


x∈V (H)


R∈R(x)


z∈NH (R)\{x}


fr(dH(z) − |NH(z) ∩ R|) − fr(dH(z))


.

Since for every vertex u of H , there are exactly (r − 1)dH(u) many vertices v of H such that u belongs to exactly one of the
sets in R(v), we have

P1 =


x∈V (H)


(r − 1) − (r − 1)(dH(x) + 1)fr(dH(x))


.

Since fr(d − 1) − fr(d) is decreasing by Lemma 3, we have fr(d − n) − fr(d) ≥ n(fr(d − 1) − fr(d)) for all positive integers d
and nwith n < d. Therefore,

P2 ≥


x∈V (H)


R∈R(x)


z∈NH (R)\{x}

|NH(z) ∩ R|

fr(dH(z) − 1) − fr(dH(z))


=


x∈V (H)


R∈R(x)


z∈NH (R)\{x}


y∈R

|NH(z) ∩ {y}|

fr(dH(z) − 1) − fr(dH(z))


=


x∈V (H)


R∈R(x)


y∈R


z∈NH (R)\{x}

|NH(z) ∩ {y}|

fr(dH(z) − 1) − fr(dH(z))


=


x∈V (H)


R∈R(x)


y∈R


z∈NH (y)\{x}


fr(dH(z) − 1) − fr(dH(z))


.

Let T be the set of all 4-tuples (x, R, y, z) with x ∈ V (H), R ∈ R(x), y ∈ R, and z ∈ NH(y) \ {x}. Note that y ∈ NH(z) for
every (x, R, y, z) in T . Since H is linear, for a given vertex z of H and a given neighbor y of z, there are (r − 1)dH(y)− 1 many
vertices x of H with y ∈ R for some R in R(x) and z ∈ NH(y) \ {x}. Furthermore, by the properties of R(x), given x and y, the
set R in R(x) with y ∈ R is unique. Therefore,

P2 ≥


x∈V (H)


R∈R(x)


y∈R


z∈NH (y)\{x}


fr(dH(z) − 1) − fr(dH(z))


=


z∈V (H)


y∈NH (z)


(r − 1)dH(y) − 1


fr(dH(z) − 1) − fr(dH(z))


.

Let E be the edge set of the graph that arises from H by replacing every edge of H by a clique, that is, E is the set of all sets
containing exactly two adjacent vertices of H .

We obtain

P2 ≥


z∈V (H)


y∈NH (z)


(r − 1)dH(y) − 1


fr(dH(z) − 1) − fr(dH(z))


=


{y,z}∈E


h1(y)h2(z) + h1(z)h2(y)


, where

h1(x) = (r − 1)dH(x) − 1 and
h2(x) = fr(dH(x) − 1) − fr(dH(x)).

If dH(y) ≥ dH(z), then h1(y) ≥ h1(z) and, by Lemma 3, h2(z) ≥ h2(y), which implies
h1(y) − h1(z)


h2(z) − h2(y)


≥ 0.

Therefore, h1(y)h2(z) + h1(z)h2(y) ≥ h1(y)h2(y) + h1(z)h2(z).
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Since, for every vertex y of H , there are exactly (r − 1)dH(y) many vertices z of H with {y, z} ∈ E , we obtain

P2 ≥


{y,z}∈E


h1(y)h2(z) + h1(z)h2(y)


≥


{y,z}∈E


h1(y)h2(y) + h1(z)h2(z)


=


x∈V (H)

(r − 1)dH(x)h1(x)h2(x)

=


x∈V (H)

(r − 1)dH(x)

(r − 1)dH(x) − 1


fr(dH(x) − 1) − fr(dH(x))


.

Combining these estimates, we see that

P = P1 + P2

≥


x∈V (H)


(r − 1) − (r − 1)(dH(x) + 1)fr(dH(x))

+ (r − 1)dH(x)

(r − 1)dH(x) − 1


fr(dH(x) − 1) − fr(dH(x))


,

which is 0 by the definition of fr . This completes the proof. �

It seems a challenging task to extend the presented results to non-uniform and/or non-linear triangle-free hypergraphs.
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