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1. Introduction

We consider finite hypergraphs H, which are ordered pairs (V(H), E(H)) of two sets, where V (H) is the finite set of vertices
of H and E(H) is the set of edges of H, which are subsets of V(H). The order n(H) of H is the cardinality of V(H). The degree
dy (u) of avertex u of H is the number of edges of H that contain u. The average degree d(H) of H is the arithmetic mean of the
degrees of its vertices. Two distinct vertices of H are adjacent or neighbors if some edge of H contains both. The neighborhood
Ny (u) of a vertex u of H is the set of vertices of H that are adjacent to u. For a set X of vertices of H, the hypergraph H — X
arises from H by removing from V (H) all vertices in X and removing from E (H) all edges that intersect X. If every two distinct
edges of H share at most one vertex, then H is linear. If H is linear and for every two distinct non-adjacent vertices u and v of
H, every edge of H that contains u contains at most one neighbor of v, then H is double linear. If there are not three distinct
vertices uy, Uy, and u3 of H and three distinct edges ey, e, and e3 of H such that {uq, u,, us} \ {u;} € e;fori € {1,2, 3},
then H is triangle-free. A set I of vertices of H is a (weak) independent set of H if no edge of H is contained in I. The (weak)
independence number a(H) of H is the maximum cardinality of an independent set of H. If all edges of H have cardinality r,
then H is r-uniform. If H is 2-uniform, then H is referred to as a graph.
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The independence number of (hyper)graphs is a well studied computationally hard parameter. Caro [4] and Wei [14]
proved a classical lower bound on the independence number of graphs, which was extended to hypergraphs by Caro and
Tuza [5]. Specifically, for an r-uniform hypergraph H, Caro and Tuza [5] proved

a(H) = Y fore(du),

ueV(H)

1 —1
where fery (d) = (‘H&j ) .Thiele [ 13] generalized Caro and Tuza’s bound to general hypergraphs; see [3] for a very simple

probabilistic proof of Thiele’s bound. Originally motivated by Ramsey theory, Ajtai et al. [2] showed that «(G) =

.Q(l”dféf)n(c)) for every triangle-free graph G. Confirming a conjecture from [2] concerning the implicit constant,

Shearer [11] improved this bound to a(H) > fs,(d(G))n(G), where fs, (d) = d‘&d_j;jﬂ In [11] the function f;, arises as a
solution of the differential equation

d+ Df(d) =1+ (d—d*)f'(d) and f(0)=1.
In [12] Shearer showed that

@(G) = Y fi,(dcw)

uev(G)

for every triangle-free graph G, where fs, solves the difference equation

d+1)f(d) =1+ (d— dz)(f(d) —f(d— 1)) and f(0) = 1.

Since fs, (d) < fs, (d) for every non-negative integer d, and fs, is convex, Shearer’s bound from [12] is stronger than his bound
from [11].
Li and Zang [ 10] adapted Shearer’s approach to hypergraphs and obtained the following.

Theorem 1 (Li and Zang [10]). Let r and m be positive integers with r > 2.
If H is an r-uniform double linear hypergraph such that the maximum degree of every subhypergraph of H induced by the
neighborhood of a vertex of H is less than m, then

a(H) = D fize.m (dn (W),
ueV(H)
where

m ' a-on
fizem®) = EA mdt,

a Lo, b="2andB= [} (1—t)(mD¢bdr.

=

Note that for r > 2, an r-uniform linear hypergraph H is triangle-free if and only if it is double linear and the maximum
degree of every subhypergraph of H induced by the neighborhood of a vertex of H is less than 1. Therefore, since fs, = fiz2,1)
and fs, is convex, Theorem 1 implies Shearer’s bound from [11]. Nevertheless, since fs, (d) < fs, (d) for every integer d with
d > 2, Shearer’s bound from [12] does not quite follow from Theorem 1.

In [6] Chishti et al. presented another version of Shearer’s bound from [11] for hypergraphs.

Theorem 2 (Chishti et al. [6]). Let r be an integer withr > 2.
If H is an r-uniform linear triangle-free hypergraph, then

a(H) > fezpiry (d(H))n(H),
where
1 1 1—t
Jeznn @) = /0 A —Dx—Dp"

—r=2
andb = =.

Since fs; = fezpi2), for r = 2, the last result coincides with Shearer’s bound from [11].
A drawback of the bounds in Theorems 1 and 2 is that they are very often weaker than Caro and Tuza’s bound [5], which
holds for a more general class of hypergraphs. See Fig. 1 for an illustration.
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Fig. 1. The values of fiz( 1)(d) (line), fezpi(r) (d) (dashed line), fer(r (d) (empty circles), and f;(d) (solid circles) for0 < d < 40 andr = 3 (left)andr = 4
(right).

In the present paper we extend Shearer’s approach from [ 12] and establish a lower bound on the independence number
of a uniform linear triangle-free hypergraph that considerably improves Theorems 1 and 2 and is systematically better than
Caro and Tuza’s bound.

For further related results we refer to Ajtai et al. [1], Duke et al. [7], Dutta et al. [8] and Kostochka et al. [9]. Note that
our main result provides explicit values when applied to a specific hypergraph but that we do not completely understand
its asymptotics. In contrast to that, results as in [1,7,8] are essentially asymptotic statements but are of limited value when
applied to a specific hypergraph.

2. Results
For an integer r withr > 2, let f, : Ny — Ry be such that
fr(0) =1 and
1+ ((r — DR — d)fr(d 1)
1+ (1 — 1)d?

for every positive integer d.

fr(d) =

Lemma 3. If r and d are integers withr > 2 andd > 0, then f,(d) — fy(d + 1) > f,(d + 1) — f,(d + 2).
Proof. Substituting within the inequality f. (d) — 2f,(d + 1) + f,(d + 2) > O first f,(d + 2) with

14 ((r —D([d+2)?%— [+ 2))fr(d +1)
1+ (r—1)(d +2)?
and then f; (d + 1) with

14 (0= DE+1? =@+ D)@
1+ —1)(d+ 1)?
and solving it for f; (d), it is straightforward but tedious to verify that it is equivalent to f, (d) > L(r, d) where
2r — 1)d + 3r
r(@ +5d+5)

’

L(r,d) =

Therefore, in order to complete the proof, it suffices to show f,(d) > L(r, d). Ford = 0, we have f;(0) = 1 > % = L(r, 0).

Now, let f(d) > L(r, d) for some non-negative integer d. Since (r — 1)(d + 1)?> — (d + 1) > 0, we obtain by a straightforward
yet tedious calculation

14+ (r =D+ 12— d+ D)f(d)
14+ —1d+ 1)?

f@+1) =L, d+1) = —L(r,d+ 1)
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_ a4+ (r=Dd+ 1> = d+ D)L, d)
- 14— 1)+ 1)?
204G -1Dd+2)?

T or(d47d+11)(d? +5d +5)°

which is positive for r > 2. Therefore, f (d 4+ 1) > L(r, d 4+ 1), which completes the proof by an inductive argument. O

—L(r,d+1)

The following is our main result.

Theorem 4. Let r be an integer withr > 2.
If H is an r-uniform linear triangle-free hypergraph, then

a(H) = > fildu(w)).

ueV(H)

Before we proceed to the proof, we compare our bound to the bounds of Caro and Tuza [5], Li and Zang [10], and Chishti
et al. [6]. Fig. 1 illustrates some specific values. An inspection of Li and Zang's proof in [ 10] reveals that they actually prove a
lower bound on the so-called strong independence number, which is defined as the maximum cardinality of a set of vertices
that does not contain two adjacent vertices. Therefore, especially for large values of r, Theorem 1 is much weaker than
Theorem 2. In fact, it is quite natural that it is worse by a factor of about r — 1.

As we show now, our bound is systematically better than Caro and Tuza’s bound [5].

Lemma 5. If r and d are integers withr > 3 and d > 2, then f,(d) > fcr( (d).
Proof. Note that f,(0) = forr(0) = 1, (1) = fan(1) = % and fer(d) = ﬁfcr(n(d — 1) ford € N, which
r—1

immediately implies that fer) (d) < % ford > 2. Now, if f,(d — 1) > fer(r(d — 1) for some d > 2, then

1+ ((r —1)d® — d)f,(d -1

frd) = fere (d) = rEE——Y = fer (d)
1+ (=D - d)fmr>(d —1
> Ty — feren (d)
1+ (= 1 - d) 05 @
- 14— D& ~Jan@
1= Sfan@
1+ — 1)d?

> 0,
that s, f(d) > fcr¢ (d), which completes the proof by an inductive argument. O

For r = 2, Lemma 5 would state that Shearer’s bound [12] is better than Caro [4] and Wei's bound [ 14], which is known.
We proceed to the proof of Theorem 4.

Proof of Theorem 4. We prove the statement by induction on n(H). If H has no edge, then « (H) = n(H), which implies the
desired result for n(H) < r — 1. Now let n(H) > r.If H has a vertex x with dy (x) = 0, then f; (dy(x)) = 1 and, by induction,

a(H) = T+aH—x) > fdu®)+ Y fldui @)= Y fidu).

ueV(H)\{x} ueV(H)

Hence we may assume that H has no vertex of degree 0.

Since H is r-uniform and linear, for every two edges e; and e, with e; N e, = {u} for some vertex u of H, the sets ey \ {u}
and e, \ {u} are disjoint and of order r — 1. Therefore, for every vertex u of H, there is a set R(u) of r — 1 sets of neighbors of
u such that every neighbor of u belongs to exactly one of the sets in & (u), and |e N R| = 1 for every edge e of H withu € e
and every R € R(u).

If xis a vertex of H and R € R(x) is such that

1+ > flu—qoun@) = Y fildy(w),

ueV(H)\({x}UR) ueV(H)
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then the statement follows by induction, because a(H) > 1 4+ a(H — ({x} U R)). Therefore, in order to complete the proof,
it suffices to show that the following term is non-negative:

P = Z Z (1+ Z fr(di—ur (W) — Z ﬁ(dH(u))).

xeV(H) RER(X) ueV (H)\({x}UR) ueV(H)

Since H is linear and triangle-free, we have dy_ (ur) (2) = du(z) — N (2) NR| for every vertex z in V (H) \ ({x} UR). Trivially,
du—(xur) (2) = dy(2) for z & Ny (R), and hence P equals P; + P,, where

Pr=) > (1—fr(dH<x)>—Zfr(dH<y>)> and
xeV(H) RER(x) yeR
=Y Y Y (A@u@ - INN@ NR) — i (2)).

xeV(H) ReR(x) zeNy (R)\ {x}

Since for every vertex u of H, there are exactly (r — 1)dy (1) many vertices v of H such that u belongs to exactly one of the
sets in R(v), we have

=3 (0= 1= (= D@ + D) ).
xeV(H)

Since f.(d — 1) — f;(d) is decreasing by Lemma 3, we have f,(d — n) — f;(d) > n(f;(d — 1) — f,(d)) for all positive integers d
and n with n < d. Therefore,

Y Y @RI — 1)~ fdi @)

xeV(H) ReR(x) zeNy (R)\ {x}

XYY Y@@ - 1 - @)

xeV(H) ReR(x) zeNy (R)\{x} yeR

IS |NH(zm{y}|(fr<dH<z>—1)—ﬁ(dH<z)>)

xeV(H) ReR(x) yeR zeNy (R)\{x}

> (Fn@ — 1~ fidu@n).

xeV(H) ReR(x) yeR zeNy (y)\{x}

P,

v

Let T be the set of all 4-tuples (x, R, y,z) withx € V(H),R € R(X),y € R,andz € Ny(y) \ {x}. Note thaty € Ny(z) for
every (x, R, y, z) inT. Since H is linear, for a given vertex z of H and a given neighbor y of z, there are (r — 1)dy (y) — 1 many
vertices x of H with y € R for some Rin R(x) and z € Ny (y) \ {x}. Furthermore, by the properties of R(x), given x and y, the
set Rin R(x) with y € R is unique. Therefore,

XY Y (@ -1 -5@e)

x€V(H) ReR(x) yeR zeNy (y)\{x}

> (= Ddu) = 1) (@) — 1 = fitdu ().

zeV(H) yeNy (z)

P,

%

Let & be the edge set of the graph that arises from H by replacing every edge of H by a clique, that is, & is the set of all sets
containing exactly two adjacent vertices of H.

We obtain
Pz ) ) ((r‘”dH(V)—l)(ﬁ(dH&)—1)—fr(dH(z)))
zeV(H) yeNy (z)
- Z (hl(y)hZ(Z)‘f'hﬂZ)hz(V)), where
{y.z}e€

hi(x) = ( —1)dy(x) —1 and
() = fr(dn(x) — 1) = fr(du (x)).

If dy(y) > dy(2), then h{(y) > hy(z) and, by Lemma 3, hy(z) > h,(y), which implies
(me) = m@) (@ - k) = 0.

Therefore, hy(y)h2(z) + h1(2)h2(y) = hi(¥)h2(¥) + h1(2)h2(2).
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Since, for every vertex y of H, there are exactly (r — 1)dy (y) many vertices z of H with {y, z} € &, we obtain

Rz Y (MOh@ +h@ho))

{y,z}e€

= Y (MO +h@he)
y.z)ee

= D ("= Ddy(0h 0)hy(x)
xeV(H)

= 2 = duC0 (" = D0 = 1) (fr i — D = (@A ()))-
xeV(H)

Combining these estimates, we see that
P =P +P,
> (=D = = DX + D i)

xeV(H)
+ = Ddn(((r = D0 = 1) (f () = 1) = (),

which is 0 by the definition of f.. This completes the proof. O

It seems a challenging task to extend the presented results to non-uniform and/or non-linear triangle-free hypergraphs.

v
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