ELSEVIER

Contents lists available at ScienceDirect

## **Discrete Mathematics**

journal homepage: www.elsevier.com/locate/disc



# Independence in uniform linear triangle-free hypergraphs



Piotr Borowiecki<sup>a</sup>, Michael Gentner<sup>b</sup>, Christian Löwenstein<sup>b</sup>, Dieter Rautenbach<sup>b,\*</sup>

- <sup>a</sup> Department of Algorithms and System Modeling, Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology, 80-233 Gdańsk, Poland
- <sup>b</sup> Institute of Optimization and Operations Research, Ulm University, D-89069 Ulm, Germany

#### ARTICLE INFO

Article history: Received 2 October 2014 Accepted 5 January 2016 Available online 1 February 2016

Keywords: Independence Hypergraph Linear Uniform Double linear Triangle-free

#### ABSTRACT

The independence number  $\alpha(H)$  of a hypergraph H is the maximum cardinality of a set of vertices of H that does not contain an edge of H. Generalizing Shearer's classical lower bound on the independence number of triangle-free graphs Shearer (1991), and considerably improving recent results of Li and Zang (2006) and Chishti et al. (2014), we show that

$$\alpha(H) \ge \sum_{u \in V(H)} f_r(d_H(u))$$

for an r-uniform linear triangle-free hypergraph H with  $r \ge 2$ , where

$$f_r(0) = 1$$
, and 
$$f_r(d) = \frac{1 + ((r-1)d^2 - d)f_r(d-1)}{1 + (r-1)d^2} \quad \text{for } d \ge 1.$$

© 2016 Elsevier B.V. All rights reserved.

#### 1. Introduction

We consider finite hypergraphs H, which are ordered pairs (V(H), E(H)) of two sets, where V(H) is the finite set of vertices of H and E(H) is the set of edges of H, which are subsets of V(H). The order n(H) of H is the cardinality of V(H). The degree  $d_H(u)$  of a vertex u of H is the number of edges of H that contain u. The average degree d(H) of H is the arithmetic mean of the degrees of its vertices. Two distinct vertices of H are adjacent or neighbors if some edge of H contains both. The neighborhood  $N_H(u)$  of a vertex u of H is the set of vertices of H that are adjacent to u. For a set X of vertices of H, the hypergraph H - X arises from H by removing from V(H) all vertices in X and removing from E(H) all edges that intersect X. If every two distinct edges of H share at most one vertex, then H is linear. If H is linear and for every two distinct non-adjacent vertices u and v of u of u every edge of u that contains u contains at most one neighbor of u, then u is double linear. If there are not three distinct vertices u and u of u and u of u and three distinct edges u and u of u such that u and u of u is contained in u. The (weak) independence number u is the maximum cardinality of an independent set of u. If all edges of u have cardinality u, then u is u-uniform. If u is 2-uniform, then u is referred to as a graph.

*E-mail addresses*: pborowie@eti.pg.gda.pl (P. Borowiecki), michael.gentner@uni-ulm.de (M. Gentner), christian.loewenstein@uni-ulm.de (C. Löwenstein), dieter.rautenbach@uni-ulm.de (D. Rautenbach).

<sup>\*</sup> Corresponding author.

The independence number of (hyper)graphs is a well studied computationally hard parameter. Caro [4] and Wei [14] proved a classical lower bound on the independence number of graphs, which was extended to hypergraphs by Caro and Tuza [5]. Specifically, for an r-uniform hypergraph H, Caro and Tuza [5] proved

$$\alpha(H) \ge \sum_{u \in V(H)} f_{CT(r)}(d_H(u)),$$

where  $f_{CT(r)}(d) = {d+\frac{1}{r-1} \choose d}^{-1}$ . Thiele [13] generalized Caro and Tuza's bound to general hypergraphs; see [3] for a very simple probabilistic proof of Thiele's bound. Originally motivated by Ramsey theory, Ajtai et al. [2] showed that  $\alpha(G)$  $\Omega\left(\frac{\ln d(G)}{d(G)}n(G)\right)$  for every triangle-free graph G. Confirming a conjecture from [2] concerning the implicit constant, Shearer [11] improved this bound to  $\alpha(H) \geq f_{S_1}(d(G))n(G)$ , where  $f_{S_1}(d) = \frac{d \ln d - d + 1}{(d - 1)^2}$ . In [11] the function  $f_{S_1}$  arises as a solution of the differential equation

$$(d+1)f(d) = 1 + (d-d^2)f'(d)$$
 and  $f(0) = 1$ .

In [12] Shearer showed that

$$\alpha(G) \ge \sum_{u \in V(G)} f_{S_2}(d_G(u))$$

for every triangle-free graph G, where  $f_{S_2}$  solves the difference equation

$$(d+1)f(d) = 1 + (d-d^2)(f(d) - f(d-1))$$
 and  $f(0) = 1$ .

Since  $f_{S_1}(d) \le f_{S_2}(d)$  for every non-negative integer d, and  $f_{S_1}$  is convex, Shearer's bound from [12] is stronger than his bound from [11].

Li and Zang [10] adapted Shearer's approach to hypergraphs and obtained the following.

**Theorem 1** (Li and Zang [10]). Let r and m be positive integers with r > 2.

If H is an r-uniform double linear hypergraph such that the maximum degree of every subhypergraph of H induced by the neighborhood of a vertex of H is less than m, then

$$\alpha(H) \geq \sum_{u \in V(H)} f_{LZ(r,m)}(d_H(u)),$$

where

$$f_{LZ(r,m)}(x) = \frac{m}{B} \int_0^1 \frac{(1-t)^{\frac{a}{m}}}{t^b(m-(x-m)t)} dt,$$

$$a = \frac{1}{(r-1)^2}$$
,  $b = \frac{r-2}{r-1}$ , and  $B = \int_0^1 (1-t)^{\left(\frac{a}{m}-1\right)} t^{-b} dt$ .

Note that for  $r \geq 2$ , an r-uniform linear hypergraph H is triangle-free if and only if it is double linear and the maximum degree of every subhypergraph of H induced by the neighborhood of a vertex of H is less than 1. Therefore, since  $f_{S_1} = f_{LZ(2,1)}$ and  $f_{S_1}$  is convex, Theorem 1 implies Shearer's bound from [11]. Nevertheless, since  $f_{S_1}(d) < f_{S_2}(d)$  for every integer d with  $d \ge 2$ , Shearer's bound from [12] does not quite follow from Theorem 1.

In [6] Chishti et al. presented another version of Shearer's bound from [11] for hypergraphs.

**Theorem 2** (*Chishti et al.* [6]). Let r be an integer with  $r \geq 2$ . If H is an r-uniform linear triangle-free hypergraph, then

$$\alpha(H) \geq f_{CZPI(r)}(d(H))n(H),$$

where

$$f_{CZPI(r)}(x) = \frac{1}{r-1} \int_0^1 \frac{1-t}{t^b (1 - ((r-1)x - 1)t)} dt$$

and  $b = \frac{r-2}{r-1}$ .

Since  $f_{S_1} = f_{CZPI(2)}$ , for r = 2, the last result coincides with Shearer's bound from [11].

A drawback of the bounds in Theorems 1 and 2 is that they are very often weaker than Caro and Tuza's bound [5], which holds for a more general class of hypergraphs. See Fig. 1 for an illustration.





**Fig. 1.** The values of  $f_{LZ(r,1)}(d)$  (line),  $f_{CZPI(r)}(d)$  (dashed line),  $f_{CT(r)}(d)$  (empty circles), and  $f_r(d)$  (solid circles) for  $0 \le d \le 40$  and r = 3 (left) and r = 4 (right).

In the present paper we extend Shearer's approach from [12] and establish a lower bound on the independence number of a uniform linear triangle-free hypergraph that considerably improves Theorems 1 and 2 and is systematically better than Caro and Tuza's bound.

For further related results we refer to Ajtai et al. [1], Duke et al. [7], Dutta et al. [8] and Kostochka et al. [9]. Note that our main result provides explicit values when applied to a specific hypergraph but that we do not completely understand its asymptotics. In contrast to that, results as in [1,7,8] are essentially asymptotic statements but are of limited value when applied to a specific hypergraph.

#### 2. Results

For an integer r with  $r \geq 2$ , let  $f_r : \mathbb{N}_0 \to \mathbb{R}_0$  be such that

$$f_r(0) = 1$$
 and 
$$f_r(d) = \frac{1 + ((r-1)d^2 - d)f_r(d-1)}{1 + (r-1)d^2}$$

for every positive integer d.

**Lemma 3.** If r and d are integers with  $r \geq 2$  and  $d \geq 0$ , then  $f_r(d) - f_r(d+1) \geq f_r(d+1) - f_r(d+2)$ .

**Proof.** Substituting within the inequality  $f_r(d) - 2f_r(d+1) + f_r(d+2) \ge 0$  first  $f_r(d+2)$  with

$$\frac{1 + \left( (r-1)(d+2)^2 - (d+2) \right) f_r(d+1)}{1 + (r-1)(d+2)^2}$$

and then  $f_r(d+1)$  with

$$\frac{1 + \left((r-1)(d+1)^2 - (d+1)\right)f_r(d)}{1 + (r-1)(d+1)^2},$$

and solving it for  $f_r(d)$ , it is straightforward but tedious to verify that it is equivalent to  $f_r(d) \ge L(r, d)$  where

$$L(r,d) = \frac{(2r-1)d+3r}{r(d^2+5d+5)}.$$

Therefore, in order to complete the proof, it suffices to show  $f_r(d) \ge L(r, d)$ . For d = 0, we have  $f_r(0) = 1 > \frac{3}{5} = L(r, 0)$ . Now, let  $f(d) \ge L(r, d)$  for some non-negative integer d. Since  $(r-1)(d+1)^2 - (d+1) \ge 0$ , we obtain by a straightforward yet tedious calculation

$$f(d+1) - L(r, d+1) = \frac{1 + ((r-1)(d+1)^2 - (d+1))f(d)}{1 + (r-1)(d+1)^2} - L(r, d+1)$$



$$\geq \frac{(1+((r-1)(d+1)^2-(d+1))L(r,d)}{1+(r-1)(d+1)^2} - L(r,d+1)$$

$$= \frac{2(1+(r-1)(d+2)^2)}{r(d^2+7d+11)(d^2+5d+5)},$$

which is positive for  $r \ge 2$ . Therefore,  $f(d+1) \ge L(r,d+1)$ , which completes the proof by an inductive argument.  $\Box$ 

The following is our main result.

**Theorem 4.** Let r be an integer with r > 2.

If H is an r-uniform linear triangle-free hypergraph, then

$$\alpha(H) \geq \sum_{u \in V(H)} f_r(d_H(u)).$$

Before we proceed to the proof, we compare our bound to the bounds of Caro and Tuza [5], Li and Zang [10], and Chishti et al. [6]. Fig. 1 illustrates some specific values. An inspection of Li and Zang's proof in [10] reveals that they actually prove a lower bound on the so-called *strong independence number*, which is defined as the maximum cardinality of a set of vertices that does not contain two adjacent vertices. Therefore, especially for large values of r, Theorem 1 is much weaker than Theorem 2. In fact, it is quite natural that it is worse by a factor of about r-1.

As we show now, our bound is systematically better than Caro and Tuza's bound [5].

**Lemma 5.** If r and d are integers with  $r \ge 3$  and  $d \ge 2$ , then  $f_r(d) > f_{CT(r)}(d)$ .

**Proof.** Note that  $f_r(0) = f_{CT(r)}(0) = 1$ ,  $f_r(1) = f_{CT(r)}(1) = \frac{r-1}{r}$ , and  $f_{CT(r)}(d) = \frac{d}{d+\frac{1}{r-1}}f_{CT(r)}(d-1)$  for  $d \in \mathbb{N}$ , which immediately implies that  $f_{CT(r)}(d) < \frac{r-1}{r}$  for  $d \ge 2$ . Now, if  $f_r(d-1) \ge f_{CT(r)}(d-1)$  for some  $d \ge 2$ , then

$$f_{r}(d) - f_{CT(r)}(d) = \frac{1 + \left( (r-1)d^{2} - d \right) f_{r}(d-1)}{1 + (r-1)d^{2}} - f_{CT(r)}(d)$$

$$\geq \frac{1 + \left( (r-1)d^{2} - d \right) f_{CT(r)}(d-1)}{1 + (r-1)d^{2}} - f_{CT(r)}(d)$$

$$= \frac{1 + \left( (r-1)d^{2} - d \right) \frac{1 + (r-1)d}{(r-1)d} f_{CT(r)}(d)}{1 + (r-1)d^{2}} - f_{CT(r)}(d)$$

$$= \frac{1 - \frac{r}{r-1} f_{CT(r)}(d)}{1 + (r-1)d^{2}}$$

$$> 0,$$

that is,  $f_r(d) > f_{CT(r)}(d)$ , which completes the proof by an inductive argument.  $\Box$ 

For r = 2, Lemma 5 would state that Shearer's bound [12] is better than Caro [4] and Wei's bound [14], which is known. We proceed to the proof of Theorem 4.

**Proof of Theorem 4.** We prove the statement by induction on n(H). If H has no edge, then  $\alpha(H) = n(H)$ , which implies the desired result for  $n(H) \le r - 1$ . Now let  $n(H) \ge r$ . If H has a vertex x with  $d_H(x) = 0$ , then  $f_r(d_H(x)) = 1$  and, by induction,

$$\alpha(H) \geq 1 + \alpha(H-x) \geq f_r(d_H(x)) + \sum_{u \in V(H) \setminus \{x\}} f_r(d_{H-x}(u)) = \sum_{u \in V(H)} f_r(d_H(u)).$$

Hence we may assume that *H* has no vertex of degree 0.

Since H is r-uniform and linear, for every two edges  $e_1$  and  $e_2$  with  $e_1 \cap e_2 = \{u\}$  for some vertex u of H, the sets  $e_1 \setminus \{u\}$  and  $e_2 \setminus \{u\}$  are disjoint and of order r-1. Therefore, for every vertex u of H, there is a set  $\mathcal{R}(u)$  of r-1 sets of neighbors of u such that every neighbor of u belongs to exactly one of the sets in  $\mathcal{R}(u)$ , and  $|e \cap R| = 1$  for every edge e of H with  $u \in e$  and every  $R \in \mathcal{R}(u)$ .

If *x* is a vertex of *H* and  $R \in \mathcal{R}(x)$  is such that

$$1 + \sum_{u \in V(H) \setminus (\{x\} \cup R)} f_r(d_{H - (\{x\} \cup R)}(u)) \ge \sum_{u \in V(H)} f_r(d_H(u)),$$



then the statement follows by induction, because  $\alpha(H) \ge 1 + \alpha(H - (\{x\} \cup R))$ . Therefore, in order to complete the proof, it suffices to show that the following term is non-negative:

$$P = \sum_{x \in V(H)} \sum_{R \in \mathcal{R}(x)} \left( 1 + \sum_{u \in V(H) \setminus \{|x| \cup R\}} f_r(d_{H - (\{|x| \cup R\})}(u)) - \sum_{u \in V(H)} f_r(d_H(u)) \right).$$

Since H is linear and triangle-free, we have  $d_{H-(\{x\}\cup R)}(z)=d_H(z)-|N_H(z)\cap R|$  for every vertex z in  $V(H)\setminus (\{x\}\cup R)$ . Trivially,  $d_{H-(\{x\}\cup R)}(z)=d_H(z)$  for  $z\not\in N_H(R)$ , and hence P equals  $P_1+P_2$ , where

$$P_{1} = \sum_{x \in V(H)} \sum_{R \in \mathcal{R}(x)} \left( 1 - f_{r}(d_{H}(x)) - \sum_{y \in R} f_{r}(d_{H}(y)) \right) \text{ and}$$

$$P_{2} = \sum_{x \in V(H)} \sum_{R \in \mathcal{R}(x)} \sum_{z \in N_{r}(R) \setminus \{x\}} \left( f_{r}(d_{H}(z) - |N_{H}(z) \cap R|) - f_{r}(d_{H}(z)) \right).$$

Since for every vertex u of H, there are exactly  $(r-1)d_H(u)$  many vertices v of H such that u belongs to exactly one of the sets in  $\mathcal{R}(v)$ , we have

$$P_1 = \sum_{x \in V(H)} \left( (r-1) - (r-1)(d_H(x) + 1) f_r(d_H(x)) \right).$$

Since  $f_r(d-1) - f_r(d)$  is decreasing by Lemma 3, we have  $f_r(d-n) - f_r(d) \ge n(f_r(d-1) - f_r(d))$  for all positive integers d and n with n < d. Therefore,

$$\begin{split} P_2 & \geq \sum_{x \in V(H)} \sum_{R \in \mathcal{R}(x)} \sum_{z \in N_H(R) \setminus \{x\}} |N_H(z) \cap R| \Big( f_r(d_H(z) - 1) - f_r(d_H(z)) \Big) \\ & = \sum_{x \in V(H)} \sum_{R \in \mathcal{R}(x)} \sum_{z \in N_H(R) \setminus \{x\}} \sum_{y \in R} |N_H(z) \cap \{y\}| \Big( f_r(d_H(z) - 1) - f_r(d_H(z)) \Big) \\ & = \sum_{x \in V(H)} \sum_{R \in \mathcal{R}(x)} \sum_{y \in R} \sum_{z \in N_H(R) \setminus \{x\}} |N_H(z) \cap \{y\}| \Big( f_r(d_H(z) - 1) - f_r(d_H(z)) \Big) \\ & = \sum_{x \in V(H)} \sum_{R \in \mathcal{R}(x)} \sum_{y \in R} \sum_{z \in N_H(y) \setminus \{x\}} \Big( f_r(d_H(z) - 1) - f_r(d_H(z)) \Big). \end{split}$$

Let T be the set of all 4-tuples (x, R, y, z) with  $x \in V(H)$ ,  $R \in \mathcal{R}(x)$ ,  $y \in R$ , and  $z \in N_H(y) \setminus \{x\}$ . Note that  $y \in N_H(z)$  for every (x, R, y, z) in T. Since H is linear, for a given vertex z of H and a given neighbor y of z, there are  $(r-1)d_H(y)-1$  many vertices x of H with  $y \in R$  for some R in  $\mathcal{R}(x)$  and  $z \in N_H(y) \setminus \{x\}$ . Furthermore, by the properties of  $\mathcal{R}(x)$ , given x and y, the set *R* in  $\mathcal{R}(x)$  with  $y \in R$  is unique. Therefore,

$$\begin{split} P_2 & \geq \sum_{x \in V(H)} \sum_{R \in \mathcal{R}(x)} \sum_{y \in R} \sum_{z \in N_H(y) \setminus \{x\}} \left( f_r(d_H(z) - 1) - f_r(d_H(z)) \right) \\ & = \sum_{z \in V(H)} \sum_{y \in N_H(z)} \left( (r - 1) d_H(y) - 1 \right) \left( f_r(d_H(z) - 1) - f_r(d_H(z)) \right). \end{split}$$

Let  $\mathscr E$  be the edge set of the graph that arises from H by replacing every edge of H by a clique, that is,  $\mathscr E$  is the set of all sets containing exactly two adjacent vertices of H.

$$\begin{split} P_2 \; &\geq \; \sum_{z \in V(H)} \sum_{y \in N_H(z)} \Bigl( (r-1) d_H(y) - 1 \Bigr) \Bigl( f_r(d_H(z)-1) - f_r(d_H(z)) \Bigr) \\ &= \; \sum_{\{y,z\} \in \mathcal{E}} \Bigl( h_1(y) h_2(z) + h_1(z) h_2(y) \Bigr), \quad \text{where} \\ h_1(x) &= (r-1) d_H(x) - 1 \quad \text{and} \end{split}$$

$$m_1(x) = (r - 1)u_H(x) - 1$$
 and

$$h_2(x) = f_r(d_H(x) - 1) - f_r(d_H(x)).$$

If  $d_H(y) \ge d_H(z)$ , then  $h_1(y) \ge h_1(z)$  and, by Lemma 3,  $h_2(z) \ge h_2(y)$ , which implies

$$(h_1(y) - h_1(z))(h_2(z) - h_2(y)) \ge 0.$$

Therefore,  $h_1(y)h_2(z) + h_1(z)h_2(y) \ge h_1(y)h_2(y) + h_1(z)h_2(z)$ .



Since, for every vertex y of H, there are exactly  $(r-1)d_H(y)$  many vertices z of H with  $\{y,z\}\in\mathcal{E}$ , we obtain

$$\begin{split} P_2 &\geq \sum_{\{y,z\} \in \mathcal{E}} \left( h_1(y) h_2(z) + h_1(z) h_2(y) \right) \\ &\geq \sum_{\{y,z\} \in \mathcal{E}} \left( h_1(y) h_2(y) + h_1(z) h_2(z) \right) \\ &= \sum_{x \in V(H)} (r-1) d_H(x) h_1(x) h_2(x) \\ &= \sum_{x \in V(H)} (r-1) d_H(x) \Big( (r-1) d_H(x) - 1 \Big) \Big( f_r(d_H(x)-1) - f_r(d_H(x)) \Big). \end{split}$$

Combining these estimates, we see that

$$\begin{split} P &= P_1 + P_2 \\ &\geq \sum_{x \in V(H)} \bigg( (r-1) - (r-1)(d_H(x) + 1) f_r(d_H(x)) \\ &+ (r-1) d_H(x) \bigg( (r-1) d_H(x) - 1 \bigg) \Big( f_r(d_H(x) - 1) - f_r(d_H(x)) \Big) \bigg), \end{split}$$

which is 0 by the definition of  $f_r$ . This completes the proof.  $\Box$ 

It seems a challenging task to extend the presented results to non-uniform and/or non-linear triangle-free hypergraphs.

### Acknowledgment

The first author has been partially supported by National Science Centre under contract DEC-2011/02/A/ST6/00201.

#### References

- [1] M. Aitai, J. Komlos, J. Pintz, J. Spencer, E. Szemeredi, Extremal uncrowded hypergraphs, J. Comb. Theory, Ser. A 32 (1982) 321–335.
- [2] M. Ajtai, J. Komlós, E. Szemerédi, A note on Ramsey numbers, J. Comb. Theory, Ser. A 29 (1980) 354–360.
- [3] P. Borowiecki, F. Göring, J. Harant, D. Rautenbach, The potential of greed for independence, J. Graph Theory 71 (2012) 245–259.
- [4] Y. Caro, New Results on the Independence Number, Technical Report, Tel-Aviv University, 1979.
- [5] Y. Caro, Zs. Tuza, Improved lower bounds on k-independence, J. Graph Theory 15 (1991) 99–107.
- [6] T.A. Chishti, G. Zhou, S. Pirzada, A. Iványi, On vertex independence number of uniform hypergraphs, Acta Univ. Sapientiae, Informatica 6 (2014)
- 132–158. [7] R. Duke, H. Lefmann, V. Rödl, On uncrowded hypergraphs, random struct, Algorithms 6 (1995) 209–212.
- [8] K. Dutta, D. Mubayi, C.R. Subramanian, New lower bounds for the independence number of sparse graphs and hypergraphs, SIAM J. Discrete Math. 26 (2012) 1134-1147.
- [9] A. Kostochka, D. Mubayi, J. Verstraëte, On independent sets in hypergraphs, Random Structures Algorithms 44 (2014) 224-239.
- [10] Y. Li, W. Zang, Differential methods for finding independent sets in hypergraphs, SIAM J. Discrete Math. 20 (2006) 96–104.
- [11] J.B. Shearer, A note on the independence number of triangle-free graphs, Discrete Math. 46 (1983) 83–87.
- [12] J.B. Shearer, A note on the independence number of triangle-free graphs. II, J. Combin. Theory Ser. B 53 (1991) 300–307.
- [13] T. Thiele, A lower bound on the independence number of arbitrary hypergraphs, J. Graph Theory 30 (1999) 213–221.
- [14] V.K. Wei, A Lower Bound on the Stability Number of a Simple Graph, Technical memorandum, TM 81 11217 9, Bell Laboratories, 1981.

