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Abstract 

The paper presents the formulation of the elastic constitutive law for functionally graded 

materials (FGM) on the grounds of nonlinear 6-parameter shell theory with the 6th parameter 

being the drilling degree of freedom. The material law is derived by through-the-thickness 

integration of the Cosserat plane stress equations. The constitutive equations are formulated 

with respect to the neutral physical surface. The influence of the power-law exponent, 

micropolar characteristic length is evaluated in geometrically nonlinear FEM analyses. The 

results obtained with the neutral physical surface approach are compared with those computed 

with the middle surface approach. The influence of choice of the reference surface is observed 

especially in nonlinear stability analysis. 
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1. Introduction 

The functionally graded materials (FGMs) are characterized by continuous change of the 

constituent materials. They were introduced in Japan [1] at the end of XX century. The FGMs 

were proposed as new generation of laminated composites that are free from the material 

mismatches at interface surfaces of the laminate layers. In the case of shell structures the most 

popular is composition of metal and ceramic materials that gives the high stiffness and high 

heat-resistance. The volume fraction of the constituent materials, microstructure and material 

properties vary continuously in the thickness direction of the FGM section. The FGM shells 

may be applied in many branches of industry to optimize e.g. mechanical, thermal performance 

of structures. 

The geometrically nonlinear analysis and postbuckling analysis of FGM shells have been 

performed analytically or numerically in many papers [2]. However, in majority of nonlinear 

studies only simply supported square plates [3,4], rectangular plates [5,6] or circular plates [7] 

have been analyzed. The geometrically nonlinear response of FGM shells with complex 

geometry have been investigated only in a limited number of papers. The results of nonlinear 

analysis for typical benchmark shell problems for the power law FGM section have been 

presented in [8] and for sigmoid FGM section in [9]. Recently, static analysis of FGM conical 

shells with the stress recovery was performed by Viola et al. [10], stability analysis of FGM 

sandwich plates by Fazzolari [11], the postbuckling analysis of square plate on an elastic 

foundation by Taczała et al. [12] and the nonlinear analysis of doubly curved panel resting on 

nonlinear elastic foundation by Tornabene and Reddy [13]. Natural frequencies of doubly-

curved FGM shells were computed in [14–17] using different theoretical formulations. The 

influence of uniform and non-uniform temperature distribution [18], in-plane crack [19] and 

thermoelastic coupling [20] on the free vibrations of FGM plates was also investigated. 

In [3–9] geometrically nonlinear computations with respect to the middle reference 

surface were performed. An alternative formulation based on the neutral physical surface was 

proposed for the first time for FGM section by Morimoto et al. [21]. Abrate [22] showed that 
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the neutral surface approach eliminates coupling between membrane and bending deformations 

in the linear analysis. Consequently, it is possible to describe the response of FGM shell using 

similar equations as of a homogenous shell. The comparison of results obtained under neutral 

and middle surface formulations has been presented for the circular and square plates in [23] 

and within the nonlinear analysis of skew plates in [24]. Prakash et al. [24] observed a 

bifurcation point on equilibrium paths only for the neutral physical surface approach. The 

results of linear analysis of beam and shell FGM structures modelled by 6-parameter shell 

element with drilling DOF have been presented in [25]. 

The present paper is concerned with formulation of FGM material on the grounds of 

nonlinear 6-parameter shell theory with the 6th parameter (drilling) and its FEM implementation. 

We use 0C  4-node EANS finite element [26] with the combined enhanced assumed strain [27] 

and the assumed natural strain [28]. These two approaches have been shown in [26] to be an 

efficient remedy for the locking effect. Recently however, another ways of formulating robust 

shell finite elements were presented in [29–31]. 

Theoretical bases of the employed shell theory are to be found in the works of Reissner 

[32], Libai and Simmonds [33], cf. also [34–38] for some new aspects. As key characteristics of 

the theory we stress that it is statically and kinematically exact i.e.: 

• 2D equilibrium equations of the shell-like body are obtained in the course of direct and 

exact through-the-thickness integration of 3D balance laws of linear and angular momentum 

of the Cauchy continuum,  

• definitions of the 2D shell strain measures follow directly from an integral identity 

generated by the exact equilibrium equations. 

Consequently, the kinematic model of the shell reference surface is formally equivalent to the 

Cosserat surface with three rigidly rotating directors. In derivation of the equations of motion only 

necessary mathematical requirements: continuity and appropriate smoothness of fields are taken 

into account without resorting to other assumptions typical for classical formulations. 
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Within such theoretical formulation the only local approximation appears when the 

constitutive relations are proposed. A brief account of what has been done so far in this field 

may be found in [39]. 

In this paper we formulate the elastic constitutive law for the functionally graded 

materials. As the starting point of the present paper we follow [40,41]. The material laws that 

incorporate a characteristic length of material have been derived by local through-the-thickness 

integration of the Cosserat plane stress (cf. for instance [42]). The constitutive relation is based 

on the following assumptions: 

• membrane strains and in-plane curvatures are not symmetric, 

• strains are small everywhere in the shell space, 

• stress resultants and couple resultants are found from through-the-thickness integration of 

elastic Cosserat plane stress, making the assumption of the Reissner-Mindlin kinematics, 

• the shell is sufficiently thin to assume that for every coordinate in the thickness direction the 

determinant μ  of the shifter tensor αβμ  satisfies the condition 1μ  . 

In comparison with the previous paper [43], here we formulate the constitutive equations of 

FGM on the neutral surface of the shell. In examples we examine the influence of the power-

law exponent, micropolar material length and the choice of neutral or middle surface approach 

on the overall behavior of shells in FEM geometrically nonlinear analysis. 

 

2. Governing equations 

The equations of equilibrium and equations of motion, as well as strong and weak 

formulations for the present shell theory have been extensively studied in e.g. [26,39,44–46] and 

references given there. Therefore in this section only necessary aspects are discussed. 

Let M  denote the shell reference surface in the undeformed configuration (Fig. 1). As 

usual, the boundary M  is a union d fM M M =    where displacement and traction 

boundary conditions are imposed, respectively. It is assumed that M  is smooth enough for 
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existence of the metric and curvature tensors. Typical point Mx  is described by the pair 

0( , )x T , where x  is the position vector and 
0 (3)SOT  is the structure tensor composed of 

 
0 ,β β=t x , 

0 0
0 0 1 2

3 0 0
1 2|| ||


 =



t t
t t

t t
, 1,2β = , 

(.)
(.),β βs


=


 (1)  

The configuration space of the shell is defined as 

  3( , ) ( , ) : (3)U C M g M g E SO= = = → = u u Q  (2) 

Here ( ) (3)SOQ x  is an independent proper orthogonal tensor. The space tangent to (2) at u  is 

  3( , ) : (3)W T U C M g M g E so= = → = u w  (3) 

Due to the isomorphism 
3(3)so E  it is also true that  

  3 3( , ) :T U C M Ε M Ε E E= → = u w  (4) 

As a result of deformation ( , )= u Qu  the current position ( )y x  and the structure tensor 

( ) (3)SOT x  (see Fig. 1) associated with the reference surface become 

 ( ) ( )= +y x x u x ,   
0

0( ) ( ) ( ) ( ) ( ) ( )i i i i= = =e et x Q x t x Q x T x T x  (5) 

In the present paper, we use the 4-node shell EANS element based on the modified Hu-Washizu 

principle, cf. also [44] and enhanced strain interpolation [26]. To minimize the membrane 

locking effect, in [26,44] the enhanced strain approach has been used to the only membrane 

strain components. The shear locking is treated with the help of the assumed natural strain [28]. 

In passing it is stressed that all the (3)SO -valued variables are interpolated using the 

multistep approach, as described in [44,46,47]. Various parametrization of (3)SO  are discussed 

in e.g. [48–50]. Here the canonical parametrization is used. 

 

3. Constitutive relation 

The FGM shell section with top ceramic surface (c) and bottom metal (m) surface is 

assumed, Fig. 2. The continuous change of volume fraction of ceramic 
cV  and metal 

mV  through 

the shell thickness is described by the power law 
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c

1

2

n
z

V
h

 
= + 
 

,   
m c1V V= − ,   0n ,  1 1

2 2
[ , ]z h h − +  (6) 

where n  is the power-law exponent and z is coordinate in the thickness direction (Fig. 2). 

Assumption of 0n =  gives the fully ceramic section and n →  the fully metal section. 

The simple rule of mixture is used to calculate effective material properties P(z) (e.g. 

elastic modulus E, shear modulus G) in the lamina of FGM 

 ( )c c m m c m m

1
( )

2

n
z

P z PV P V P P P
h

 
= + = − + + 

 
 (7) 

where Pc and Pm are the material properties of ceramic and metal constituents, respectively. The 

constant value of the Poisson ratio ν  is assumed, since the effect of its gradient on the results is 

negligible [5]. 

For FGM section we define the physical neutral surface as the surface where stresses and 

strains are zero. Based on this condition we calculate the shift 
0

z  of the physical neutral surface 

(Fig. 2) relative to the geometrical middle surface 

 
( )

( )( )
0

( )

2 2
( )

h

c mh

h
c m

h

zE z dz n E Eh
z

n E nE
E z dz

+

−

+

−

−
= =

+ +




 (8) 

where 1
2h h+=+ , 1

2h h−=− . The integrals in (8) are obtained in [43]. The maximal value of the 

shift 
0max

z  may be determined by substitution  max

2 c

m

E
n

E
=  into (8)  

 
( )

( )
0max 2

2 2

c m

c m

h E E
z

E E

−
=

+
  (9) 

For homogenous isotropic section the shift equals zero. We assume the physical neutral surface 

as the reference surface in the subsequent calculations. 

( )
( )

( )( ) ( )

2 23 23
2 0 0 0

0 2

( )
1

1 1
( ) 2 1 12

1 2 2 2 3 12

h
c m

m m
h

h
m c

b c
h

E E
S E z dz h E h

n

E E h z z zn h
S z z E z dz n E

n n h h n h

+

−

+

−

−
= = +

+

 −  −   
= − = − + + + +      

+ + +       





(10) 
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The integrals of elastic modulus (10) are derived to obtain information about membrane 

stiffness Sm and bending stiffness Sb of FGM section. Similar integration of shear modulus G(z) 

gives 
2(1 )

m
m

S
S

v
=

+
, 

2(1 )

b
b

S
S

v
=

+
. 

The following vectors of generalized strains e  and stresses σ  are defined at each lamina 

of the shell 

 
   

   

T

11 22 12 21 1 2

T

11 22 12 21 1 2

  |

  |

m d

m d

e e e e κ κ

σ σ σ σ m m

= =

= =

e e e

σ σ σ
 (11) 

Making the kinematical assumption of Reissner-Mindlin type we calculate the membrane 

components of the strain vector 
me  from the following equation 

 ( )0m m bz z= + −e ε ε  (12) 

where mε  and bε  are the known strains at the shell reference surface 

 
T T

11 22 12 21 1 2 11 22 12 21 1 2{ | || | } { | || | }m s b dε ε ε ε ε ε κ κ κ κ κ κ= =ε ε ε ε ε  (13) 

In (13) labels m, s, b, and d denote respectively: the membrane, shear, bending and drilling part. 

The first order shear deformation theory and higher-order shear theories give close results for 

analyzed thin FGM shells [51]. Additionally, in the shell space constant values of drilling strain 

components 
d d=e ε  are assumed, although some dependence between drilling couples and 

membrane strain components has been shown in [34]. 

The Cosserat plane stress formulation [41] is applied in each lamina of the shell section. 

The constitutive relation between vectors e  and σ  is described by the following matrix 

 

1 2

2 1

1 2

2 1

2

2

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 2 0

0 0 0 0 0 2

mm mde

dm dd

Ea Ea

Ea Ea

G G

G G

Gl

Gl

 

 

 
 
 
  

= =  
    

 
 
  

C C
C

C C
 (14) 
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where 1

1

1 2
a

ν
=

−
, 

2 1a νa= , l is the micropolar characteristic length, 
1 2

1

1 N
 =

−
, 

2

2 2

1 2

1

N

N


−
=

−
 and N  is the Cosserat coupling number, see e.g. [52]. Some experimental 

methods of micropolar parameters determination were reviewed in [53]. 

In comparison with our previous paper [43], here we formulate the FGM constitutive 

relation using the physical neutral surface approach. We assume that determinant   of the 

shifter tensor αβμ  equals 1. The membrane, bending and drilling stress resultants 

 
11 22 12 21 1 2 11 22 12 21 1 2 T T{ | || | } { | || | }m s b dN N N N Q Q M M M M M M= =s s s s s  (15) 

are derived by integration of stresses through the shell thickness 

 0[ ( ( ) ) ]
h h h

m m mm m b md d mm m m m
h h h

dz z z  dz dz S
+ + +

− − −
= = + − + = =   εs σ C ε ε C ε C ε R  (16) 

 

2

0 0 0 0

2

0

( ) [ [( ) ( ) ] ( ) ]

( )

h h

b m mm m b md d
h h

h

mm b b b
h

z z dz z z z z z z  dz

z z dz S

+ +

− −

+

−

= − = − + − + −

= − =

 

 ε

s σ C ε ε C ε

C ε R

 (17) 

 
2

0 2[ ( ( ) ) ] 2
h h h

d d dm m b dd d dd d m d
h h h

dz z z  dz  dz S l
+ + +

− − −
= = + − + = =   εs σ C ε ε C ε C ε I  (18) 

where: 

 

1 2

2 1

1 2

2 1

0 0

0 0

0 0

0 0

a a

a a

 

 

 
 
 =
 
 
 

R ,  2

1 0

0 1

 
=  
 

I ,  1

1
2(1 )v


 =

+
,  2

2
2(1 )v


 =

+
 (19) 

The shear part of the stress resultants 
ss  is calculated as  

 2

h h

s s s ss s s m s
h h

dz dz S 
+ +

− −
= = = s σ C ε I ε  (20) 

using the constitutive matrix 
0

0
ss

G

G

 
=  
 

C  and the shear correction factor 5 / 6s = . The 

obtained constitutive matrix is presented as 
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11
1 2

22
2 1

12
1 2

21
2 1

1

2

11
1 2

22

12

21

1

2

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0

m m

m m

m m

m m

m S

m S

b b

b

S a S aN

S a S aN

S SN

S SN

SQ

SQ

S a S aM

S aM

M

M

M

M

 

 





 
 
 
 
 
 
 
 
 

= 
 
 
 
 
 
 
 
 
 

11

22

12

21

1

2

11

2 1 22

1 2 12

2 1 21

2

1

2

2

0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 2 0

0 0 0 0 0 0 0 0 0 0 0 2

b

b b

b b

m

m

ε

ε

ε

ε

ε

ε

κ

S a κ

S S κ

S S κ

S l κ

S l κ

 

 

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  

   

 (21) 

Comparing the value of drilling component of the constitutive matrix in (21) with value 

from [54] we obtain following equivalent relations 

 ( ) 21 2t mD v S l − =          
( )

( )
( )

3
2

2
1 2

2 112 1

m
t

SEh
v l

vv
 − =

+−
 (22) 

which provide the identification 

 
3

12

t

m

Eh
l

S


=            

2

12 m
t

S l

Eh h


 
=  

 
 (23) 

The equations (23) show that the parameter 
t  could be interpreted as the material parameter 

connected with the micropolar length. Hence, influence of l  on the results will have similar 

character under given N and n as that of 
t  for isotropic material, see [54]. 

 

4. Results 

In all numerical examples we assume the following values of Young’s modulus: 

91.51 10cE =   for the ceramic constituent, 
90.7 10mE =   for the metal constituent and constant 

value of Poisson’s ratio 0.3 = . For micropolar material we assume 1
2

2N =  and various 

values of the micropolar characteristic length that we determine as the ratio to the shell 

thickness 
0

l

h
. We chose materials characterized by power-law exponent  60;0.5;2.0;10n = . In 
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two last examples we assume 2.0n = , as the closest integer to 
max 2.077n =  that gives maximal 

value of the shift of the neutral physical reference surface. 

 

4.1. Cylinder 

We analyze cylindrical shell with free edges which is subjected to two opposite point 

loads, see Fig. 33. This is quite popular benchmark problem e.g. [8,26,55,56]. On the grounds of 

the present shell theory this example has been analyzed in [43] using 16-node CAM elements 

[54] with full integration and middle surface approach. We use the following data: 10.35L = , 

4.953R = , 
0 0.094h = , 6

ref 10P = , 1
ref4

P P= . Triple symmetry of the structure is used with 

the regular mesh 36×36 of EANS elements. The internal surface of the shell is assumed to be 

metal rich while the external surface is ceramic rich. The material has variable micropolar 

characteristic length as the ratio to the shell thickness  
0

0.01;0.1;1;10
l

h
= . Obtained load-

displacement paths of displacements 
aw  and 

bu−  for 
0

0.01
l

h
=  are plotted in Fig. 44. Thick 

solid line in the background for 2.0n =  denotes the solution computed with the present 

element, but with middle surface approach [43]. The obtained results are in good 

correspondence with the reference solution [8]. It is visible that the curves describe two 

distinctive behaviors: bending dominated attributed to the flexural stiffness of the shell and 

tension dominated due to the increasing membrane stiffness. In the first part large displacements 

are observed, while for 2.5aw   the greater tension stiffness of the shell substantially reduces 

further increments of displacements.  

The influence of variable  
0

0.1;1;10
l

h
=  is portrayed in Fig. 5. We observe that for 

010l h=  the shape of the curves changes and characteristic plateau disappears. For each studied 

n it is also visible that with increase of the characteristic length the displacements’ values 

decrease. The displacement components u and w computed on the a – b path for 0.5 =  are 
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compared in Fig. 6 for different values of the power-law exponent. The curves show that the 

shell undergoes the most pronounced deformations when FGM material parameter 
610n = . In 

particular, the difference in horizontal displacement of point b amounts to 1 . In Table 1 the 

comparison of numerical values is presented for selected load levels and different n and 
0

l

h
. 

Analysis of the results indicates that the response of the shell predicted by the middle surface 

approach is less stiffer in comparison to that obtained using the neutral surface model. 

 

4.2. Hyperboloid shell 

Following [57] we consider the well-known example of hyperboloid shell under action of 

two pairs of opposite point forces. This shell is the popular example especially for laminated 

shells e.g. [56,58–60]. Quoting Arciniega and Reddy [59] „This challenging example 

demonstrates the robustness of the present finite element model and its applicability to arbitrary 

shell geometries and very strong geometric nonlinearity”. Here we assume functionally graded 

material. The geometry (see Fig. 7) and load used in the analysis are: 
0 0.04h = , 

1 7.5R = , 

2 15R = , 20.0H = , 
2

1( ) 1 ( / )R y R y C= + , 20 / 3C = , 5refP = , ( ) refP λ λP= . Due to the 

symmetry only one eight of the structure is analyzed with 60 60  EANS element mesh. The 

obtained results for  60;0.5;2.0;10n =  and the ratio 
00.01l h=  are shown as the equilibrium 

paths in Fig. 8. As in the previous example the thick solid line in the background for 2.0n =  

denotes the solution obtained with middle surface approach. It is noticeable that in the presented 

scale the curves are indistinguishable. As the influence of ratio 
0

l

h
 is relatively small we 

compare values of characteristic displacements for 
00.01l h=  and 

010l h=  in Table 2. The data 

shows that with the growth of volume fraction exponent n , as in the previous example, the shell 

becomes more flexible which is easy to explain due to change in the material structure from 

ceramic rich to metal rich. The influence of the characteristic length has the same character as in 
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the preceding example, i.e. larger values of 
0

l

h
 make the structure stiffer. Moreover, the neutral 

surface model yields smaller values of displacements. Similarly, we present in Fig. 9 

displacements u, w computed at nodes placed on the a – b path for 0y =  and 7500P = .  

 

4.3. Hinged spherical shell with concentrated load 

Following e.g. [61–63] we analyze the hinged spherical shell with concentrated load, see 

Fig. 10, with the following data 2.54R = , 0.7849a = , 
0 0.09945h = , 1000refP = , refP P= . 

Due to symmetry, only quarter of the shell is analyzed with proper boundary conditions at 

symmetry planes. Outer edges are hinged, i.e. only one rotational DOF at each of them is free 

(translations and remaining rotations are fixed). In the cited papers, the shell is treated as 

isotropic, so that none of them provide reference results for FGM material. In present 

calculations, quarter of the shell is divided into 24x24 EANS elements. In comparison with 

previous examples the present shell is relatively thick. Thus, instead of parametric analysis with 

respect to values of the power-law exponent n  and ratio 
0

l

h
 we fix them as 2n = , 

00.01l h=  

and compare the results obtained for neutral and middle surface approaches. We assume three 

values of the shell thickness: 
0 0 0{ ,0.5 ,0.25 }h h h h=  to evaluate the influence of the shell 

thickness. As the reference values we use those computed in Abaqus 6.14 (Dassault Systemes 

Simulia Corp. Providence, USA), with two element types: S4 and S8R, both 24x24 element 

discretization. FGM constitutive relation in Abaqus was implemented through our own Python 

script and the generalized shell section feature. 

The obtained equilibrium paths are shown in Fig. 11. Analysis was conducted with 

displacement control algorithm. This example exhibits a typical snap-through phenomenon. The 

overall shape of equilibrium path is similar to that obtained in isotropic material analyses [61–

63], with two snap-trough points. Discrepancy between neutral and middle surface approach is 

clearly visible in the results obtained from either FEM code. In contrast to the previous 

examples, the neutral surface approach gives less stiff shell deformation for  lower than 
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critical buckling value. It is also noticeable that the higher order shell elements S8R provide the 

results more consistent with EANS approach. Fig. 12 shows the influence of the shell thickness. 

The reduction of the shell thickness causes the drop of load multiplier   value for fixed control 

displacement 
cw . We observe also that the relative difference between the neutral and middle 

surface approaches diminishes with reduction of the thickness (Table 3). 

 

4.4. Box section column under compression 

This example demonstrates the capability of the present shell theory and finite elements 

to deal with geometry with orthogonal intersections. Compression of the column with 

rectangular cross-section and the following geometric dimensions: 1.0a = , 0.5b = , 2.0L = , 

h0=0.05 is analyzed, see Fig. 13. We assume the regular discretization (30 + 15 + 30 + 15)×60 

of EANS elements in nonlinear analysis. The compression forces P are applied in four corners 

of box section with reference value 
52.5 10refP =  , refP P= . Additionally, the constraint 

enforcing the constant value of displacement v at each node on the top edges of the column is 

introduced. Only translational DOFs are constrained at two ends of the FGM box (Fig. 13). The 

uniform compression of the square box sigmoid FGM section was analyzed in paper [9]. 

In this example, similar as for hinged spherical shell, we compare the results obtained 

with the neutral and middle surface approaches. Hence, the constant value of the power-law 

exponent 2.0n =  and values of micropolar parameters N=0.707, l/h0=0.01 are assumed in 

analyses. The box column deformation shapes for the neutral and middle surface approaches are 

presented in Fig. 14 on contour maps of displacement u for the specified load level 1.5 = . The 

shapes of box wall deformation in the xy  symmetry plane for three different levels of load are 

depicted in Fig. 15. The curves of horizontal displacement u and vertical displacement v at the 

point A (Fig. 13) as function of load multiplier   (
64 4 10refF P P = = =  ) are presented in 

Fig. 16. The box section deformation before buckling is significantly smaller for the neutral 

surface approach. In consequence, we observe buckling of the column for smaller value of   in 

middle surface approach.  
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5. Conclusions 

We have analyzed the behavior of FGM shells with drilling rotation under combined 

influence of the FGM constants and micropolar material parameters. Definition of EANS shell 

element with respect to the neutral reference surface has been presented. The equilibrium paths 

obtained for the cylindrical shell are consistent with paths from [8]. The influence of the 

micropolar characteristic length on the nonlinear response of FGM shells is close to that for 

homogenous shells. We observe for 
0/ 10l h   significantly stiffer behavior of the FGM 

structures. The nonlinear curves for FGM section are located between the curves for metal and 

ceramic shell.  

In the middle surface formulation the external force is applied eccentrically with respect 

to the physical neutral surface. Hence, we have observed earlier buckling in case of middle 

surface approach and greater stiffness of FGM shells calculated with neutral surface 

formulation. Only exception is the example of hinged spherical shell that we explain by snap-

through phenomenon. The difference between these two approaches is visible especially in the 

nonlinear range for relatively thick shells and is proportional to the shift of the neutral physical 

surface. The shift depends on shell thickness, the power-law exponent and ratio of the ceramic 

and metal elastic moduli. In the parametric analysis we have observed that relative difference 

between these two approaches is almost proportional to shell thickness. 
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Table 1. Representative values of displacements for the cylindrical shell, in brackets values for 

the middle surface approach are reported 

 
0.5n =  2.0n =  

00.01l h=  
010l h=  

00.01l h=  
010l h=  

312.5 10P =   

aw  
0.43512 

(0.43579) 

0.42857 

(0.42923) 

0.514493 

(0.515740) 

0.506826 

(0.508067) 

bu−  
0.42150 

(0.42219) 

0.41949 

(0.42018) 

0.506660 

(0.507971) 

0.504369 

(0.505671) 

350 10P =   

aw  
1.18416 

(1.18579) 

1.16845 

(1.17007) 

1.31735 

(1.32017) 

1.29986 

(1.30268) 

bu−  
1.35781 

(1.35987) 

1.35456 

(1.35660) 

1.55731 

(1.56100) 

1.55459 

(1.55827) 

3100 10P =   

aw  
1.63584 

(1.63791) 

1.61418 

(1.61626) 

1.75699 

(1.76047) 

1.73327 

(1.73675) 

bu−  
2.08847 

(2.09142) 

2.08884 

(2.09177) 

2.30399 

(2.30909) 

2.30752 

(2.31259) 

 

Table 2. Representative values of displacements for the hyperboloid shell, in brackets values for 

the middle surface approach are reported 

 0.5n =  2n =  

00.01l h=  
010l h=  

00.01l h=  
010l h=  

1500P =  

aw−  
1.87077 

(1.87140) 

1.86733 

(1.86797) 

2.12633 

(2.12746) 

2.12204 

(2.12316) 

bu  
1.69661 

(1.69720) 

1.69452 

(1.69511) 

1.89137 

(1.89239) 

1.88860 

(1.88962) 

3000P =  

aw−  
2.80523 

(2.80610) 

2.79850 

(2.79936) 

3.09669 

(3.09818) 

3.08885 

(3.09033) 

bu  
2.35659 

(2.35734) 

2.35146 

(2.35221) 

2.53389 

(2.53517) 

2.52763 

(2.52890) 

4500P =  

aw−  
3.40122 

(3.40221) 

3.39221 

(3.39319) 

3.70207 

(3.70373) 

3.69147 

(3.69312) 

bu  
2.70603 

(2.70686) 

2.69863 

(2.69945) 

2.86519 

(2.86657) 

2.85661 

(2.85799) 

6000P =  

aw−  
3.83178 

(3.83284) 

3.82048 

(3.82153) 

4.12967 

(4.13144) 

4.11628 

(4.11802) 

bu  
2.93011 

(2.93099) 

2.92105 

(2.92192) 

3.07453 

(3.07597) 

3.06431 

(3.06575) 

 

Table 3. Influence of the shell thickness on difference between the middle and neutral surface 

approaches – limit loads comparison. 

 Middle surface Neutral surface   % change 

0h h=   , 
cw−  71.9561, 0.171 67.6377, 0.157 −6.0 

1
02

h h=   , 
cw−  14.0089, 0.190 13.5944, 0.182 −3.0 

1
04

h h=   , 
cw−  3.08093, 0.204 3.04107, 0.205 −1.3 
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Figure captions 

Fig. 1. Kinematics of the shell in 6-parameter theory 

Fig. 2. FGM shell section, neutral surface position 

Fig. 3. Cylindrical shell, geometry and loads 

Fig. 4. Cylindrical shell, comparison with reference solution [8] 

Fig. 5. Cylindrical shell, neutral surface approach, influence of 
0

l

h
 and n on the equilibrium 

paths 

Fig. 6. Cylindrical shell, values of displacements on the XZ symmetry plane, 0.5 = , the 

neutral surface approach 

Fig. 7. Hyperboloid shell, geometry and loads 

Fig. 8. Hyperboloid shell, influence of the power-law exponent on the equilibrium paths 

Fig. 9. Hyperboloid shell, the neutral surface approach, values of displacements u, w on the 

symmetry plane XZ, 1500 =  

Fig. 10. Hinged spherical shell, geometry and load 

Fig. 11. Hinged spherical shell, comparison of equilibrium paths for EANS element with those 

for: a) Abaqus S4 element, b) Abaqus S8R element, assumed parameters: 2.0n = , 
00.01l h= , 

1
2

2N =  

Fig. 12. Hinged spherical shell, influence of shell thickness on the equilibrium paths 

Fig. 13. Box section column under compression, geometry and loads 

Fig. 14. Contour of box column displacements u for: a) neutral physical surface approach, b) 

middle surface approach ( 1 5. = ) 

Fig. 15. Comparison of shell deformation in vertical cross section through node A between 

neutral and middle surface formulations  

Fig. 16. Equilibrium paths of displacements u, v in node A, computed with neutral and middle 

surface approaches 
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Figure 2 

 

 

  

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


25 

 

 

Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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Figure 7 
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Figure 8 
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Figure 9 
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Figure 10 
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Figure 11 
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Figure 12 

 

 

  

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


35 

 

 

Figure 13 
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Figure 14 
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Figure 15 
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Figure 16 
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