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Abstract—A simple and intuitive solution to scattering prob-
lems in shielded and open structures is presented. The main idea
of the analysis is based on the direct field matching technique
involving the usage of projection of the fields at the boundary
on a fixed set of orthogonal basis functions. Different convex
shapes and various obstacle materials are considered to verify
the validity of the method in open and closed structures. The
results cohere with those obtained by commercial software.

Index Terms—Cylindrical structure, Field matching, Scatter-
ing.

I. INTRODUCTION

Scattering is one of the canonical problems of electromag-

netic waves. Such issues are crucial to propagation analysis

and the design of microwave and optical devices (e.g., shaping

of radiation patterns, filters and circulators). The last century

provided numerous analytical and numerical methods for

addressing these problems.

In open space, for obstacles of cross sections that can

be exactly described by constant coordinates of orthogonal

systems, the direct field matching technique can be applied.

Such an approach has been presented in numerous textbooks

(e.g., for circular and elliptical rods [1]). This technique can

be quite simple and has notably low numerical cost if the

basis functions are correctly chosen. The problem becomes

more difficult when complex obstacle shapes are considered.

However, since the early 1970’s, the integral equation method

[2] has been developed and, today, almost any obstacle shape

can be thereby examined. The introduction of electric and

magnetic currents and application of the reciprocity theorem to

the scattered fields can be found from Green’s identity by using

Green’s function. This method quickly became popular and is

commonly used to this day [3]–[8]. However, in the numerical

analysis, the use of Green’s function is often complicated due

to the singular points in the computational domain [9].

In this paper, we present a simple and intuitive solution to

the scattering problems in shielded and open areas. The main

idea of the analysis is based on decomposition of the obstacles’

fields into Fourier-Bessel series with unknown coefficients.

The fields are then matched at the boundary using a projection

of the fields on a fixed set of orthogonal basis functions. The

different shapes of the obstacles do not complicate the analysis

since the fields can be expressed in terms of tangential and
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Fig. 1. The geometry of an investigated structure. The definition of angle α.

Fig. 2. Open and closed structures: a) plane wave illumination at arbitrary
angle, b) waveguide junction.

transverse components. Such an approach does not require

the use of currents and Green’s function, and therefore its

computation and implementation are much less complex.

In order to generalize the proposed technique, the scatterer

is replaced by impedance matrix Z, defined on a hypothetical

circular cylinder. The impedance matrix represents a relation

between the electric and magnetic fields of the abstract circular

cylinder, independent of the incident field [10]. Such an

approach allows for the analysis of scattering in different

scenarios, e.g., in waveguides and resonators as well as in

the open region. Moreover, such a technique facilitates multi-

object scattering analysis and the interaction between the

obstacles can be modeled using the iterative procedure [11].

All the obtained results have been verified by comparison

with simulations performed using a finite element-based

method [12], [13]. However, the efficiency of the discrete

(even hybrid [14]) methods cannot be compared in the same

way, due to the greatly differing approaches of the methods.

The methods that discretize the computational domain are

more general, though they are significantly more time and

memory consuming, especially when dense meshes must be

employed to model the complex shapes of the structures. By

contrast, the dedicated methods, such as that proposed in

this paper, are not as general but are much more suitable for

utilization in the optimization process.
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II. FORMULATION OF THE PROBLEM

The investigated structure is a cylindrical object of arbitrary

convex cross section as illustrated in Fig. 1, which is assumed

to be invariant along its axis. The problem of electromagnetic

wave scattering is considered and the aim of the analysis is

to determine the relation between the electric and magnetic

fields on the surface of a hypothetical cylinder of radius R,

which surrounds the structure (see Fig. 1). This relation can

be expressed in the form of a mulitimode impedance matrix

Zc, which describes the investigated structure. Obtaining the

impedance matrix allows us to match it to any known external

incident fields, as described in [10] and [11], and enables us to

analyze a very wide class of closed and open structures, e.g.,

scattering from cylindrical objects located in free space and

illuminated obliquely by a plane wave, or located in multiport

waveguide junctions and excited from the waveguide ports, as

presented in Fig. 2. As the angle of incidence of a plane wave

may be arbitrary and the waveguides exciting the junction may

have different heights, the analyzed problem can be classified

as 2.5 D.

Two regions of investigation can be distinguished in the

structure: region I, located inside the object, and region II,

outside. Region II is bounded by the assumed hypothetical

cylinder of radius R. The z components of the electric and

magnetic fields in both regions have the following form

(suppressing ejωt time dependence):

F I
z =

N
∑

n=0

M
∑

m=−M

AF
n,mZ

1
m(kIρnρ)e

jmφfF (kznz) (1)

F II
z =

2
∑

l=1

N
∑

n=0

M
∑

m=−M

BF
l,n,mZ

l
m(kIIρnρ)e

jmφfF (kznz) (2)

where F = {E,H}, kiρn =
√

ω2µiεi − k2zn for i = {I, II},

ω is the angular frequency, Z1
m(·) is a Bessel function of

order m and Z2
m(·) is a Hankel function of the second

kind and order m. The utilization of the Hankel function

of the second kind satisfies Sommerfeld’s radiation condition

(representing the outward-traveling wave). Due to the assumed

field representation in (1) and (2), only convex obstacle shapes

can be analyzed. Functions fE , fH and wave number kzn
depend on boundary conditions defined above and below the

structure. Placing the structure in the rectangular waveguide

junction of height b, these functions take the form:

fE(kznz) = cos(kznz), fH(kznz) = sin(kznz) (3)

where kzn = nπ/b. In the case of plane wave scattering on

the investigated object, which is infinitely long:

fE,H(kzz) = ejkzz (4)

where kz = k0 cos(θ0), k0 is a wavenumber of free space and

θ0 is an angle of plane wave incidence, defined with respect

to the z-axis. In this case the summation over n in (1) and (2)

vanishes. The other components of the electric and magnetic

fields (Eφ, Eρ, Hφ and Hρ) can be derived from Maxwell’s

equations, as in [15].

In order to determine the impedance matrix Zc on the

contours of the outer cylinder of radius R, we utilize the

field matching method. First, the continuity conditions for the

tangential field components on the surface of the investigated

object must be satisfied. As we have assumed the lateral

surface of the cylinder is invariant of z and is of arbitrary cross

section, it can thus be described by functions ρ = ̺(s) and

φ = ϕ(s), where s is the curvilinear coordinate that follows

the surface. Hence, the continuity conditions must be fulfilled

for arbitrary z and any s from 0 to the total length S of the

boundary:

F I
z(̺(s), ϕ(s), z) = F II

z (̺(s), ϕ(s), z) (5)

F I
t (̺(s), ϕ(s), z) = F II

t (̺(s), ϕ(s), z) (6)

where

F
(·)
t (·) = Cρ(s)F

(·)
ρ (·) + Cφ(s)F

(·)
φ (·) (7)

with

Cρ(s) = sinϕ cosα− cosϕ sinα (8)

Cφ(s) = cosϕ cosα+ sinϕ sinα (9)

where α = α(s) is an angle between the x-axis and the normal

outgoing vector ~N to the cylinder surface (see Fig. 1). For

instance, for the cylinder of circular cross section α = φ on

each point of the surface.

For equations (5) and (6) a projection on the orthogonal set

of the functions:

wp(s) =
1√
S
exp

(

j2πp

S
s

)

(10)

for (p = −M . . .M ) can be applied in the meaning of the

inner product:

〈g|wp〉 =
S
∫

0

g(s)wp(s)
∗ ds (11)

Combining the electric field components in one matrix equa-

tion and the magnetic field components in another, we obtain

the following set:

M
E,I
1 A = M

E,II
1 B1 +M

E,II
2 B2 (12)

M
H,I
1 A = M

H,II
1 B1 +M

H,II
2 B2 (13)

where Bl = [BE
l ,B

H
l ]T , A = [AE ,AH ]T , with B

F
l =

[BF
l,0,−M , . . . , B

F
l,N,M ]T and A

F = [AF
l,0,−M , . . . , A

F
l,N,M ]T ,

and matrices M
F,i
l have the form:

M
E,i
l =

[

M
E,i
l,z 0

M
E,i
l,t1 M

E,i
l,t2

]

, M
H,i
l =

[

M
H,i
l,t1 M

H,i
l,t2

0 M
H,i
l,z

]

(14)

where the submatrices M
F,i

l,(·) are block diagonal with respect

to n number and their elements have the following form:

{MF,i
l,z }nm,p =

〈

Z l,i
mn

∣

∣wp

〉

{ME,i
l,t1}nm,p =

〈

Cρζ
e
ρZ

′l,i
mn + Cφζ

e
φZ l,i

mn

∣

∣wp

〉

{ME,i
l,t2}nm,p =

〈

Cρζ
h
ρZ l,i

mn + Cφζ
h
φZ

′l,i
mn

∣

∣wp

〉

{MH,i
l,t1}nm,p =

〈

Cρξ
e
ρZ l,i

mn + Cφξ
e
φZ

′l,i
mn

∣

∣wp

〉

{MH,i
l,t2}nm,p =

〈

Cρξ
h
ρZ

′l,i
mn + Cφξ

h
φZ l,i

mn

∣

∣wp

〉
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where Z l,i
mn = Z l

m(kiρn̺)e
jmϕ, prime denotes derivative of

the function and ζ and ξ are the proper field coefficients. For

the case of plane wave scattering on the investigated object,

these coefficients are as follows:

ζeρ =
jkz
kρ

, ζeφ =
−kzm
k2ρρ

, ζhρ =
ωµm

k2ρρ
, ζhφ =

jωµ

kρ
,

ξeρ =
−ωεm
k2ρρ

, ξeφ =
−jωε
kρ

, ξhρ =
jkz
kρ

, ξhφ =
−kzm
k2ρρ

.

Eliminating the unknown coefficients A of the fields in

region I, we can relate the coefficients in region II as follows:

B2 = TB1 (15)

where

T =
(

M
E,II
2 − ZoM

H,II
2

)

−1 (

ZoM
H,II
1 −M

E,II
1

)

(16)

with

Zo = M
E,I
1

(

M
H,I
1

)

−1

(17)

Only for a cylinder of a circular cross section are the subma-

trices M
F,i

l,(·) diagonal and composed of appropriate Bessel or

Hankel functions, or their derivatives with proper coefficients.

For any other cylinder shape, the matrices can be full and it

is necessary to perform (N + 1) × (2M + 1) × (2M + 1)
integrations to calculate their values. It is also worth noting

that, for an object made of PEC material, the Zo matrix equals

zero.

Utilizing the relation (15) between the coefficients in region

II, it is possible to write the relation between the total electric

and magnetic fields on the contour of the outer cylinder of

radius R. This relation is described by the impedance matrix

Zc and has the following form:

Zc =
(

N
E,II
1 +N

E,II
2 T

)(

N
H,II
1 +N

H,II
2 T

)

−1

(18)

where

N
E,II
l =

[

N
E,II
l,z 0

N
E,II
l,φ1 N

E,II
l,φ2

]

, N
H,II
l =

[

N
H,II
l,φ1 N

H,II
l,φ2

0 N
H,II
l,z

]

(19)

where the submatrices N
F,II
l,(·) are block diagonal with respect

to n number and have the following form:

{NF,II
l,z }n = diag

(

Z l
m(kIIρnR)

)M

m=−M

{NE,II
l,φ1}n = diag

(

xeφZ
l
m(kIIρnR)

)M

m=−M

{NE,II
l,φ2}n = diag

(

xhφZ
′l
m(kIIρnR)

)M

m=−M

{NH,II
l,φ1 }n = diag

(

yeφZ
′l
m(kIIρnR)

)M

m=−M

{NH,II
l,φ2 }n = diag

(

yhφZ
l
m(kIIρnR)

)M

m=−M

where diag()m denotes a diagonal matrix with respect to m.

In open space, the presented approach seems to be equiv-

alent to the classical integral equation method [2] – Green’s

function is represented by a Hankel function, currents cor-

respond to the fixed orthogonal basis and integration is per-

formed over the boundary of the obstacle. However, in the

Fig. 3. Normalized amplitude of scattered electric and magnetic fields from
the dielectric (εr = 5) rectangular cylinder with dimensions 1λ× 0.25λ for
different angles of plane wave incidence. Solid line - this method, dashed line
- HFSS.

presented technique, integration of a Hankel function does not

involve singularities, which is beneficial from a computational

point of view.

III. RESULTS

In order to verify the validity of the presented approach,

a few examples of electromagnetic field scattering in dif-

ferent scenarios have been analyzed. Utilizing the calculated

impedance matrix describing the analyzed object, it is pos-

sible to apply external excitation. Assuming the plane wave

illumination at an arbitrary angle of incidence, as illustrated

in Fig. 2(a), we can calculate the scattered field in the far

zone. We can also place the investigated object in a multiport

waveguide junction, as illustrated in Fig. 2(b), and calculate

the multimode scattering matrix of the junction.

In the first example, a plane wave scattering from a dielec-

tric cylinder of rectangular cross section is considered. The

cylinder has dimensions 1λ× 0.25λ and is made of dielectric

with εr = 5. The vertexes of the rectangle are rounded (with a

radius equal to the tenth part of the shorter edge). Several cases
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Fig. 4. Normalized amplitude of scattered electric and magnetic fields from
the dielectric (εr = 5) elliptical cylinder, for plane wave incidence angle
θ0 = 90◦, φ0 = 45◦ , with the following dimensions: first row 0.75λ×0.75λ,
second row 1λ× 0.5λ and third row 1λ × 0.25λ. Solid line - this method,
dashed line - HFSS.

of plane wave illuminations are considered and the results are

presented in Fig. 3. In the case of perpendicular excitation

(θ0 = 90◦), the TEz and TMz solutions are uncoupled and can

therefore be considered separately. Specifically, for the angle

ψ = 0◦, only the Ez , Hφ and Hρ field components exist,

while, for the angle ψ = 90◦, there are only Hz , Eφ and Eρ

components. When θ0 6= 90◦, both solutions are coupled and

all field components must be taken into consideration. For

the presented structure, it was sufficient to select M = 25
mode expansion functions and the integrals in (14) were

evaluated with the use of the trapezoidal rule, with P = 492
points evenly covering the boundary. The obtained results

are compared with the calculations of the HFSS commercial

simulator, obtaining good agreement.

The convergence of the method is shown in Table I for the

last case of plane wave illumination. The following definition

TABLE I
CONVERGENCE OF THE METHOD FOR THE EXAMPLE FROM FIG. 3. UPPER

VALES - E FIELD, LOWER VALUES (IN BRACKETS) - H FIELD.

M P = 124 P = 246 P = 492 P = 984

5
0.0483 0.0472 0.0469 0.0468

(0.2400) (0.2400) (0.2400) (0.2400)

10
0.0168 0.0170 0.0172 0.0172

(0.0933) (0.0919) (0.0917) (0.0917)

15
14.1300 0.0115 0.0116 0.0116

(14.9000) (0.0727) (0.0726) (0.0725)

20
45.7900 0.0095 0.0096 0.0096

(107.3800) (0.0626) (0.0624) (0.0624)

25
24.7700 0.9300 0.0070 0

(21.5500) (0.7100) (0.0573) (0)

of the error is assumed:

Err(M,P ) =

2π
∫

0

(

F (M,P )(φ)− F (MR,PR)(φ)
)2
dφ

2π
∫

0

(

F (MR,PR)(φ)
)2
dφ

· 100% (20)

where F is the magnitude of the electric or magnetic fields in

the far zone ρ = 100λ, MR = 25 and PR = 984. As can be

observed, the utilization of P = 492 discretization points is

sufficient to obtain accurate results, however, the number of

modes should not be less than M = 25.

In the second example, a plane wave scattering from a

cylinder of elliptical cross section is considered. Only the

perpendicular case is considered (θ0 = 90◦) with the plane

wave illuminating the object from a φ0 = 45◦ angle. Three

ellipse shapes are considered: a circular cross section with axes

dimensions 0.75λ×0.75λ, an elliptical cross section with axes

dimensions 1λ×0.5λ and another elliptical cross section with

axes dimensions 1λ × 0.25λ. For the presented structure, it

was sufficient to select M = 25 mode expansion functions

and the integrals in (14) were evaluated with the use of the

trapezoidal rule with P = 360 points. The obtained results

(shown in Fig. 4) are also compared with the calculations of

the HFSS commercial simulator and again good agreement is

achieved.

In the third example, a ferrite cylinder of triangular cross

section (the vertexes of the triangle are rounded), placed in

the cylindrical metallic enclosure and fed by three rectangular

waveguides, is investigated. The WR-90 waveguides with

dimensions a = 22.86 mm and b = 10.16 mm are used.

The metallic enclosure has the same height as the waveguides

and a radius R = a/
√
2. The waveguides are evenly located

along the φ direction, as presented in Fig. 5. The triangular

ferrite cylinder presents dimensions a = 10 mm (equilateral)

and completely fills the height of the waveguide junction.

The ferrite material, magnetized along z-axis, is used with

internal bias magnetic field intensity Hi = 80 kA/m and

saturated magnetization Ms = −150 kA/m. The calculated

scattering parameters of the junction are presented in Fig. 5.

Due to the symmetry of the structure, only S11, S21 and S31

are shown. For the presented structure it was sufficient to

select M = 10 mode expansion functions and the integrals in
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Fig. 5. Scattering parameters of the three-port waveguide junction (WR-
90 waveguide) with triangular ferrite cylinder of dimensions a = 10 mm
(equilateral triangle) and ferrite material parameters: εr = 8, Hi = 80 kA/m
and Ms = −150 kA/m. Solid line - this method, dashed line - HFSS.

Fig. 6. Scattering parameters of the four-pole filter. Dimensions: w1 = 6

mm, w2 = 3 mm, l1 = 18.31 mm, l2 = 21.31 mm, d1 = 2.27 mm,
d2 = 3.00 mm, d3 = 5.76 mm; height of the posts h = 10.16 mm.

(14) were evaluated with the use of the trapezoidal rule with

P = 279 points. The obtained results are again compared with

the calculations of the HFSS commercial simulator and good

agreement is found.

In the last example, a waveguide filter employing five

metallic posts of rectangular cross section is considered [16].

Again the WR-90 waveguide is used. Its dimensions and the

obtained results are presented in Fig. 6. For the presented

structure it was sufficient to select M = 10 mode expansion

functions and the integrals in (14) were evaluated with the

use of the trapezoidal rule with P = 300 points, which

were evenly distributed along the contour of the object. The

obtained results are compared with the calculations of the

HFSS commercial simulator and measurement results from

[16], again obtaining good agreement.

The calculations were performed in a Matlab environment

on an Intel Xenon X5690 3.47 GHz (2 processors). For the

assumed number of mode expansions and integration points,

the calculation of a single frequency point took approximately

1.2 s for the first example, 0.9 s for the second example and

0.15 s for the third and final examples. Comparing this to the

calculation of the commercial software, ANSYS HFSS, the

calculation time of a single frequency point took 160 s for

an open structure (first example – 94127 tetrahedra) and 5

min for a closed structure (third example – 45310 tetrahedra).

The developed model is dedicated only to the structures

considered in this article, and therefore the difference between

the effectiveness of our method with respect to HFSS is not

surprising. Nevertheless, these results clearly show that such

a model is suitable for utilization in the optimization process.

IV. CONCLUSION

The field matching technique presented in this article is

simple and effective. The direct implementation and low

numerical cost result in fast calculations. Its efficiency has

been verified on a number of open and closed structures and

the results are in good agreement with a finite element-based

method (commercial software).
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