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Abstract Let M be a smooth compact and simply-connected manifold with simply-
connected boundary ∂M , r be a fixed odd natural number. We consider f , a C1 self-map of
M , preserving ∂M . Under the assumption that the dimension of M is at least 4, we define an
invariant Dr ( f ; M, ∂M) that is equal to theminimal number of r -periodic points for all maps
preserving ∂M and C1-homotopic to f . As an application, we give necessary and sufficient
conditions for a reduction of a set of r -periodic points to one point in theC1-homotopy class.

Keywords Periodic points · Boundary-preserving maps · Nielsen number · Fixed point
index · Smooth maps
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1 Introduction

Finding minimal number of r -periodic points in the homotopy class (for a fixed r ) is an
important challenge in modern homotopy periodic point theory, with an increasing number
of valuable results obtained in the last decade in many particular cases [1–7].

On the other hand, the smooth case in which smooth homotopies are considered, turned
out to be essentially different from the continuous one (cf. [8]). First authors who observed a
difference between smooth and continuous category in Nielsen theory were Brown, Greene
and Schirmer for r = 1 i.e. for fixed points and in the relative case [9] (see also [10–13]
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for related results). These authors considered a smooth manifold M with boundary ∂M
and φ, a smooth self-map of ∂M . They asked a question whether it is possible to extend
φ from ∂M to M without introducing any more fixed points. It turned out that the answer
depends whether one considers smooth or continuous extensions: there are smooth maps φ

which admit continuous extensions to M with no fixed points on M\∂M , but such that every
smooth extension has a fixed point inM\∂M . This rather unexpected result showed that there
is a differences between smooth and continuous case in fixed point theory, even if there was
no such difference in classical Nielsen theory i.e. for the non-relative case (cf. [14]).

In this paperwe raisemore general question related tominimization the number of periodic
points instead of the number of fixed points in the smooth category. We consider maps of
pairs f : (M, ∂M) → (M, ∂M) and ask forminimal number of periodic points in the smooth
(i.e.C1) homotopy class (preserving the boundary) of f . Let us point out that we consider all
C1 maps, generalizing the approach presented in [9] were the class of transversal maps was
examined. On the other hand, we confine ourselves to the case in which both M and ∂M are
simply-connected. The reason for that is the following: there are two obstacles tominimize the
number of periodic points for C1 maps. One of them comes from the Reidemeister relations
and the second results from the restrictions on the sequence of local indices of iterations
of a C1 map. It would be difficult (also from the computational point of view) to follow
the restrictions that come from the both conditions simultaneously, and thus we analyze the
situation in which the fundamental group is trivial, so the Reidemeister relations disappear.
Then the only obstacle that we have to control is related to the forms of local indices of
iterations and we can apply the topological methods developed in [15] that were used to
minimize the number of periodic points for C1 self-maps of simply-connected manifold
without boundary. As these technics work only in dimension at least 3 we have to assume
that dim ∂M ≥ 3. We consider only odd r : the case of even r is conceptually analogous, but
the forms of indices of iterations are much more complicated and thus analyzing the even
case would overshadowed our main idea.

The paper is organized in the following way. In Sect. 2 we define the invariant
Dr ( f ; M, ∂M) and prove that it is equal to the minimal number of periodic points in the
C1-homotopy class of f (for homotopies preserving the boundary).

In Sect. 3 we consider ( f, f̄ ) : (M, ∂M) → (M, ∂M), x0 ∈ ∂M a fixed point of f
and find all possible forms of pairs of sequences (ind( f n, x0), ind( f̄ , x0))n (Theorem 3.15),
which is necessary for effective computation of Dr ( f ; M, ∂M). In the last section we show
our invariant in action, finding necessary and sufficient conditions for a reduction of a set
of r -periodic points to one point and illustrating this case in the example of self-maps of a
6-dimensional closed ball.

2 Definition of the invariant Dr( f ; M, ∂M)

Let r be a fixed natural number, M be a smooth compact and simply-connected manifold
with dim M ≥ 4, such that its boundary ∂M is also simply-connected. We consider a C1

map f : M → M , preserving boundary: f (∂M) ⊂ ∂M . Thus, we may consider maps of a
pair (M, ∂M), ( f, f̄ ) : (M, ∂M) → (M, ∂M).

Let us emphasize that the pair ( f, f̄ ) is determined by f , so we will sometimes overuse
the notation identifying f and ( f, f̄ ).
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In this section we define an invariant Dr ( f ; M, ∂M) of a pair and we will show that

Dr ( f ; M, ∂M) = min
(g,ḡ)

s∼( f, f̄ )
#Fix(gr ), (2.1)

where
s∼ means that (g, ḡ) is C1-homotopic to ( f, f̄ ) as a map of a pair (M, ∂M).

Remark 2.1 We will assume for the rest of the paper that Fix( f r ) is a finite set, because we
could always approximate our map by a map with a finite set of r -periodic points (cf. [16]).

Remark 2.2 The minimum given in (2.1) does not change if we consider only such pairs
(g, ḡ) that the only r -periodic points of g (and so ḡ) are fixed points (which results from the
similar considerations as those given in Sect. 4 in [17], see also Lemma 4.8 in [15]). This
statement is true for each r in dimension at least 4 and for odd r also in dimension 3. In other
words, we could seek for the minimum over the maps having only fixed points up to the r th
iteration (but we have to assume that r is odd and dim ∂M ≥ 3).

Definition 2.3 A sequence of integers {c(n)}∞n=1 is called a DDm(1) sequence if there are:
a C1 map ψ : U → R

m , where U ⊂ R
m is open; and p, an isolated fixed point of ψ , such

that c(n) = ind(ψn, p). A finite sequence {c(n)}n|r will be called a DDm(1|r) sequence if
this equality holds for all n with n|r , where r is fixed.

We introduce the following notations:

R
m+1+ = {(x, t) ∈ R

m × R : t ≥ 0},
R
m+1− = {(x, t) ∈ R

m × R : t ≤ 0},
R
m+1
0 = {(x, t) ∈ R

m × R : t = 0}.
We will consider C1 maps of a pair

( f, f̄ ) :
(
R
m+1+ , R

m+1
0

)
→

(
R
m+1+ , R

m+1
0

)
, (2.2)

by a C1 map we understand a map which has continuous partial derivatives of degree 1,
where for a point x0 ∈ R

m+1
0 we consider right derivatives ∂+ fi (x0)

∂t , i = 1, . . . ,m + 1.

Definition 2.4 A pair of sequences of integers
({c(n)}∞n=1, {c̄(n)}∞n=1

)
is called a ∂DDm(1)

pair of sequences if there is an isolated fixed point p ∈ R
m+1
0 , its open neighborhood

Um+1+ ⊂ R
m+1+ , and a pair of C1 maps (φ, φ̄) :

(
Um+1+ ,Um+1

0

)
→

(
R
m+1+ , R

m+1
0

)
(
Um+1
0 = Um+1+ ∩ R

m+1
0

)
such that (c(n), c̄(n)) = (ind(φn, p), ind(φ̄n, p)). A pair of finite

sequences ({c(n)}n|r , {c̄(n)}n|r )will be called a ∂DDm(1|r) pair of sequences if this equality
holds for all n with n|r , where r is fixed.
2.1 Construction of the invariant

Let ( f, f̄ ) : (M, ∂M) → (M, ∂M), we consider maps (g, ḡ) of the pair (M, ∂M) C1-
homotopic to ( f, f̄ ) and (by Remarks 2.1 and 2.2) such that

Fix(gr ) = {x1, . . . , xα, y1, . . . , yβ}
is finite and consists only of fixed points of g, where x j ∈ M\∂M , yi ∈ ∂M .
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The above yields the following decomposition of the sequences of Lefschetz numbers of
iterations of f and f̄ :

L( f̄ n) = L(ḡn) =
β∑

i=1

c̄i (n), (2.3)

where c̄i (n) = ind(ḡn, yi ).

L( f n) = L(gn) =
α∑
j=1

d j (n) +
β∑

i=1

ci (n), (2.4)

where d j (n) = ind(gn, x j ) and ci (n) = ind(gn, yi ).

Definition 2.5 Let r be fixed and L( f n) = ∑α
j=1 d j (n) + ∑β

i=1 ci (n) and L( f̄ n) =∑β
i=1 c̄i (n), for n|r , where each d j is a DDm+1(1|r) sequence and each (ci , c̄i ) is a

∂DDm(1|r) pair of sequences. Each such decomposition of Lefschetz numbers determines
a sum α + β. We define the number Dr ( f ; M, ∂M) as the smallest α + β which can be
obtained in this way.

2.2 Main theorem

In this section we will prove one of the main results of the paper: Theorem 2.10. First, we
will introduce two procedures, which make it possible to create and remove fixed or periodic
points in a homotopy class.

TheCreating Procedure enables one to create an additional fixed point in theC1-homotopy
class of f , by a use of a homotopy ft which is constant near periodic points of f (up to the
given period r ) and such that f r1 near the new fixed point is given by any prescribed formula.

Theorem 2.6 (Smooth Creating Procedure, compare [8] Theorem 4.5) Let dim M ≥ 3,
given a fixed r ∈ N and a C1 map f : M → M, such that Fix( f r ) is finite and let point
x0 /∈ Fix( f r ). Then there is a homotopy { ft }0≤t≤1 satisfying:

(1) f0 = f .
(2) { ft } is constant in a neighborhood of Fix( f r ).
(3) f1(x0) = x0 and {x0} is isolated in Fix( f r1 ).
(4) f1 realizes given DDm(1|r) sequence {cn}n|r on x0, i.e. f1 could be any C1 map in a

neighborhood of x0 such that cn = ind( f n1 , x0) for n|r .
Due to the next lemma it is possible to cancel, in the homotopy class, invariant subsets of

periodic points which have indices of iterations equal to zero.

Lemma 2.7 (Cancelling Lemma, [18] Lemma 5.2) Let f be a continuous self-map of M.
Suppose that S ⊂ Fix( f r ) satisfies:

(1) S is finite and f -invariant i.e. f (S) = S.
(2) Fix( f r ) \ S is compact.
(3) ind( f n,Fix( f n) \ S) = 0 for all n|r .
Then there is a homotopy ft , starting from f0 = f , constant in a neighborhood of S and
such that Fix( f r1 ) = S.

The next lemma enables us to construct homotopies preserving the boundary, which we
will use in the proof of Theorem 2.10.
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Lemma 2.8 Let B0 ⊂ R
m+1
0 be an open ball centered at 0. Let f, g : cl(B0) × [0, ε] →

R
m+1+ be continuous maps preserving R

m+1
0 (i.e. f (x, 0) = (x ′, t ′) implies t ′ = 0 and

g(x ′, 0) = (x ′, t ′) implies t ′ = 0). We fix a number ε > 0. Then there are: a homotopy
H : cl(B0) × [0, ε] × [0, 1], an open set V0 ⊂ B0 containing 0 and a number ε′ > 0
satisfying:

(1) H(x, t, 0) = f (x, t) for x ∈ cl(B0) × [0, ε],
(2) H(x, t, 1) = g(x, t) for x ∈ cl(V0) × [0, ε′],
(3) H(x, t, τ ) = f (x, t) for all τ ∈ [0, 1] and x ∈ ∂(B0 × [0, ε]),
(4) Hτ preserves R

m+1
0 for each τ .

Proof We take as V0 any open set satisfying 0 ∈ V0 ⊂ cl(V0) ⊂ B0 and as ε′ any number
0 < ε′ < ε. For two disjoint closed subsets in R

m+1+ : cl(V0) × [0, ε′] and ∂(B0 × [0, ε])
we take a smooth Urysohn function η : cl(B0) × [0, ε] → [0, 1] (η(x, t) = 1 for (x, t) ∈
cl(V0) × [0, ε′], η(x, t) = 0 for (x, t) ∈ ∂(B0 × [0, ε])). Finally, we define

H(x, t, τ ) = (1 − τη(x, t)) · f (x, t) + τη(x, t) · g(x, t). ��
Corollary 2.9 Let ( f, f̄ ) : (M, ∂M) → (M, ∂M) satisfy f (x0) = x0 ∈ ∂M and let g be a
map defined in a neighborhood of x0 in M. Then for any neighborhood U ⊂ M of x0 there
is a homotopy H : M × [0, 1] → M with the support in U, preserving ∂M and such that
H(x, 0) = f (x) for x ∈ M, H(x, 1) = g(x) in some neighborhood of x0 ∈ M. Notice that
if f, g and η are C1 maps then so is H(·, 1).
Theorem 2.10 Let M be a smooth compact and simply-connected manifold of dimension
m ≥ 4 with simply-connected boundary ∂M and r ∈ N a fixed odd number. Let ( f, f̄ ) :
(M, ∂M) → (M, ∂M) be a C1 map of a pair. Then,

Dr ( f ; M, ∂M) = min
(g,ḡ)

s∼( f, f̄ )
#Fix(gr ).

Proof First of all, let us notice that the minimum is greater or equal to Dr ( f ; M, ∂M) by
the equalities (2.3) and (2.4).

To show the inverse inequality we decompose

L( f̄ n) =
β∑

i=1

c̄i (n), (2.5)

L( f n) =
α∑
j=1

d j (n) +
β∑

i=1

ci (n), (2.6)

where n|r , each (ci , c̄i ) is a ∂DDm(1|r) pair of sequences and each d j is a DDm+1(1|r)
sequence. We will prove that for any sum of (α + β) sequences given in (2.5) and (2.6) we
are able to find a C1 map f1 C1-homotopic to f , by a homotopy preserving the boundary,
with #Fix( f r1 ) = α + β.

The proof will be done in three steps: first we minimize the number of r -periodic points in
the boundary ∂M , next we realize given indices near the boundary fixed points in the whole
M and in the last step we minimize the number of r -periodic points in IntM by a homotopy
which is constant near ∂M .

Consider ( f, f̄ ):(M, ∂M) → (M, ∂M). Abusing the notation we will use below the same
letters for the homotopic maps obtained after consecutive applications of the Creating and
the Cancelling Procedures.
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Step 1. Minimization of the number of r -periodic points in the boundary ∂M .
We deform f to get f (x, t) = ( f̄ (x), t) in a collar ∂M × [0, 1). Then we choose points

y1, . . . , yβ ∈ ∂M and their ball neighborhoods Bi satisfying cl Bi ∩ cl B j = ∅ for i �= j .
Now, we consider maps ḡi such that (gi , ḡi ) : (Bi × [0, ε), Bi × {0}) → (M, ∂M) is a

C1 map realizing ind(ḡni , yi ) = c̄i (n), ind(gni , yi ) = ci (n) for n|r , i = 1, . . . , β.
Applying theCreating Procedure to f̄ : ∂M → ∂M wemaydeform f̄ to get f̄ (x) = ḡi (x)

for x ∈ Bi . We may replace each Bi by a smaller ball neighborhood of yi so that yi is a
unique r -periodic point of f̄ in Bi . Then, for n|r

L( f̄ n) = ind( f̄ n, {y1, . . . , yβ}) + ind( f̄ n, ∂M \ {y1, . . . , yβ})

=
β∑

i=1

ind( f̄ n, yi ) + ind( f̄ n, ∂M \ {y1, . . . , yβ})

=
β∑

i=1

c̄i (n) + ind( f̄ n, ∂M \ {y1, . . . , yβ})

= L( f̄ n) + ind( f̄ n, ∂M \ {y1, . . . , yβ}). (2.7)

Thus, we get that ind( f̄ n, ∂M \{y1, . . . , yβ}) = 0 for n|r , so wemay apply the Cancelling
Procedure (Lemma 2.7) to f̄ to get a homotopy that removes all other r -periodic points in
∂M and such that it is constant in cl(B1 ∪ · · · ∪ Bβ).

Step 2. We realize ci (n) in the homotopy class of the initial map as indices of gni near the
boundary fixed points yi in the whole M .

First, we extend the homotopy used in the Cancelling Procedure (in STEP 1) from ∂M
onto M . Since f (x, t) = ( f̄ (x), t) near the boundary, the above deformation of f̄ extends
to a homotopy Gs of the pair (M, ∂M).

Now, we take f := G1 and use Corollary 2.9 to f and gi (for i = 1, . . . , β). This gives
us a homotopy Hτ with the support cl(B1 ∪ · · · ∪ Bβ) × [0, ε], preserving ∂M and joining
f with a map which is equal to gi in a neighborhood of each yi in M . Let us notice (see the
proof of Lemma 2.8) that Hτ for each (x, t), is either constant or is a convex combination
of f (x, t) and gi (x, t). Since for τ = 0 the maps f̄ and ḡi are equal in each Bi , the
deformation is constant in ∂M . Thus we have obtained in the homotopy class (preserving
the boundary) of the initial map, a map f : (M, ∂M) → (M, ∂M) with exactly β r -periodic
points in ∂M , which is C1 in some neighborhood of each yi . Moreover, each yi realizes
ind( f̄ n, yi ) = ind(ḡni , yi ) = c̄i (n), ind( f n, yi ) = ind(gni , yi ) = ci (n).

Step 3. Minimization of the number of r -periodic points in IntM .
Now, we fix points {x1, . . . , xα} ∈ IntM . We will show that there is a homotopy constant

near ∂M joining f and h and such that Fix(hr ) = {x1, . . . , xα} ∪ {y1, . . . , yβ}.
Since each d j is a DDm+1(1|r) sequence, we may assume (applying the Creating Pro-

cedure) that ind( f n, x j ) = d j (n) for n|r , j = 1, . . . , α. Now, analogously to (2.7) we
will use the Cancelling Procedure for the whole M , the map f and the invariant set
{x1, . . . , xα} ∪ {y1, . . . , yβ}.

L( f n) = ind( f n, {x1, . . . , xα} ∪ {y1, . . . , yβ})+ind( f n, M\({x1, . . . , xα} ∪ {y1, . . . , yβ}))

=
α∑
j=1

ind( f n, x j ) +
β∑

i=1

ind( f n, yi ) + ind( f n, M\({x1, . . . , xα} ∪ {y1, . . . , yβ}))
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=
α∑
j=1

d j (n) +
β∑

i=1

ci (n) + ind( f n, M\({x1, . . . , xα} ∪ {y1, . . . , yβ}))

= L( f n) + ind( f n, M\({x1, . . . , xα} ∪ {y1, . . . , yβ})). (2.8)

As a consequence, we get that ind( f n, M \ {x1, . . . , xα, y1, . . . , yβ}) = 0 for n|r . Now
we apply the Cancelling Procedure. It allows us to remove all other r -periodic points in IntM .
Furthermore, we can do this by a homotopy constant near the boundary. This results from
the fact that the homotopy used in the Cancelling Procedure changes its values only in some
small neighborhoods of some arcs joining r -periodic points (cf. [19] for details).

Finally, we get a C1 map of a pair (h, h̄) : (M, ∂M) → (M, ∂M) homotopic to the given
( f, f̄ ) with Fix(hr ) = {x1, . . . , xα, y1, . . . , yβ} = S, as required. The map h is a C1 map in
some neighborhood W of S and hr has no fixed points outside W . Thus, if h is not C1 as the
global map, we may approximate it by a C1 map preserving the boundary, which is equal to
h on W without adding any new r -periodic points in the compact set M \ W . ��

3 Fixed point indices of iterations for a boundary fixed point

The effective calculation of the invariant Dr ( f ; M, ∂M) is possible only if one knows all
the forms of DDm+1(1|r) sequences and ∂DDm(1|r) pairs of sequences which appear in
Definition 2.5. The complete list of DDm(1) sequences for arbitrary m was given in [20]
(Theorem 3.12 below). Our main aim in this section is to find all possible ∂DDm(1) pairs of
sequences (Problem 3.1). The answer is given in Theorem 3.15.

Problem 3.1 Which pairs of sequences of integers are admissible as indices of iterations of
a map of a pair given in (2.2) at (0, 0) for odd iterations, i.e. what are the possible forms of
{ind( f n, (0, 0))}n and {ind( f̄ n, 0)}n , where n is odd.

3.1 Periodicity of the indices for a boundary fixed point

The classical result of Shub and Sullivan from [21] states that for an isolated fixed point x0 of
a C1 self-map f of R

m the sequence {ind( f n, x0)}n is periodic. In this subsection we extend
this result to a boundary fixed point.

Let us recall

Lemma 3.2 (Proposition 3.1 in [22]) Let f : R
s → R

s be a C1 map with f (0) = 0 and let
us denote D = D0 f , the derivative of f at 0.

(1) If 0 is an isolated fixed point of f then

x − f a(x) =
⎛
⎝

a−1∑
j=0

D j

⎞
⎠ (x − f (x)) + o(||x − f (x)||).

(2) If 0 is an isolated fixed point for some f k , where k ≥ 1 and
∑a−1

j=0 D
jk is nonsingular

for an a ≥ 1, then 0 is an isolated fixed point of f ak and moreover

ind( f ak, 0) = σ · ind( f k, 0), (3.1)

where σ = sign det(
∑a−1

j=0 D
jk).

Wewill show that the formula (3.1) in the above lemma is valid for a boundary fixed point.
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Lemma 3.3 Let f : R
m+1+ → R

m+1+ be a C1 map such that f
(
R
m+1
0

)
⊂ R

m+1
0 and let

k|n be two numbers such that (0, 0) is an isolated fixed point of f k and
∑n/k−1

j=0 D jk is
nonsingular. Then (0, 0) is an isolated fixed point of f n and

ind( f n, (0, 0)) = σ · ind( f k, (0, 0)), (3.2)

where σ = sign det(
∑n/k−1

j=0 D jk).

Proof It is enough to prove the lemma for k = 1. Since f maps
(
R
m+1+ , R

m+1
0

)
into itself,

∂ fm+1
∂t (0, 0) ≥ 0 and we will consider three cases.

• Case ∂ fm+1
∂t < 1.

Then for any fixed n and τ the homotopy Hτ (x, t) = f n(x, t · τ) has no fixed point
different from (0, 0) in a neighborhood of (0, 0). We get:

ind( f n(x, t), (0, 0)) = ind( f n(x, 0), (0, 0)) = σ · ind( f (x, 0), (0, 0))
= σ · ind( f (x, t), (0, 0)),

where the middle equality comes from part (2) of Lemma 3.2 for s = m.
• Case ∂ fm+1

∂t > 1.
Then for any fixed n the homotopy Hτ (x, t) = f n(x, t +τ) removes all n-periodic points

of f near (0, 0) and both sides of the equality (3.2) are equal to zero.
• Case ∂ fm+1

∂t = 1. This case needs more comment.

We recall that ind( f n, (0, 0)) = deg(id − f̃ n) (the topological degree at (0, 0)), where
f̃ (x, t) = f (x,max(t, 0)) is the composition of f with the retraction ρ : R

m+1 → R
m+1+ .

Let us define E(x, t) by the equality:

(x, t) − f̃ n(x, t) =
⎛
⎝

n−1∑
j=0

D j

⎞
⎠ ((x, t) − f̃ (x, t)) + E(x, t). (3.3)

We claim that the homotopy

Hτ (x, t) =
⎛
⎝

n−1∑
j=0

D j

⎞
⎠ ((x, t) − f̃ (x, t)) + τ · E(x, t)

has no zeroes on the boundary of a sufficiently small ball K centered at (0, 0) ∈ R
m+1. This

implies our lemma, because by the homotopy invariance and multiplicativity property of the
degree we get:

ind( f n, (0, 0)) = deg(id − f̃ n) = deg(H1) = deg(H0)

= deg

⎛
⎝

n−1∑
j=0

D j

⎞
⎠ deg(id − f̃ ) = sign

⎛
⎝det

n−1∑
j=0

D j

⎞
⎠ · ind( f, (0, 0)).

Now we prove the claim. If t ≥ 0 then we may follow the argument used in the proof of
part (1) of Lemma 3.2 in dimension s = m + 1, to get E(x, t) = o(||(x, t) − f̃ (x, t)||). On
the other hand,

∥∥∥∥∥∥

⎛
⎝

n−1∑
j=0

D j

⎞
⎠ ((x, t) − f̃ (x, t))

∥∥∥∥∥∥
≥ ε · ‖(x, t) − f̃ (x, t)‖,

123

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Geom Dedicata (2017) 187:241–258 249

where ε > 0 is the least norm of eigenvalues of
∑n−1

j=0 D
j . Now the homotopy Hτ has no

zeroes on the boundary of a ball K (for t ≥ 0) on which ||E(x, t)|| < ε||(x, t) − f̃ (x, t)||.
Now let t < 0. Then (3.3) takes the form

(x, t) − f n(x, 0) =
⎛
⎝

n−1∑
j=0

D j

⎞
⎠ ((x, t) − f (x, 0)) + E(x, t). (3.4)

We will show that the homotopy Hτ has no zeroes different from (0, 0) on K .

Since D =
[
A ·
0 ∂ fm+1

∂t

]
and ∂ fm+1

∂t = 1,
n−1∑
j=0

D j =
[ · ·
0 n

]
.

Notice that the last coordinate of (3.4) has the form

t = n · t + πt (E(x, t)),

where πt : R
m+1 → R is the projection on the last coordinate. This implies πt (E(x, t)) =

t (1 − n). As a consequence, the last coordinate of the homotopy

Hτ (x, t) =
⎛
⎝

n−1∑
j=0

D j

⎞
⎠(

(x, t) − f̃ (x, t)
)

+ τ · E(x, t)

equals t (n + τ(1 − n)). It remains to notice that this expression is negative for t < 0,
0 ≤ τ ≤ 1. In particular, the homotopy has no zeroes for t < 0. ��
Remark 3.4 Let us fix n, k ∈ N so that l = n/k is odd. Then by Lemma (3.2.29) in [19] (for
n := l − 1) we get in Lemma 3.3 σ = sign det(

∑n/k−1
j=0 D jk) = 1. Thus for an odd n and its

arbitrary divisor k we get that the formula (3.2) takes the form:

ind( f n, (0, 0)) = ind( f, (0, 0)).

Remark 3.5 We noticed in the proof of Lemma 3.3 that the derivative of f has the form

D =
[
A ·
0 ∂ fm+1

∂t

]
, (3.5)

where A is m × m matrix equal to D0 f̄ the derivative of f̄ at 0 ∈ R
m+1
0 ≈ R

m .

3.2 Periodic expansion of indices for a boundary fixed point

This subsection is devoted to finding more detailed description of the forms of fixed point
indices for a boundaryfixed point in terms of so-called periodic expansion, i.e. by representing
{ind( f n, (0, 0))}n as a combination of some simple periodic sequences.

Definition 3.6 For a given k ∈ N we define the basic sequence (regk):

regk(n) =
{
k if k | n,

0 if k � n.

Thus, regk is a periodic sequence:

(0, . . . , 0, k, 0, . . . , 0, k, . . .),

where non-zero entries appear for indices which are divisible by k.
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By μ we will denote the classical Möbius function, i.e., μ : N → Z is defined by the
following three properties: μ(1) = 1, μ(k) = (−1)s if k is a product of s different primes,
μ(k) = 0 otherwise.

Theorem 3.7 (cf. [19]) A sequence {ind( f n, (0, 0))}∞n=1 can be represented uniquely in the
following form of a periodic expansion:

ind( f n, (0, 0)) =
∞∑
k=1

akregk(n),

where

an = 1

n

∑
k|n

μ
(n
k

)
ind( f k, (0, 0)). (3.6)

Now we ask which periodic sequences may appear in the periodic expansion of
{ind( f n, (0, 0))}n for a C1 map f and a boundary fixed point (0, 0).

Definition 3.8 Let H be a finite subset of natural numbers, by LCM(H) we mean the least
common multiple of all elements in H with the convention that LCM(∅) = 1.

Definition 3.9 By 
 we will denote the set of degrees of all primitive roots of unity which
are contained in σ(D(0,0) f ), the spectrum of the derivative of f at (0, 0).

Theorem 3.10 Let f :
(
R
m+1+ , R

m+1
0

)
→

(
R
m+1+ , R

m+1
0

)
be a C1 map with (0, 0) ∈

R
m × R+ a fixed point isolated for each iteration. Assume that n is odd natural number.

Then, for some integers ak , there is the equality:

ind( f n, (0, 0)) =
∑
k∈O

akregk(n), (3.7)

where O = {LCM(Q) : Q ⊂ 
}.
Proof We fix an n /∈ O and show that an = 0. Let us denote qk = lcm{s ∈ O : s|k}. We
notice that qk = lcm{s ∈ 
 : s|k}.

As the sum
∑k/qk−1

j=0 D jqk is nonsingular (cf. [21]), we may apply Lemma 3.3 to f qk and
get (by Remark 3.4 σ = +1):

ind( f k, (0, 0)) = ind( f qk , (0, 0)). (3.8)

By the formula (3.6) and the equality (3.8) we obtain:

an · n =
∑
k|n

μ(n/k)ind( f k, (0, 0)) =
∑
k|n

μ(n/k)ind( f qk , (0, 0)).

Thus

an · n =
∑
q

ind( f q , (0, 0))

⎛
⎝ ∑

k|n,qk=q

μ(n/k)

⎞
⎠ . (3.9)

Finally, we use the following fact proved in [19] (Lemma (3.2.34)). Let n, q ∈ N and
n /∈ O then ∑

k|n,qk=q

μ(n/k) = 0, (3.10)

which gives the desire equality. ��
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Remark 3.11 For aC1 map f̄ : R
m → R

m , with 0 as an isolated fixed point for each iteration,
the formula for {ind( f̄ n, 0)}n (n odd) is (except for some restriction on a1) exactly the same
as (3.7) with 
 replaced by 
0 which is equal to the set of primitive roots of unity contained
in σ(D0 f̄ ) (cf. [20,22,23]).

3.3 The form of indices for an interior fixed point

In this section we recall the description of possible forms of indices for a fixed point in an
open subset of R

m given in [20,22]. We only consider the case of odd iterations, and thus the
forms of indices are simpler. We use the following notation: for natural s we denote by L(s)
any set of natural numbers of the form {LCM(Q) : Q ⊂ L , #L = s and 1 /∈ L}.
Theorem 3.12 Let f be a C1 self-map of R

m, where m ≥ 3, having 0 as an isolated fixed
point for each iteration. Then,

• any sequence of local indices of iterations {ind( f n, 0)}∞n=1 for odd n has one of the forms
given below in (I) for m odd and (II) for m even.

• Every sequence of integers which is of one of the forms listed below can be realized as a
sequence of local indices of iterations of a C1 self-map of R

m.

(I) For m odd

(Ao) ind( f n, 0) =
∑

k∈L
(
m−3
2

)
akregk(n).

(Bo), (Co), (Do) ind( f n, 0) =
∑

k∈L
(
m−1
2

)
akregk(n),

where

a1 =
⎧⎨
⎩

1 in the case (Bo),

−1 in the case (Co),

0 in the case (Do).

(II) For m even:

(Be) ind( f n, 0) =
∑

k∈L
(
m−2
2

)
akregk(n).

(Fe) ind( f n, 0) =
∑

k∈L(m
2 )

akregk(n),

where a1 = 1.

3.4 The form of indices for a map of a pair (f, f̄) :
(
R
m+1
+ , R

m+1
0

)

→
(
R
m+1
+ , R

m+1
0

)

In this section we will solve Problem 3.1. First, we formulate a statement which shows a
relation between the index of a boundary map f̄ and its extension f , which we will use in
the proof of Theorem 3.15.
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Lemma 3.13 (Theorem 5.1 in [9]) Let ( f, f̄ ) :
(
R
m+1+ , R

m+1
0

)
→

(
R
m+1+ , R

m+1
0

)
be a C1

map of a pair with (0, 0) ∈ R
m × R+ = R

m+1+ an isolated fixed point of f . Assume that +1
is not an eigenvalue of D0 f̄ i.e. I − D0 f̄ is an isomorphism.

Then

ind( f, (0, 0)) = ind( f̄ , 0) or ind( f, (0, 0)) = 0. (3.11)

We will also make use of the following lemma.

Lemma 3.14 (cf. [24]) Let Y = A ∪ B be a topological space, x0 ∈ A ∩ B, U be an open
neighborhood of x0 in Y . Let F : U → Y , F(U ∩ A) ⊂ A and F(U ∩ B) ⊂ B.

If x0 is an isolated fixed point of F and U, U ∩ A, U ∩ B and U ∩ A∩ B are ENRs, then:

ind(F, x0) + indA∩B(F, x0) = indA(F, x0) + indB(F, x0), (3.12)

where by indG(F, x0) we denote ind(F|G , x0).

Theorem 3.15 Let ( f, f̄ ) :
(
R
m+1+ , R

m+1
0

)
→

(
R
m+1+ , R

m+1
0

)
be a C1 map of a pair with

(0, 0) ∈ R
m × R+ an isolated fixed point for each iteration and m ≥ 3. Then,

(1) any pair of sequences of local indices of iterations {ind( f n, (0, 0))}n and {ind( f̄ n, 0)}n
for odd n has one of the forms given below in (I) for m odd and (II) for m even (with
ak, bk ∈ Z).

(2) Every pair of sequences of integers which is of one of the forms listed below can be
realized as a pair of sequences of local indices of iterations of a C1 map of a pair
( f, f̄ ) : (Rm+1+ , R

m+1
0 ) → (Rm+1+ , R

m+1
0 ).

(I) For m odd

(Ao) ind( f̄ n, 0) =
∑

k∈L
(
m−3
2

)
akregk(n),

ind( f n, (0, 0)) =
∑

k∈L
(
m−3
2

)
bkregk(n).

(Bo), (Co), (Do) ind( f̄ n, 0) =
∑

k∈L
(
m−1
2

)
akregk(n),

ind( f n, (0, 0)) =
∑

k∈L
(
m−1
2

)
bkregk(n),

where b1 could be arbitrary and

a1 =
⎧⎨
⎩

1 in the case (Bo),

−1 in the case (Co),

0 in the case (Do).

(II) For m even:

(Be) ind( f̄ n, 0) =
∑

k∈L
(
m−2
2

)
akregk(n), ind( f n, (0, 0)) =

∑

k∈L
(
m−2
2

)
bkregk(n),

(
Fe

∂0

)
,
(
Fe

∂1

)
ind( f̄ n, 0) =

∑

k∈L(m
2 )

akregk(n), ind( f n, (0, 0)) =
∑

k∈L(m
2 )

bkregk(n),
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where a1 = 1, and

b1 =
⎧⎨
⎩
0 in the case

(
Fe

∂0

)
,

1 in the case
(
Fe

∂1

)
.

Remark 3.16 Notice that according to Theorem 3.15 ak and bk , the coefficients in periodic
expansions of ind( f n, (0, 0))n and {ind( f̄ n, 0)}n , except for a1 and b1, could be any (also
different) integers.

Proof of Theorem 3.15 (1) Theorem3.12 describes the forms of indices for f̄ , {ind( f̄ n, 0)}n .
On the other hand, by Theorem 3.10 and Remark 3.11 the form of {ind( f n, (0, 0))}n (where
f̄ is the restriction of f to the boundary) is the same, as D(0,0) f has only one real non-
negative eigenvalue more than D0 f̄ (by Remark 3.5) and thus 
 = 
0 or 
 = 
0 ∪ {1}, so
{LCM(Q) : Q ⊂ 
} = {LCM(Q) : Q ⊂ 
0}. (We will show in part (2) of the proof that
there are no further restrictions i.e. that each pair of indices of that form can be realized by a
C1 map of a pair). The only condition we must verify are the restrictions for b1 in the cases
(Fe

∂0
) and (Fe

∂1
).

Assume, without lost of generality, that there are 2s (where 2s = m) different pairs
of eigenvalues of D0 f̄ , which are primitive roots of unity of degree ≥ 3 (otherwise the
sequences of indices have simpler form and we are in the other case). Thus {ind( f̄ n, 0)}n by
Theorem 3.12 is of the form (Fe) and a1 = 1. On the other hand, by the dimension argument
1 /∈ σ(D0 f̄ ), and then by Lemma 3.13 b1 = a1 or b1 = 0, which ends the proof of the
restrictions for a1 and b1 and the proof of part (1). ��
Proof of Theorem 3.15 (2) Nowwe show that each pair of sequences listed in (I) and (II) can
be realized by a C1 map of a pair. We indicate realizations in dependence on s, the number
of primitive roots of unity of degree ≥ 3 in 
 = 
0.

(A) m = 2s.

We will realize the pairs of maps given in (Fe
∂0

) and (Fe
∂1

). ��

Definition 3.17 We define some subspaces of R
m+1+ :

• W =
{
(x, t) ∈ R

m+1+ : ||x || = t
}
,

• V0 =
{
(x, t) ∈ R

m+1+ : x = 0
}
,

• V =
{
(x, t) ∈ R

m+1+ : t = 0
}
.

We will use methods similar to those used in Section 9 in [20]. We will define a map
on each of the spaces listed in Definition 3.17 as a discretization of some smooth flow. It is
possible to extend this maps to a C1 self-map of the whole R

m+1+ with 0 as the only periodic
point, in such a way that the fixed point indices of all iterations for the extension are the same
as for the restriction to W ∪ V0 ∪ V (cf. [20] for details).

By the formula (3.12) applied to (W ∪ V0) ∪ V , taking into account that the index on the
singleton {(0, 0)} is equal to 1, we get

ind( f n, (0, 0)) = indW ( f n, (0, 0)) + indV0( f
n, (0, 0)) + indV ( f n, (0, 0)) − 2reg1(n).

(3.13)
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We define the self-maps on the spaces W, V0, V in the following way.
Consider V = R

m+1
0 ≈ R

m . By Remark 3.11 and by Theorem 3.12 we can find a self-map
ofR

m+1
0 (of the type Fe) such that its indices are equal to

∑
k∈L(m

2 ) akregk(n),where a1 = 1.

OnW ≈ R
m+1
0 ≈ R

m we repeat the same construction with the coefficients ck = bk −ak ,
so that indW ( f n, (0, 0)) = ∑

k∈L(m2 ) ckregk(n), where c1 = 1.
On V0, which is a half-line, we define (in an obvious way) f so that either

indV0( f
n, (0, 0)) = 0 or indV0( f

n, (0, 0)) = reg1(n). Thus we obtain two maps, which
indices may be expressed in dependence on a parameter α as indV0( f

n, (0, 0)) = α reg1(n),
where α ∈ {0, 1}.

Finally, substituting obtained values of indices to (3.13), we get

ind( f n, (0, 0)) = α reg1(n) +
∑

k∈L(m
2 )

bkregk(n), (3.14)

where α ∈ {0, 1}. In this way we constructed two kinds of maps, one of the type (Fe
∂0

) for
α = 0 and the second of the type (Fe

∂1
) for α = 1, which completes the construction in the

case (A).

(B) m = 2s + 1.

We will realize the pairs of maps given in Bo, Co and Do.
We represent R

m+1
0 = R

m as the product of subspaces V × V ′ where dim V = 2s,
dim V ′ = 1. Then R

m+1+ = (V × V ′)× R+. Now, on the subspace V × R+, in the same way
as in the case (A), we can find a map of a pair ( f, f̄ ) whose indices have basic sequences
regk with arbitrary coefficients ak , bk for k ≥ 3, k ∈ L(m−1

2 ). We have still some room,
namely V ′ × R+ = R × R+, where we can realize reg1 with the coefficient a1 ∈ {−1, 0, 1}
and arbitrary b1, which will complete the proof of part (B). The last realization can be done,
due to the following lemma.

Lemma 3.18 For any pair of integer numbers a1, b1 with |a1| ≤ 1 there exists a C1 map of
a pair ( f, f̄ ) : (R2+, R

2
0) → (R2+, R

2
0), where (0, 0) ∈ R × R+ is an isolated fixed point for

each iteration of f and

ind( f̄ n, 0) = a1, ind( f n, (0, 0)) = b1,

for each n ∈ N.

Proof Let us define three types of smooth flows defined on R
2
0 = R with 0 as the only

stationary point, and consider indices of its discretization f̄ .

(1) The flow such that 0 is a sink, then ind( f̄ n, 0) = 1.
(2) The flow such that 0 is a source, then ind( f̄ n, 0) = −1.
(3) The flow such that 0 is a stationary point removable by any small perturbation, then

ind( f̄ n, 0) = 0.

Now, let us consider planar flows h p : R × R+ × R → R × R+ with phase portraits
consisting of 2|p| hyperbolic regions for p < 0, 2p elliptic regions for p > 0 (an example
of such flow is given in Fig. 1). The flow may be taken as smooth as we like, in particular
with the discretization being C1 map (see [25]).

We take its time-one map and denote it by h p(1). Next, we consider f p , the self-map of
R
2 equal to h p(1) composed with retraction ρ : R

2 → R
2+.

We calculate ind( f p, (0, 0)) as the number of revolutions of the vector connecting z with
f (z) for z ∈ C running along a small circle C centered at (0, 0). Notice that the fact that

123

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Geom Dedicata (2017) 187:241–258 255

Fig. 1 An example of the flow
h p with p = −2

Fig. 2 The situation from the
proof of Lemma 3.18 part (3)

G H 

hnp(1) = h p(n) implies ind( f np (0, 0)) = ind( f p, (0, 0)). Now in each of the three cases

(1)–(3) we will define an extension of f̄ with arbitrary integer index.

(1) We take the extension equal to h p for p �= 0 and a 2-dimensional sink on R × R+ in
case p = 0. Then we get

ind( f p, (0, 0)) =
⎧⎨
⎩
1 − |p| if p < 0,
1 + p if p > 0,
1 if p = 0.

(2) We take the extension equal to h p for p �= 0 and a 2-dimensional source on R × R+ in
case p = 0. Then we get

ind( f p, (0, 0)) =
⎧
⎨
⎩

−|p| if p < 0,
p if p > 0,
0 if p = 0.

(3) Consider the situation presented in Fig. 2. We take the extension equal to h p (for p �= 0)
in the area denoted by G and one hyperbolic sector in the area denoted by H . For p = 0
we take 2-dimensional sink on R × R+. Then we get

ind( f p, (0, 0)) =
⎧⎨
⎩

−|p| if p < 0,
p if p > 0,
0 if p = 0.

(C) m ≥ 2s + 2. We will realize the pairs of maps given in (Ao) and (Be).
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Wehave a similar decompositionR
m+1+ = (V×V ′)×R+, where dim V = 2s, dim V ′ ≥ 2.

Again, we may find a map of a pair ( f, f̄ ) such that on the subspace V × R+ we can
realize indices having basic sequences regk with arbitrary coefficients ak , bk for k ≥ 3 and
k ∈ L(m−2

2 ) for m even or k ∈ L(m−3
2 ) for k odd. Furthermore, on V ′ × R+ = R

2 × R
+ we

can realize sequences a1reg1 for f̄ and b1reg1 for f with arbitrary a1, b1 (cf. [25]). ��

4 Reducing r-periodic points to one point

In this section we illustrate the whole theory, finding necessary and sufficient conditions
to reduce r -periodic points in the C1-homotopy class just to one point (Theorem 4.1) and
applying the result to self-maps of 6-dimensional closed ball (Theorem 4.2).

Theorem 4.1 Let M be a smooth compact and simply-connected manifold with simply-
connected boundary ∂M, r be an odd natural number and ( f, f̄ ) : (M, ∂M) → (M, ∂M).
Assume {L( f n)}n|r is not constantly equal to 0. Then there exists a map of a pair (g, ḡ) :
(M, ∂M) → (M, ∂M) C1-homotopic to ( f, f̄ ) such that Fix(gr ) = {p} if and only if one of
the following conditions is satisfied:

(1) L( f̄ n) = 0 for all r |n and (L( f n))n is a DDm+1(1|r) sequence,
(2) the pair (L( f n), L( f̄ n))n is a ∂DDm(1|r) pair of sequences.
Proof By Definition 2.5 of Dr ( f ; M, ∂M) we decompose Lefschetz numbers of iterations
of f and f̄ into the minimal sum α + β of α DDm+1(1|r) sequences and β ∂DDm(1|r)
pairs of sequences.

Thus Dr ( f ; M, ∂M) = 1 iff

(A) α = 1 and β = 0, or
(B) α = 0 and β = 1.

In the case (A) β = 0 is equivalent to L( f̄ n) = 0 for all r |n. On the other hand, α = 1
is equivalent to the fact that (L( f n))n is itself a DDm+1(1|r) sequence, which gives the
condition (1).

The condition (B) may be expressed in the following form: for n|r
L( f̄ n) = c̄1(n) and L( f n) = c1(n), (4.1)

where (c1, c̄1) is a ∂DDm(1|r) pair of sequences, so (B) is equivalent to (2). ��
Theorem 4.2 Let B6 ⊂ R

6 be a closed 6-dimensional ball with the boundary ∂B6 = S5.
Consider a C1 map of a pair ( f, f̄ ) : (B6, S5) → (B6, S5). Let D denote the degree of
a self-map f̄ of S5 and r be a fixed odd natural number. Then, it is possible to reduce the
number of r-periodic points in the C1-homotopy class of ( f, f̄ ) to one point if and only if
one of the following conditions is satisfied:

(a) D ∈ {−1, 0, 1},
(b) r is a prime number or r = 1,
(c) D = 2 and (r = pq or r = p2), where p, q are prime numbers.

Proof As m = 5 is odd here, we get that L( f̄ n) = 1 − Dn . Furthermore L( f n) = 1, since
B6 is contractible. First, notice that (1) of Theorem 4.1 is equivalent to D = 1, because
L( f n) = reg1(n) is a DDm+1(1|r) sequence for any m and r .
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Next, we show that for the rest of cases (a), (b), (c) listed in the thesis of Theorem 4.2
(i.e. for D �= 1) the condition (2) of Theorem 4.1 is satisfied i.e. that (reg1(n), 1− Dn)n|r is
a ∂DD5(1|r) pair of sequences.

We get by Theorem 3.15 (part (I)) the following list of ∂DD5(1) pairs of sequences for
odd divisors (by [d, l] we denote the least common multiple of d and l):

(α) c̄ = a1reg1(n) + ad regk(n), c = b1reg1(n) + bd regd(n); for a1, ad , b1, bd ∈ Z.
(β) c̄ = δreg1(n) + ad regd(n) + al regl(n) + a[d,l]reg[d,l](n), c = b1reg1(n) + bd regd(n) +

bl regl(n)+b[d,l]reg[d,l](n); for δ ∈ {−1, 0, 1}, ad , al , a[d,l], b1, bd , bl , b[d,l] ∈ Z, d, l ≥
3.

Case (a). Let us notice that for D = 0 or D = −1 we get, for each odd r , constant
sequences:

(L( f n), L( f̄ n))n|r =
{

(reg1(n), reg1(n))n|r if D = 0,

(reg1(n), 2reg1(n))n|r if D = −1,
(4.2)

each of which is obviously a ∂DD5(1|r) pair of sequences of the type (α).
Case (b). If r is a prime number, then (L( f n), L( f̄ n))n|r = (reg1(n), a1reg1(n) +

apregp(n))n|r (similarly for r = 1, with ap = 0), so it is again a ∂DD5(1|r) pair of
sequences of the type (α).

Case (c). Assume D = 2, then a1 = L( f ) = 1 − D = −1. Thus

(L( f n), L( f̄ n))n|r

=
{

(reg1(n),−reg1(n) + apregp(n) + aq regq(n) + apq regpq(n))n|r if r = pq,

(reg1(n),−reg1(n) + apregp(n) + ap2 regp2(n))n|r if r = p2.

(4.3)

If r = pq then [p, q] = pq , and as a consequence in both cases (L( f n), L( f̄ n))n|r is a
∂DD5(1|r) pair of sequences of the type (β) with δ = −1.

To complete the proof we have to show that if none of the conditions (a), (b), (c) of
Theorem 4.2 is satisfied then (L( f n), L( f̄ n))n|r is not a ∂DD5(1|r) pair of sequences.

Take |D| ≥ 2 and assume that r has at least two nontrivial divisors, s and t . It is known
([26], Theorem 1.2) that for |D| ≥ 2 each an , the nth coefficient of the periodic expansion
of {L( f̄ n)}∞n=1, is non-zero. Taking into account that a1 = 1 − D we observe that in the
periodic expansion of {L( f̄ n)}n|r must appear the following non-zero terms:

(1 − D)reg1(n) + asregs(n) + at regt (n) + a[s,t]reg[s,t](n).

Thus (L( f n), L( f̄ n))n|r could be a ∂DD5(1|r) pair of sequences only if it is of the type
(β) with δ = 1 − D ∈ {−1, 0, 1}, thus for D = 2 and only if there are no more then two
different non-trivial divisors. ��
Acknowledgements Fundingwas provided byNational ScienceCentre, Poland (GrantNo.UMO-2014/15/B/
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