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Abstract. In mathematical biology and the theory of electric networks the
firing map of an integrate-and-fire system is a notion of importance. In order to

prove useful properties of this map authors of previous papers assumed that the

stimulus function f of the system ẋ = f(t, x) is continuous and usually periodic
in the time variable. In this work we show that the required properties of the

firing map for the simplified model ẋ = f(t) still hold if f ∈ L1
loc(R) and f

is an almost periodic function. Moreover, in this way we prepare a formal
framework for next study of a discrete dynamics of the firing map arising from

almost periodic stimulus that gives information on consecutive resets (spikes).

1. Introduction. The integrate-and-fire models are used mainly in neuroscience
to describe nerve-membrane voltage response to a given input. In these, usually
one-dimensional models,

ẋ = f(t, x), f : R2 → R (1)

the continuous dynamics govern by a differential equation is interrupted by thresh-
old - reset behavior which is supposed to mimic spiking in real neurons. Precisely,
the system evolves from an initial condition according to the differential equation
as long as the threshold-value of a dynamical variable is achieved. Then there is
an immediate resetting to the resting-value and the dynamics continues from the
new initial condition. The resting and threshold values are typically set to 0 and 1,
respectively. The sequence of consecutive spikes can be described by the iterates of
the firing map.

So far an analytical approach was carried mainly towards models with periodic
input, where the firing map is a lift of a degree one circle map and the tools of
rotation theory can be used ([4], [5], [8]). Properties of the firing map were also
investigated with the help of numerical simulations ([6],[10]). In analytical survey
it was always assumed that the input function is smooth enough. In this work we
study the case when the function on the right hand side of a differential equation
is in general not continuous and not periodic but almost periodic.
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2. Properties of the firing map.

Definition 2.1. For the equation (1) we define a map Φ : R→ R,

Φ(t) = inf{s > t : x(s; t, 0) = 1} ,
where x(·; t, 0) is a solution of (1) satisfying the initial condition (t, 0).

A natural domain of Φ is the set DΦ = {t ∈ R : ∃s>t x(s; t, 0) = 1}. The
mapping Φ assigns to each t ∈ DΦ the value Φ(t), equal to the time after which
a trajectory starting from x = 0 at the moment t reaches the line x = 1 for the
first time. This is the time at which we have the firing (alternatively called also
a spike). Immediately after that the solution x(t) is ”reset” to zero and next the
system given by (1) evolves from new starting point (Φ(t), 0) until a moment Φ2(t)
satisfying x(Φ2(t); Φ(t), 0) = 1. Thus the iterates Φn(t) of the firing map can be
defined recursively as

Φn(t) = inf{s > Φn−1(t) : x(s; Φn−1(t), 0) = 1}.
The constant functions xr = 0 and xτ = 1 are called the reset and threshold

functions respectively. One can investigate varying threshold and reset functions
(e.g.[8]) but the general cases reduces to the above ([4]).

2.1. Perfect Integrator Model. Consider the system called Perfect Integrator
Model (after [4]), i.e. the scalar ODE:

ẋ = f(t), (2)

with ”resetting mechanism”. Throughout the rest of this paper we assume that
f ∈ L1

loc(R), unless some additional assumptions are stated, and write simply∫ b
a
f(u) du meaning the Lebesque integral

∫
A
f(u) du for A = [a, b]. We will de-

note x(t; t0, x0) :=
∫ t
t0
f(u) du+x0 and call x(·; t0, x0) the solution of (2) (satisfying

the initial condition (t0, x0)) or a trajectory of (2). A locally integrable function

has desired properties: the function F (t) =
∫ t
t0
f(u) du is a continuous function

F : (t0,∞) → R and it assures that the system (2) produces only a finite number
of spikes in any finite interval, as we will see after Corollary 1. Moreover, this is a
significantly larger class of functions than was studied before ([4], [5], [6], [8], [10]):
it includes, for instance, non-continuous piece-wise constant stimulus functions (e.g.
the Haar wavelets), often used in neuroscience (see e.g [9] and references therein).

Since every two trajectories of (2) differ by a constant and the solution x(t; a, x0) =∫ t
a
f(u) du+ x0 is continuous for f ∈ L1

loc(R), we get the following

Corollary 1. If f ∈ L1
loc(R), then for the equation (2) the consecutive iterates of

the firing map are equal to

Φn(t) = min{s > t : x(s; t, 0) = n} (3)

and there is only a finite number of firings in every bounded interval.

Now we state necessary and sufficient conditions under which the firing map
Φ : R → R is properly defined, it is when DΦ = R. In this case Φ induces a
semi-dynamical system on R.

Lemma 2.2. For the model ẋ = f(t) the firing map Φ : R → R is well defined if
and only if

lim sup
t→∞

∫ t

0

f(u)du =∞. (4)
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1034 WAC LAW MARZANTOWICZ AND JUSTYNA SIGNERSKA

In particular, for any t0 ∈ R (4) is the necessary and sufficient condition for all the
iterations {Φn(t0)}∞n=1 to be finite real valued.

Proof. Choose t0 ∈ R. We want all the iterations {Φ(t0),Φ2(t0),Φ3(t0), ...} to be
well-defined according to (3), that is we demand that for all n ≥ 1 there exists
s > Φn−1(t0) such that x(s) = n. However, this is equivalent to demanding that
the solution x : [t0,∞)→ R with x(t0) = 0 is unbounded from above. But

lim sup
t→∞

x(t) =∞ ⇐⇒ lim sup
t→∞

∫ t

t0

f(s)ds =∞ ⇐⇒ lim sup
t→∞

∫ t

0

f(s)ds =∞.

Obviously, lim supt→∞
∫ t

0
f(s)ds = ∞ asserts that all the solutions of (2) are un-

bounded from above.

Throughout the rest of the paper we assume that (4) is satisfied. By using a
property of the Lebesque integral which says that if the integral

∫
A
f(t)dt of a non-

negative function on a measurable set A ⊂ R, µ(A) > 0, is positive then there exist

t1 < t2 such that
∫ t2
t1
f(t)dt > 0, one obtains

Lemma 2.3. Any solution x(t) of the problem (2) is non-decreasing iff f(t) ≥ 0
and is increasing iff f(t) > 0 a.e. in R.

Lemma 2.4. Let f ∈ L1
loc(R) and Φ : R→ R be the firing map associated with (2).

Then Φ is increasing, correspondingly, non-decreasing, iff f(t) > 0, or f(t) ≥ 0
respectively, a.e. in R.

Proof. The proof that f(t) ≥ 0 (f(t) > 0) a.e. induces non-decreasing (increasing)
firing map Φ is almost immediate from the previous lemma. Conversely, suppose
that there exists a non-zero measure set A such that f(t) < 0 for t ∈ A. From

Lemma 2.3 there exist t1, t2, t1 < t2, such that x(t2) − x(t1) =
∫ t2
t1
f(u) du < 0

where x(·) is an arbitrary solution of (2). Suppose that Φ(t1) ≥ t2. Then 1 =∫ t2
t1
f(u) du+

∫ Φ(t1)

t2
f(u) du implies

∫ Φ(t1)

t2
f(u) du > 1. Consequently Φ(t2) < Φ(t1).

If Φ(t1) < t2, let then n ∈ N be such that Φn(t1) < t2 but Φn+1 ≥ t2 (existence
of such n is ensured by the fact that there can be only a finite number of firings
in the interval [t1, t2]). Then, as before, we obtain that Φ(t2) < Φ(t∗), where

t∗ = Φn(t) < t2 because in this case
∫ t2
t∗
f(u) du < 0. Analogously we show that

when Φ is strictly increasing, then f is positive, perhaps with the exception of some
zero-measure set.

Some general results concerning continuity and injectivity of the firing map for
the models of the type ẋ = f(t, x) when f is smooth enough are given in [5].
However, for the Perfect Integrator we obtain a detailed description of continuity if
only f ∈ L1

loc(R).
Let f ∈ L1

loc(R), f(t) ≥ 0 almost everywhere. For a ∈ R consider Φ−1(a) ⊂ R.
Let ā = sup{t ∈ Φ−1(a)}. Note that ā < ∞, because ā < a since for any t ∈ R
t < Φ(t). Moreover, there exists an interval [ā, ā+ δ̄] such that for every t satisfying

ā < t ≤ δ̄ we have
∫ t
ā
f(u) du > 0, or equivalently µ({u : f(u) > 0} ∩ [ā, ā+ t]) > 0.

Indeed, if there exists t such that a > t > ā and
∫ t
ā
f(u) du = 0 then

∫ a
t
f(u) du =∫ a

ā
f(u) du = 1 and hence t ∈ Φ−1(a) contrary to the definition of ā.

Proposition 1. If f ∈ L1
loc(R) and f(t) ≥ 0 almost everywhere. Then

i) Φ is left continuous,
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ii) Φ is not right continuous at every point ā ∈ Φ−1(a) for which there exists
δ0 > 0 such that f(t) = 0 almost everywhere in [a, a + δ0]. Moreover such
points are the only points of discontinuity of Φ.

Proof. For the first part of the statement take a sequence tn → t0, tn < t0. Then

1 =
∫ Φ(tn)

tn
f(u) du and 1 =

∫ Φ(t0)

t0
f(u) du implies

∫ t0
tn
f(u) du =

∫ Φ(t0)

Φ(tn)
f(u) du. It

follows that
∫ Φ(t0)

Φ(tn)
f(u) du → 0 if n → ∞. We have to prove that Φ(tn) → Φ(t0).

Note that since Φ is non-decreasing, Φ(tn) ≤ Φ(t0). If for some δ0 > 0 f(t) = 0

almost everywhere in the interval [Φ(t0) − δ0,Φ(t0)] then
∫ Φ(t0)−δ0
t0

f(u) du = 1

which gives a contradiction to the definition of Φ. Thus f(t) > 0 on a set of positive
measure in any small interval [Φ(t0)− δ,Φ(t0)] and consequently Φ(tn)→ Φ(t0).

To prove the second part of the statement let us take tn → ā, tn > ā. We have

already showed that
∫ tn
ā
f(u) du > 0. Then Φ(tn) ≥ Φ(ā) + δ0 for large n, because

for every b, Φ(ā) ≤ b ≤ Φ(ā) + δ0 we have∫ b

tn

f(u) du =

∫ Φ(ā)

tn

f(u) du =

∫ Φ(ā)

ā

f(u) du−
∫ tn

ā

f(u) du < 1.

It follows that Φ(ā+) ≥ Φ(ā) + δ0 and consequently Φ is not right continuous at ā.

Conversely, let tn → t0, tn > t0 and Φ(tn) ≥ Φ(t0) + δ̄. Then
∫ tn
t0
f(u) du > 0,

since otherwise 1 =
∫ Φ(t0)

t0
f(u) du =

∫ Φ(t0)

tn
f(u) du, which gives Φ(tn) = Φ(t0)

contrary to the supposition. Next, if for every δ0 > 0 we have µ({f(u) > 0} ∩
[Φ(t0),Φ(t0)+δ0]) > 0, then

∫ Φ(t0)+δ0
Φ(t0)

f(u) du > 0. We can take δ0 < δ̄. For large n∫ tn
t0
f(u) du is small, say smaller than

∫ Φ(t0)+δ0
Φ(t0)

f(u) du. This gives
∫ Φ(t0)+δ0
tn

f(u) du

=
∫ Φ(t0)

t0
f(u) du −

∫ tn
to
f(u) du +

∫ Φ(t0)+δ0
Φ(t0)

f(u) du > 1, thus Φ(tn) < Φ(t0) + δ0

contrary to our supposition that Φ(tn) ≥ Φ(t0) + δ̄.

As a direct consequence of Proposition 1 we get the following:

Corollary 2. If f ∈ L1
loc(R) and f(t) > 0 almost everywhere, then Φ is continuous.

3. Firing rate.

Definition 3.1. For every t ∈ R one defines the firing rate, denoted by r(t), as

r(t) := lim
n→∞

n

Φn(t)
. (5)

In general for an equation ẋ = f(t, x) the limit of (5) might not exist for some t.
Moreover, even if the limit exists for all t, it might depend on t. However, for the
simplified model (2) we have the following theorem, which was proved in [4] and
the proof is valid for f ∈ L1

loc(R):

Theorem 3.2. Suppose that for the model (2) there exists a finite limit

r = lim
t→∞

1

t

∫ t

0

f(u)du. (6)

Then for every point t0 ∈ R the firing rate r(t0) exists and is given by the formula
(6). In particular the firing rate r(t) does not depend on t.
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1036 WAC LAW MARZANTOWICZ AND JUSTYNA SIGNERSKA

3.1. Almost periodic functions. In next we consider the model (2) with the
function f : R → R almost periodic. There are various classes of almost periodic
functions, e.g. in the sense of Bohr, Stepanov, Weyl and Besicovitch. They are
defined as the closure of the space of generalized trigonometric polynomials under
corresponding norms. The notion of almost periodicity generally holds for functions
f : R → C. However, we will only consider almost periodic functions taking real
values.

Definition 3.3. A continuous function f : R→ C is almost periodic function in the
sense of Bohr (alternatively called also uniformly almost periodic) if for any ε > 0
the set E{ε, f(t)} of all the numbers τ such that for all t ∈ R |f(t+ τ)−f(t)| < ε is
relatively dense, i.e. there exists lε > 0 such that in any interval of length lε there
is at least one τ satisfying this inequality.

The set E{ε, f(t)} is called the set of ε-almost periods of f .

Equivalently we can say that f is Bohr almost periodic if it is the limit of a

sequence of generalized trigonometric polynomials Pn(t) =
∑k(n)
i=1 ci exp(ıλit), ci ∈

C and λi ∈ R, under the norm ‖f‖ = supt∈R |f(t)|. Any Bohr almost periodic
function is uniformly continuous and bounded ([3],[7]).

Definition 3.4. A function f : R → C, f ∈ Lploc(R), is Stepanov almost periodic
if for any ε > 0 the set SE{ε, f(t)} of all the numbers τ such that ‖f(t + τ) −
f(t)‖St.,r,p < ε is relatively dense, where

‖f‖St.,r,p := sup
t∈R

[
1

r

∫ t+r

t

|f(u)|p du]1/p, r > 0, 1 ≤ p <∞.

The set SE{ε, f(t)} is called the set of ε-Stepanov almost periods of f .

The space of Stepanov almost periodic functions can be obtained also as the
closure of generalized trigonometric polynomials under the norm ‖ · ‖St.,r,p. Any
Stepanov almost periodic function which is uniformly continuous is Bohr almost
periodic. Different values of r in ‖ · ‖St.,r,p give obviously different norms but the
same topology. Thus we will consider Stepanov almost periodic functions with
r = 1. If f is a p1-Stepanov almost periodic function, then it also p2-Stepanov
almost periodic for p2 < p1 with fixed r ([1], [3]). One can also consider almost
periodic functions in the sense of Weyl or Besicovitch, where the class of Besicovitch
almost periodic functions with p = 1 is larger and includes all the other mentioned
types of almost periodicity. For an almost periodic function f : R → C of any of
these types there exists a finite mean ([1],[3], [7]):

M{f(t)} = lim
t→∞

1

t

∫ t

0

f(u) du.

From this we conclude that:

Corollary 3. For the model (2), where f : R→ R is almost periodic in any of the
above sense the firing rate exists and equals the mean of a function, provided that
the mean is nonnegative (otherwise the firing rate is zero).

Note that if M{f(t)} < 0, then (4) does not hold and there is no firing.

Definition 3.5. A function f : R→ C is limit-periodic (in the sense of Bohr) if it
is a limit of uniformly converging sequence {fn} of continuous periodic functions.
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FIRING MAP FOR ALMOST PERIODIC INPUT 1037

Note that generalized trigonometric polynomials are in general not periodic (con-

sider, for example, P (t) = sin(
√

2t) + sin(2t)) and that a limit-periodic function is
an uniformly almost periodic function. One can read in [1] in details about the
theory of almost periodic functions. We will write shortly that f is u.a.p. or S.a.p.,
meaning uniform (Bohr) or Stepanov (with r = 1 and p = 1) almost periodicity,
respectively.

The mean M is continuous [3], meaning that M{fn} → M{f} if fn → f in
any of the “almost-periodic norms” (i.e. the norms with respect to which a given
space of almost periodic functions can be obtained as the closure of the space of
generalized trigonometric polynomials). Thus the following holds:

Theorem 3.6. Let (fn)∞n=1 be a sequence of almost-periodic functions fn : R →
R of the Bohr, Stepanov, Weyl or Besicovitch type converging to f in uniform,
Stepanov, Weyl or Besicovitch norm, respectively. Let rn be the firing rate of the
equation ẋ = fn(t), for n = 1, 2, 3, ..., and r the firing rate for (2).

Then r = limn→∞ rn.

We end this section with propositions showing when the existence of the positive
mean value of f is a necessary and sufficient condition for existence of the firing
map Φ : R→ R. By elementary calculations one proves

Proposition 2. Let f ∈ L1
loc(R). If M{f} > 0 then lim sup

∫ t
0
f(u) du = ∞.

Consequently the firing map Φ of (2) is well-defined for all t ∈ R.

Conversely, if f(t) =
∑k
j=1 cj exp(ıλj t), then lim supt→∞

∫ t
0
f(u) du = ∞ im-

plies M{f} > 0.

In the second case it must hold that M{f} = cj∗ > 0, where cj∗ corresponds to
λj∗ = 0.

The mean has the following property, which in general does not hold for functions
that have finite sup- or Stepanov norms but are not almost periodic:

Lemma 3.7. Let f : R→ R be a real non-negative (a.e.) u.a.p. (/S.a.p.) function.
If M{f(t)} = 0, then f(t) = 0 for all (/almost all) t ∈ R.

Proof. The proof of the statement for u.a.p. functions can be found in [3]. We will
prove the statement for f being a S.a.p. function. Suppose on the contrary that
there exists a non-zero measure set A such that for all t ∈ A we have f(t) > 0.

Then there exists a ∈ R such that
∫ a+1

a
f(u) du > λ for some λ > 0 as follows

from Lemma 2.4. Since f is S.a.p. the set of all the τ such that for all t ∈ R∫ t+1

t
|f(u + τ) − f(u)| < λ

2 is relatively dense. It follows that there exists lλ
2
> 0

such that in any interval I of length lλ
2

we can find τ ∈ I such that
∫ a+τ+1

a+τ
f(u) du =∫ a+1

a
f(u+τ) du > λ

2 : Indeed, if
∫ a+1

a
|f(u+τ)−f(u)| du < λ

2 and
∫ a+1

a
f(u) du > λ,

then λ
2 <

∫ a+1

a
f(u) du−

∫ a+1

a
|f(u+τ)−f(u)| du ≤

∫ a+1

a
f(u+τ) du. We can assume

that lλ
2
> 1. Then we can find a sequence {τn} where τn ∈ [2nlλ

2
, 2(n + 1)lλ

2
− 1]

such that ∫ a+2(k+1)lλ
2

a+2klλ
2

f(u) du >

∫ a+τk+1

a+τk

f(u) du >
λ

2
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for any k ∈ N∪{0} because a+τk, a+τk+1 ∈ [a+2klλ
2
, a+2(k+1)lλ

2
]. Consequently,

0 =M{f} = lim
t→∞

1

t

∫ t

0

f(u) du = lim
t→∞

1

t

∫ a+t

a

f(u) du

= lim
n→∞

1

2nlλ
2

∫ a+2nlλ
2

a

f(u) du >
1

2nlλ
2

n
λ

2
=

λ

4lλ
2

and we obtain a contradiction.

Proposition 3. Suppose that f(t) ≥ 0 (a.e.) is an u.a.p. (/S.a.p.) function. Then
M{f} > 0 if and only if the firing map is well-defined.

Proof. Sufficiency was covered in the previous proposition, necessity follows from
Lemma 3.7. Indeed, if M{f} = 0 for non-negative (a.e.) u.a.p. (/S.a.p.) func-
tion f , then f(t) = 0 for all t ∈ R (/a.e. in R). In both cases the condition

lim supt→∞
∫ t

0
f(u) du = limt→∞

∫ t
0
f(u) du =∞ is not satisfied.

Remark 1. The assumption that a stimulus function f ∈ L1
loc(R) allows us also to

take as f a linear combination of the Haar wavelets which is more natural for many
problems with discontinuous stimulus function.

4. Displacement map.

Definition 4.1. Let Φ : R → R be a map of the real line. The displacement map
Ψ : R→ R of Φ is defined as

Ψ(t) := Φ(t)− t .

If Φ is a firing map then the displacement map Ψ(t) says how long we have to
wait for a next firing if we know that there was a firing at the time t.

Firstly, we will consider the firing map and its displacement for the general case,
i.e. for the equation (1). The following observation was first made in [10]:

Proposition 4. If the function f in (1) is periodic in t (that is, there exists T such
that for all x and t we have f(t, x) = f(t+T, x)), then the firing map Φ has periodic
displacement. In particular for T = 1 we have Φ(t+ 1) = Φ(t) + 1 and thus Φ is a
lift of a degree one circle map under the standard projection p : t 7→ exp(2πıt).

Therefore for the models (1) with f periodic in t, the firing map Φ has periodic
displacement and induces a degree one circle map (this map is sometimes in the
literature referred to as the firing phase map). In this case the tools of the rotation
theory ([12]) can be used to study the properties of Φ. Especially, the rotation
number (which is simply the reciprocal of the firing rate, if the unique non-zero
firing rate exists) or the rotation intervals are closely related to the so-called phase-
locking phenomena ([4], [10]).

There arises a natural question of whether for the map f almost periodic in t
we obtain the firing map with almost periodic displacement. We will tackle this
problem for the Perfect Integrator Model.

Firstly, let us consider the case of limit-periodic input:

Theorem 4.2. Let Φ : R → R be the firing map induced by (2). If f : R → R is
limit periodic and f(t) > δ for some δ > 0, then the firing map Φ has limit periodic
displacement.
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FIRING MAP FOR ALMOST PERIODIC INPUT 1039

Proof. Denote the displacement of Φ by Ψ. Suppose, without the loss of generality,
that 0 < δ < 1 and let ε > 0 be any small number. We can assume that δ > ε/2 > 0.

Since f is limit periodic, there exists continuous periodic function f̃ : R → R such

that |f̃(t) − f(t)| < δ2ε/4 for all t. Choose the initial condition (t0, 0). By x(t)
denote the solution of (2) satisfying x(t0) = 0 and by x̃(t) the solution of

ẋ = f̃(t) (7)

with the same initial condition. Equation (7) gives rise to the firing map Φ̃(t) with

the displacement Ψ̃(t). We will show that |Ψ(t0) − Ψ̃(t0)| < ε, which is equivalent

to |Φ(t0)− Φ̃(t0)| < ε, and then the theorem will follow from the fact that the firing

map Φ̃ of periodically forced Perfect Integrator Model has periodic displacement,

which is covered by Proposition 4. Since f̃ approximates f in the uniform norm, we

have that for all t f̃(t) ≥ δ/2. We have to consider two possibilities: Φ(t0) > Φ̃(t0)

and Φ̃(t0) > Φ(t0). Suppose that Φ(t0) > Φ̃(t0), i.e. the solution x̃(t) fires before

x(t). Then x(Φ(t0)) = 1 and x(Φ̃(t0)) < 1 by the definition of Φ̃ and Φ. From the
Mean Value Theorem

1− x(Φ̃(t0)) = f(α)(Φ(t0)− Φ̃(t0)) (8)

for some α ∈ (Φ̃(t0),Φ(t0)). Now define y(t) := x̃(t) − x(t). Then y(t) − y(t0) =
y′(ξt)(t − t0) for any t > t0 and some ξt ∈ (t0, t). Since y(t0) = 0 and y′(ξt) =

x̃′(ξt)− x′(ξt) = f̃(ξt)− f(ξt) ∈ (−δ2ε/4, δ2ε/4), we get

x̃(Φ̃(t0))− x(Φ̃(t0)) < (Φ̃(t0)− t0)
δ2ε

4
. (9)

Equations (8) and (9) yield Φ(t0)− Φ̃(t0) < δ2ε
4f(α) (Φ̃(t0)− t0), where the difference

Φ̃(t0) − t0 ≤ 2
δ because 1 = x̃(Φ̃(t0)) − x̃(t0) = f̃(β)(Φ̃(t0) − t0) for some β ∈

(t0, Φ̃(t0)). Finally, Φ(t0)−Φ̃(t0) < δ2ε

4f(α)f̃(β)
< ε since f(α), f̃(β) > δ

2 . Analogously

we prove that Φ̃(t0)− Φ(t0) < ε for Φ̃(t0) > Φ(t0).

From the proof of Theorem 4.2 follows more general

Proposition 5. If f : R → R, f(t) > δ > 0 is a limit of uniformly convergent
sequence of continuous functions fn : R → R inducing firing maps Φn with dis-
placements Ψn, the firing map Φ and the displacement Ψ of f can be obtained as
the uniform limits of Φn and Ψn, respectively.

The above means that if the system ẋ = fγ(t) depends on the parameter γ ∈ R
continuously with respect to the uniform norm, i.e. supt∈R |fγ1(t)− fγ2(t)| is arbi-
trary small provided that the difference |γ1 − γ2| is small enough, then the corre-
sponding firing maps Φγ(t) also change continuously with respect to the uniform
topology. Furthermore we show that

Theorem 4.3. Let f : R → R be a S.a.p. function such that f(t) > δ almost
everywhere for some δ > 0. Then the firing map Φ induced by the equation (2) has
u.a.p. displacement.

Proof. We are to show that for any ε > 0 the set E{ε,Ψ(t)} of all the numbers
τ ∈ R such that supt∈R |Ψ(t + τ) − Ψ(t)| = supt∈R |Φ(t + τ) − τ − Φ(t)| < ε is
relatively dense. Without the loss of generality we assume that δ < 1. Choose

then ε > 0 and let τ ∈ SE{ δ
2ε
2 , f(t)}. Take t ∈ R. Then by the assumption on f

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


1040 WAC LAW MARZANTOWICZ AND JUSTYNA SIGNERSKA∫ t+1

t
|f(u+ τ)− f(u)| du < δ2ε

2 . Suppose that min{Φ(t),Φ(t+ τ)− τ} = Φ(t). By

the definition of the firing map
∫ Φ(t+τ)

t+τ
f(u) du =

∫ Φ(t)

t
f(u) du and it follows that

0 =

∫ Φ(t+τ)

t+τ

f(u) du−
∫ Φ(t)

t

f(u) du =

∫ Φ(t+τ)−τ

t

f(u+ τ) du−
∫ Φ(t)

t

f(u) du =

=

∫ Φ(t)

t

f(u+ τ)− f(u) du+

∫ Φ(t+τ)−τ

Φ(t)

f(u+ τ) du.

Thus |
∫ Φ(t)

t
f(u+ τ)−f(u) du| = |

∫ Φ(t+τ)−τ
Φ(t)

f(u+ τ) du|. Since τ ∈ SE{ δ
2ε
2 , f(t)},

|
∫ Φ(t)

t
f(u+ τ)− f(u) du| ≤

∫ Φ(t)

t
|f(u+ τ)− f(u)| du ≤

∫ t+k
t
|f(u+ τ)− f(u)| du <

kδ2ε/2, where k ∈ N is the smallest integer such that Φ(t) ≤ t + k. However, as

f(u) > δ almost everywhere,
∫ Φ(t+τ)−τ

Φ(t)
f(u+τ) du > δ(Φ(t+τ)−τ−Φ(t)). Finally

Φ(t+ τ)− τ − Φ(t) <
kδε

2
<

( 1
δ + 1)δε

2
=

(1 + δ)ε

2
< ε

because Φ(u) − u < 1/δ for any u ∈ R, which can be estimated as in the proof of
Theorem 4.2, and thus k < (1/δ + 1). If min{Φ(t),Φ(t+ τ)− τ} = Φ(t+ τ)− τ in
a similar way we obtain that Φ(t) − Φ(t + τ) + τ < kδε/2 where k is the smallest
integer such that Φ(t+ τ)− (t+ τ) < k. Thus in any case |Φ(t+ τ)−Φ(t)− τ | < ε.
It follows that τ ∈ E{ε,Ψ(t)}. Consequently the set E{ε,Ψ(t)} is relatively dense

because it contains relatively dense set SE{ δ
2ε
2 , f(t)}.

Note that if the displacement Ψ(t) = Φ(t)− t is uniformly almost periodic then
it is uniformly continuous and the following conclusion is immediate:

Corollary 4. Under the assumptions of Theorem 4.3 the firing map Φ : R→ R is
uniformly continuous.

Remark 2. Rotation numbers and sets for maps of the real line with almost peri-
odic displacement were investigated by J. Kwapisz in [11]. Observe that Theorems
4.2 and 4.3 ensure that the displacement of a firing map is almost periodic if f is so.
On the other hand if a given almost periodic function is a firing map then the thesis
of main theorems of [11] can be deduced easier by a direct argument. Anyway, it
would give an opportunity to compare geometrical definitions of rotation intervals
of [12], used in [11], with analytic formulas derived here.

5. Prospects. As we have already said, our aim was also to establish a framework
for study dynamical properties of the firing map Φ and its displacement Ψ.

Now we state a conjecture that the differences of consecutive spikes form an
asymptotically semi-periodic, or respectively almost periodic sequence if the input
function is so (cf. [2] for definitions of semi-periodic, and almost-periodic sequence).

Let Φ : R→ R be the firing map of the equation ẋ = f(t) with f ∈ L1
loc(R) and

Ψ : R→ R its displacement. For any t ∈ R, we consider a sequence

ηn(t) = Φn(t)− Φn−1(t) = Ψ(Φn−1(t))

Conjecture 1. If f is periodic, correspondingly almost-periodic, then for every t the
sequence ηn(t) is asymptotically semi-periodic, respectively asymptotically almost-
periodic.
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