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a b s t r a c t

When estimating the correlation/spectral structure of a locally stationary process, one has to make two important decisions. First, one should choose the 
so-called estimation bandwidth, inversely proportional to the effective width of the local analysis window, in the way that complies with the degree 
of signal nonstationarity. Too small bandwidth may result in an excessive estimation bias, while too large bandwidth may cause excessive 
estimation variance. Second, but equally important, one should choose the appropriate order of the spectral representation of the signal so as to 
correctly model its resonant structure – when the order is too small, the estimated spectrum may not reveal some important signal components 
(resonances), and when it is too high, it may indicate the presence of some nonexistent components. When the analyzed signal is not stationary, with a 
possibly time-varying degree of nonstationarity, both the bandwidth and order parameters should be adjusted in an adaptive fashion. The paper presents 
and compares three approaches allowing for unified treatment of the problem of adaptive bandwidth and order selection for the purpose of identification 
of nonstationary vector autoregressive processes: the cross-validation approach, the full cross-validation approach, and the approach that 
incorporates the multivariate version of the generalized Akaike’s final prediction error criterion. It is shown that the latter solution yields the best results 
and, at the same time, is very attractive from the computational viewpoint.
1. Introduction

Estimation of the correlation structure of multivariate time se-
ries is one of the fundamental techniques allowing one to ‘‘under-
stand’’ experimental data, by revealing their internal relationships,
in many research areas such as telecommunications, economet-
rics, biology, medicine, geophysics, etc. Since in a majority of cases
the investigated signals are nonstationary, evaluation of the cor-
responding autocovariance functions is usually carried out using
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the local estimation approach, i.e., based on analysis of a short data
segment extracted from the entire dataset by a sliding window of
a certain width (Dahlhaus, 2012). Under the local stationarity as-
sumptions the revealed signal correlation structure can be further
investigated in the frequency domain using the concept of a time-
varying signal spectrum (Dahlhaus, 2012).

One of the important decisions that must be taken when
performing correlation and/or spectral analysis of a nonstationary
signal is the choice of the size of the local analysis interval, which
is inversely proportional to the so-called estimation bandwidth,
i.e., the frequency range in which parameter changes can be
tracked ‘‘successfully’’. Bandwidth optimization allows one to
reach a compromise between the bias and variance of the
corresponding estimates—large bandwidth results in covariance
estimates with large variance but small bias, and small bandwidth
causes the opposite effect. When the rate of signal nonstationarity
changes over time, estimation bandwidth should be chosen in an
adaptive way.

Another important parameter, which must be determined
when spectral analysis is carried out, is the number of quantities

http://dx.doi.org/10.1016/j.automatica.2017.04.033
http://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
http://crossmark.crossref.org/dialog/?doi=10.1016/j.automatica.2017.04.033&domain=pdf


D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

that should be incorporated in the signal description to obtain
the most adequate spectrum estimates, quantities such as the
number of signal covariance matrices corresponding to different
lags (in the nonparametric, i.e., data-driven approach), or the
number of signal model parameters (in the parametric, i.e., model-
based approach). This will be further referred to as the problem
of selection of the order of spectral representation. When the
selected order is too small, the estimated spectrummay not reveal
some important signal components (resonances), while selecting
too high order may result in spectral estimates that indicate the
presence of nonexistent (spurious) signal components. From the
qualitative viewpoint both alternatives are unsatisfactory. Similar
to bandwidth selection, for nonstationary signals the order should
be adjusted in an adaptive fashion.

For stationary signals order estimation is a well-explored
statistical problem, which can be solved in many different ways.
The most popular solutions are those based on the Akaike
information criterion (AIC) (Akaike, 1974), Schwarz criterion,
frequently referred to as the Bayesian information criterion (BIC)
(Schwarz, 1978), and Rissanen’s minimum description length
(MDL) criterion (Rissanen, 1978). Generalized versions of the AIC
and BIC criteria, applicable to local estimation schemes, were
proposed in Niedźwiecki (1984, 1985), respectively.

Selection of the estimation bandwidth for the purpose of covari-
ance/spectral analysis of nonstationary signals is a far less investi-
gated topic. The solution that has gained a considerable attention
in recent years, proposed in Goldenshluger and Nemirovski (1997)
and further developed in Katkovnik (1999) and Stanković (2004),
is based on the analysis of the intersection of the confidence inter-
vals (ICI). The ICI approach, developed originally for the purpose of
polynomial signal smoothing, was recently applied to covariance
estimation in Fu, Chan, Di, Biswal, and Zhang (2014).

When the rate of signal nonstationarity is unknown, and
possibly time-varying, several identification algorithms, with
different estimation bandwidth settings, can be run in parallel and
compared based on their interpolation or predictive capabilities.
At each time instant the best-matching VAR model and the
corresponding maximum entropy like spectrum estimator can be
chosen by means of minimization, over the set of all models, the
local performance index.

In this paper we present three approaches allowing for
unified treatment of the order and bandwidth selection. The first
approach, based on minimization of the local cross-validatory
performance measure, was originally used for signal smoothing
(Niedźwiecki, 2010). Later on, it was extended to the problem of
noncausal identification of nonstationary finite impulse response
(FIR) systemsusing theKalman filter approach (Niedźwiecki, 2012)
and the basis function approach (Niedźwiecki & Gackowski, 2013).
Even though derived from the same general modeling principles,
none of the solutions presented in the abovementioned papers
is directly applicable to the problem of covariance/spectrum
estimation. The second approach, based on the concept of full
cross-validatory analysis, is a refinement of the first one. Finally,
the third approach is based on assessment of predictive capabilities
of models obtained for different bandwidth/order choices via the
Akaike’s final prediction error criterion.

2. Basic facts about the vector autoregressive representation

Consider a discrete stationary m-dimensional random signal
{y(t), t = · · · , −1, 0, 1, . . .}, y(t) = [y1(t), . . . , ym(t)]T, where
t denotes the normalized (dimensionless) discrete time. Suppose
that the first n + 1 autocovariance matrices of y(t) are known,
namely

E[y(t)yT(t − l)] = Rl, l = 0, . . . , n. (1)
It is well-known from the Burg’s work (Burg, 1967, 1975) that the
maximumentropy (i.e., themost unpredictable) stationary process
subject to the constraints (1) is the Gaussian vector autoregressive
(VAR) process of order n satisfying the equation

y(t) +

n
i=1

Aiy(t − i) = ϵ(t), cov[ϵ(t)] = ρ (2)

where {ϵ(t)} denotes m-dimensional white noise sequence with
covariance matrix ρ, and

Ai =

a11,i · · · a1m,i
...

...
am1,i · · · amm,i

 =

α1i
...

αmi

 , i = 1, . . . , n

are them×mmatrices of autoregressive coefficients. The relation-
ship between the autocovariance matrices (1) and parameters of
the VAR model, known as the Yule–Walker (YW) equations, takes
the form

[I,A1, . . . ,An] R = [ρ,O, . . . ,O] (3)

where I and O denote the m × m identity and null matrices,
respectively, and R is the block Toeplitz matrix of the form

R =

R0 · · · Rn
...

. . .
...

RT
n · · · R0

 .

The maximum entropy (ME) extension of the autocovariance
sequence (1) Rl = −

n
i=1 AiRl−i, l > n, where Ri = Ri for

0 ≤ i ≤ n, which stems from the VAR signal model (2), leads to the
following definition of the maximum entropy spectrum estimate

S(ω) =

∞
i=−∞

Rie−jωi
= A−1(ejω) ρ A−T(e−jω) (4)

where j =
√

−1, ω ∈ [0, π] denotes the normalized angular
frequency, and A(z−1) = I +

n
i=1 Aiz−i. Since the sequence of

autocovariance matrices {Ri, i = · · · , −1, 0, 1, . . .},R−i = RT
i , is

by construction nonnegative definite, the corresponding spectral
densitymatrix is also nonnegative definiteS(ω) ≥ O, ∀ω ∈ [0, π].
The off-diagonal elements ofS(ω), which can be interpreted as
cross-spectral densities of different pairs of components of y(t), are
in general complex-valued.

Two of our bandwidth/order selection procedures will be based
on the results of signal interpolation. To derive the interpolation
formula for the signal governed by the VARmodel (2), suppose that
all signal samples {y(i), i = −∞ < i < ∞} are known except for
y(t). The least squares estimate of y(t) can be obtained from

y(t) = argmin
y(t)

∞
s=−∞

∥y(s) +

n
i=1

Aiy(s − i)∥2

= argmin
y(t)

t+n
s=t

∥y(s) +

n
i=1

Aiy(s − i)∥2

= argmin
y(t)

zT(t) CTC z(t) (5)

where z(t) = [yT(t − n), . . . , yT(t + n)]T,

C =


An An−1 · · · A0 O · · · O O
O An · · · A1 A0 · · · O O
...

. . .
. . .

. . .

O O An · · · A1 A0


and A0 = I. Note that C is a (n+ 1) × (2n+ 1) block matrix made
up ofm × m dimensional blocks.
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Denote by J = {1, . . . , n, n + 2, . . . , 2n + 1} the set of indexes
indicating positions of known samples within the vector z(t), and
by I = {n + 1}—the analogous set indicating position of the
unknown sample. Denote byCm = C|J> the (n+1)×1 blockmatrix
obtained after removing from C its 2n block columns indicated by
the set J , and by Co = C|I>—the (n+1)×2n blockmatrix obtained
in the analogous way using the set I . Finally, denote by zo(t) =

z(t)|I> = [yT(t − n), . . . , yT(t − 1), yT(t + 1), . . . , yT(t + n)]T the
2n×1 block vector of known samples obtained after removing y(t)
from z(t). Using this notation, the estimated value of y(t), given by
(5), can be written down in the form Niedźwiecki (1993)y(t) = −[CT

mCm]
−1CT

mCozo(t) (6)

or, more explicitly, as

y(t) = −


n

i=0

AT
i Ai

−1 n
i=0

AT
i pi(t) (7)

where

pi(t) =

n
l=0
l≠i

Aly(t + i − l), i = 0, . . . , n. (8)

Note thaty(t) depends only on n samples preceding y(t) and n
samples succeeding y(t), which is consistent with the fact that the
signal {y(t)} governed by (2) is a Markov process of order n.

3. Local estimation technique

When the investigated process is nonstationary, but its charac-
teristics vary slowlywith time, the covariance/spectral analysis can
be carried out under the ‘‘local stationarity’’ framework. An elegant
theory of locally stationary processes, based on the concept of infill
asymptotics (in which a fixed-length time interval is sampled over
a finer and finer grid of points as the sample size increases) was
worked out by Dahlhaus (1997, 2012). Without getting into math-
ematical details, we note that the probabilistic structure of such
processes at a selected time instant t can be examined using local
estimation techniques, e.g. by means of processing a fixed-length
data segment {y(t − k), . . . , y(t), . . . , y(t + k)} ‘‘centered’’ at t .
The integer number k, which controls the size of the local analysis
interval [t − k, t + k], will be further referred to as a bandwidth
parameter.

3.1. Yule–Walker estimator

The local estimates of the autocovariance matrices (1) can be
obtained using the formula

Rl,k(t) =
1
Lk

Pl,k(t), l = 0, . . . , n (9)

where

Pl,k(t) =

k
i=−k+l

wk(i)wk(i − l)y(t + i)yT(t + i − l)

=

k
i=−k+l

yk(t + i|t)yTk(t + i − l|t) (10)

and yk(t − k|t), . . . , yk(t + k|t) is the tapered data sequence
yk(t + i|t) = wk(i)y(t + i), i = −k, . . . , k. The weights wk(i)
are defined as wk(i) = h(i/k), where h : [−1, 1] → R+ denotes a
symmetric data taper function h(x) = h(−x) ≥ 0 taking its largest
value at 0 [for convenience we will assume that h(0) = 1] and
smoothly decaying to 0 at the edges.
Finally, the normalizing constant in (9) takes the form Lk =k
i=−k w2

k (i) ∼= k
 1
−1 h

2(x)dx. Based on the set of covariance
estimates (9), the local VAR signal model

y(t) +

n
i=1

Ai,k(t)y(t − i) = ϵ(t), cov[ϵ(t)] =ρk(t) (11)

can be obtained by solving for A1,k(t), . . . ,An,k(t) and ρk(t) the
corresponding Yule–Walker equations

[I,A1,k(t), . . . ,An,k(t)] Rk(t) = [ρk(t),O, . . . ,O] (12)

where Rk(t) is a block Toeplitz matrix obtained by replacing
the true autocovariance matrices Ri, appearing in R, with their
local estimates Ri,k(t). An efficient procedure for solving (12)
is known as the Whittle–Wiggins–Robinson (WWR) algorithm.
WWR algorithm is a multivariate extension of the Levinson–
Durbin algorithm—for the discussion of its basic properties see
Complement C8.6 in Söderström and Stoica (1988).

3.2. Relation to the weighted least squares estimator

Denote by θl = [αl1, . . . ,αln]
T the vector of parameters

characterizing the lth ‘‘channel’’ of the VAR process, and by ϕ(t) =

[yT(t − 1), . . . , yT(t − n)]T the corresponding regression vector.
Using this notation, equation of the lth channel can be written
down in the form

yl(t) + ϕT(t)θl = ϵl(t) (13)

and (2) can be rewritten more compactly as

y(t) + 9T(t)θ = ϵ(t) (14)

where 9(t) = I ⊗ ϕ(t) = diag{ϕ(t), . . . ,ϕ(t)} (⊗ denotes
Kronecker product of twomatrices/vectors) and θ = [θT

1, . . . , θ
T
m]

T

= vec{[A1| . . . |An]
T
} is the column vector combining, in a row-

wisemanner, all autoregressive coefficients gathered in them×mn
matrix [A1| . . . |An]. Note that the regression vector in (13) is the
same for all channels.

It is straightforward to check [see e.g. Section 3.4.2 in Stoica &
Moses, 1997] that if n signal samples preceding and succeeding the
frame [t − k, t + k] are zeroed, namely y(t ± k ± 1) = · · · =

y(t ± k ± n) = 0 and a similar extension is applied to the data
window [wk(k + 1) = · · · = wk(k + n) = 0], the YW estimatorθk(t) = [θT

1,k(t), . . . ,θT
m,k(t)]

T
= vec{[A1,k(t)| . . . |An,k(t)]T} is

identical with the least squares estimator with data weighting
(LSW) defined as

θk(t) = argmin
θ

k+n
i=−k

∥yk(t + i|t) + 9T
k(t + i|t)θ∥2 (15)

where 9k(t + i|t) = I ⊗ ϕk(t + i|t) and ϕk(t + i|t) = [yTk(t + i −
1|t), . . . , yTk(t + i−n|t)]T. Moreover, when n ≪ k, one can use the
approximation ϕk(t + i|t) ∼= wk(i)ϕ(t + i), leading to

θk(t) ∼= argmin
θ

k
i=−k

vk(i)∥y(t + i) + 9T(t + i)θ∥2 (16)

where the squared data taper serves as the weighting sequence

vk(i) = w2
k (i), i ∈ [−k, k]. (17)

The estimation scheme (16), known as weighted least squares
(WLS), is well understood from the statistical viewpoint whichwill
be helpful when deriving some technical results below. It should
be stressed that, unlike the YW scheme, the WLS scheme does not
guarantee stability of the VAR model, which is a prerequisite for
well-posed parametric spectrum estimation.

http://mostwiedzy.pl
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3.3. Covariance and spectrum estimation

Since in this paper we are primarily interested in analyzing
the evolution of the instantaneous (local) autocovariance function
{Ri(t), i = · · · , −1, 0, 1, . . .} of y(t), and its instantaneous
spectral density function S(ω, t), the time-varying VAR model
(11) will be regarded – very much like in the maximum entropy
approach – as a ‘‘meta-model’’, serving mainly both purposes
mentioned above. According to Dahlhaus (2012), both Ri(t) and
S(ω, t) are well-defined quantities which can be interpreted as
characteristics of a stationary process {y0(s)} ‘‘tangent’’ to {y(s)}
at the instant t .

The important property of the approximation (11) is that as
long as the matrix Rk(t) is positive definite [which is always
the case when the estimates (12) are incorporated—provided that
the sequence {y(t)} is persistently exciting in some deterministic
Stoica &Moses, 1997 or stochastic Niedźwiecki & Guo, 1991 sense]
the obtained model is always stable in the sense that all zeros zi of
the characteristic polynomial det[Ak(z−1, t)], where

Ak(z−1, t) = I +
n

i=1

Ai,k(t)z−i (18)

lie inside the unit circle in the complex plane: |zi| < 1, i =

1, . . . ,mn.
As alreadymentioned, the time-varyingVARmeta-model opens

interesting analytical opportunities. First, it allows one to evaluate
the ME-like extension of the autocovariance function for the lags
l > n, i.e. beyond the range of estimation

Rl,k(t) = −

n
i=1

Ai,k(t)Rl−i,k(t), l > n. (19)

Second, the VAR model can serve as a basis for evaluation of the
instantaneous signal spectrum

Sk(ω, t) =

∞
i=−∞

Ri,k(t)e−jωi

= A−1
k (ejω, t)ρk(t) A−T

k (e−jω, t). (20)

We note that when the local stationarity assumptions, given
in Dahlhaus (2012), are met, the time-varying spectral density
function

S(ω, t) = A−1(ejω, t) ρ(t) A−T (e−jω, t)

governed by a stable VAR model

y(t) +

n
i=1

Ai(t)y(t − i) = ϵ(t), cov[ϵ(t)] = ρ(t)

is uniquely defined in the rescaled time domain. In the non-
rescaled case, considered e.g. by Priestley in his work on
evolutionary spectra (Priestley, 1965), such uniqueness is not
guaranteed.

3.4. Window carpentry

The problemof selection of the shape of thewindow {wk(i)} can
be discussed from several different perspectives.

First, since the analyzed process is nonstationary, it is reason-
able to assign higher weights to measurements taken at instants
close to t (which is our time-point of interest), and lowerweights to
measurements from instants far from t . Second, since unweighted
YWestimates are identical to LS estimates obtained for the original
data sequence extendedwith n zero samples at the segment begin-
ning and at its end, data tapering allows one to smooth out signal
discontinuities introduced by such amodification, and hence to re-
duce the associated estimation bias. Both observations suggest us-
age of symmetric bell-shaped windows.

Some additional insights into the problem of window selection
can be gained from the frequency-domain analysis. It is known
that in the univariate case the weighted YW estimators minimize
the so-called Whittle likelihood—the Kullback–Leibler based ‘‘dis-
tance’’ between the parametric AR spectrum and nonparametric
weighted periodogram one (Dahlhaus, 1997). In nonparametric
spectrum estimation, weighting is applied to reach the desired
bias–variance tradeoff. This can be achieved by choosing windows
with the appropriate energy spectrum, namely the ones with re-
duced sidelobe structure (tominimize spectral leakage) and, at the
same time, with a relatively narrow main lobe (to minimize spec-
trum ‘‘smearing’’).

The last, practically important aspect of window selection is
computational complexity. The preferable form of the window is
the one that allows for recursive computation of the quantities
Pl,k(t) given by (10).

We will show that the cosinusoidal window

wk(i) = cos
π i

2(k + 1)
, i ∈ [−k, k] (21)

fulfills all requirements mentioned above. First, the weights decay
to zero at both ends of the analysis interval, which guarantees
smooth transition from data to no-data. Second, when the LS
reinterpretation of the YW scheme is applied, the squared data
window, which from the qualitative viewpoint corresponds to
the so-called lag window in the Blackman–Tukey correlogram
analysis, has the form

vk(i) = w2
k (i) =

1
2


1 + cos

π i
k + 1


(22)

which can be recognized as the Hann (raised cosine) window—
one of the standard choices in classical nonparametric spectrum
estimation, offering good bias–variance tradeoff.

To show that thewindow (21) allows for recursive computation
of (10), note that wk(i) can be expressed in the form

wk(i) =
1
2


e

jπ i
2(k+1) + e−

jπ i
2(k+1)


leading to

wk(i)wk(i − l) =
1
4
e

jπ i
k+1 e−

jπ l
2(k+1) +

1
4
e−

jπ i
k+1 e

jπ l
2(k+1)

+
1
2
cos

π l
2(k + 1)

.

Note that

Pl,k(t) =

k
i=−k+l

wk(i)wk(i − l)Hl(t + i)

where Hl(t + i) = y(t + i)yT(t + i − l). Let

Fl,k(t) =

k
i=−k+l

Hl(t + i)

Gl,k(t) =

k
i=−k+l

Hl(t + i)e
jπ i
k+1 .

Observe that both quantities defined above are recursively
computable

Fl,k(t + 1) = Fl,k(t) − Hl(t − k + l) + Hl(t + k + 1)

Gl,k(t + 1) = e−
jπ
k+1 Gl,k(t) + e

jπ l
k+1 Hl(t − k + l)

+ e
jπk
k+1 Hl(t + k + 1).

(23)
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The quantity Pl,k(t) can be obtained from

Pl,k(t) =
1
2
cos

π l
2(k + 1)

Fl,k(t) +
1
2
Re

Gl,k(t)e

−
jπ l

2(k+1)

. (24)

A single time update using (23)–(24) requires, for a selected
value of l, 11m2 real multiply–add operations. Note that the
computational load does not depend on the size of the analysis
interval. When the direct method (10) is used, the analogous count
is (2k + 1 − l)m2 per time update.

As all sliding window subtract–add algorithms, recursive al-
gorithms (23) are prone to diverge due to unbounded accumula-
tion of round-off errors. Therefore, to prevent this from happening,
they should be periodically (e.g. every 1 million steps or so) reset
by direct (nonrecursive) computation of the quantities Fl,k(t) and
Gl,k(t).

4. Selection of the estimation bandwidth

So farwe have assumed that the bandwidth parameter k is fixed
prior to autocovariance/spectrum estimation. For a nonstationary
process with constant-known ‘‘degree of nonstationarity’’ the op-
timal value of k, i.e., the one thatminimizes themean-squared esti-
mation error, can be found analytically (Dahlhaus & Giraitis, 1998).
Unfortunately, in practice such a prior knowledge is not available.
Additionally, the degree of signal nonstationaritymay itself change
with time. On the qualitative level, it is known that the optimal
value of the bandwidth parameter increases as the identified signal
becomesmore andmore stationary, and conversely—when the de-
gree of signal nonstationarity is high, short analysis windows may
be required to guarantee the best tradeoff between the bias com-
ponent of the mean-squared error (which grows with k) and its
variance component (which decays with k).

Rather than trying to design a single estimation algorithm
equipped with an adjustable bandwidth-controlling parameter,
we will consider a parallel estimation scheme made up of K
simultaneously working algorithms with different bandwidth
settings: ki, i = 1, . . . , K . The results yielded by the competing
algorithms will be combined in a way that takes into account their
locally assessed performance.

4.1. Cross-validation based approach

As a local performance measure one can use the sum of
‘‘squared’’ leave-one-out interpolation errors e◦

k(t) = y(t)−y◦

k(t),
wherey◦

k(t) denotes the estimate of y(t) based exclusively on k
samples preceding and k samples succeeding y(t). To derive the
suitable interpolation formula, we will first define the ‘‘holey’’
counterpart of the VAR model (11)

y(t) +

n
i=1

A◦

i,k(t)y(t − i) = ϵ◦(t), cov[ϵ◦(t)] =ρ◦

k(t) (25)

obtained in an analogous way as (11), except that the central
sample y(t) is excluded from the estimation process. The
corresponding parameter estimates can be obtained by solving the
modified set of Yule–Walker equations

[I,A◦

1,k(t), . . . ,A◦

n,k(t)] R◦

k(t) = [ρ◦

k(t),O, . . . ,O] (26)

where thematrix R◦

k(t) ismadeupof ‘‘holey’’ covariance estimates
[note that, according to our earlier assumptions, wk(0) = 1]

R◦

l,k(t) =
1
L◦

k
P◦

l,k(t) (27)
P◦

l,k(t) = Pl,k(t)

y(t)=0

=


Pl,k(t) − y(t)yT(t) l = 0

Pl,k(t) − y(t)yTk(t − l|t)
−yk(t + l|t)yT(t) 1 ≤ l ≤ k + 1

Pl,k(t) l > k + 1

(28)

L◦

k =

k
i=−k
i≠0

w2
k (i) = Lk − 1.

Based on (25), one arrives at the following interpolation formula
borrowed from the theory of stationary VAR processes [cf. (7) and
(8)]

y◦

k(t) = −


n

i=0

[A◦

i,k(t)]
TA◦

i,k(t)

−1 n
i=0

[A◦

i,k(t)]
Tp◦

i,k(t) (29)

where

p◦

i,k(t) =

n
l=0
l≠i

A◦

l,k(t)y(t + i − l), i = 0, . . . , n. (30)

Interpolation errors will be accumulated over a local evaluation
window T (t) = [t − d, t + d] of width D = 2d + 1 > m, forming
the matrix

Q◦

k(t) =


s∈T (t)

e◦

k(s)[e
◦

k(s)]
T.

At each time instant t the bandwidth parameter will be chosen
from the setK = {ki, i = 1, . . . , K} so as to ‘‘minimize’’ thematrix
Q◦

k(t), namelyk(t) = argmin
k∈K

det

Q◦

k(t)

. (31)

The corresponding spectral density estimate will take the formS(ω, t) =Sk(t)(ω, t). (32)

The procedure described above is based on the technique
known in statistics as cross-validation. In this approach the quality
of the model obtained for a given (training) dataset is judged
by checking its ability to ‘‘explain’’, e.g. predict, data samples
excluded from the estimation process (validation dataset) (Friedl
& Stampfer, 2002). When only one sample is excluded at a time –
as in the case considered – the procedure is known as a leave-one-
out cross-validation.

To reduce the estimation bias caused by the fact that the
‘‘central’’ sample y(t) is zeroed in (28), after calculating the
leave-one-out signal interpolation y◦

k(t), one can recompute the
covariance estimates setting y(t) toy◦

k(t) instead of 0:

R•

l,k(t) =
1
Lk

P•

l,k(t) (33)

P•

l,k(t) = Pl,k(t)

y(t)=y◦

k (t)

=


P◦

l,k(t) +y◦

k(t)[y◦

k(t)]
T l = 0

P◦

l,k(t) +y◦

k(t)y
T
k(t − l|t)

+yk(t + l|t)[y◦

k(t)]
T 1 ≤ l ≤ k + 1

P◦

l,k(t) l > k + 1.

(34)

The corresponding VAR model can be obtained by solving

[I,A•

1,k(t), . . . ,A•

n,k(t)] R•

k(t) = [ρ•

k(t),O, . . . ,O] (35)

where the block Toeplitz matrix R•

k(t), made up of the estimates
(33), has the same structure as R◦

k(t). Note that, similar to the
model resulting from (26), the corrected model is also ‘‘holey’’ in
the sense that its parameters do not depend on the central sample
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y(t). The idea of the correction described above goes back to Bunke,
Droge, and Polzehl (1999) where it was the cornerstone of the so-
called full cross-validatory analysis.

Using the corrected model, one can compute [in the same
way as described before—see (29) and (30)] the corrected signal
interpolationy•

k(t) and the associated interpolation error e•

k(t) =

y(t) −y•

k(t). Then, using the errors e•

k(t) in lieu of e◦

k(t), one can
select k by means of minimizing the determinant of the matrix

Q•

k(t) =


s∈T (t)

e•

k(s)[e
•

k(s)]
T.

4.2. Final prediction error based approach

Another approach to selection of the estimation bandwidth
is based on evaluation of predictive, rather than interpolation,
capabilities of the compared models. Denote by Yk(t) = {y(t −

k), . . . ,y(t+k)} another realization of the analyzed data sequence,
independent of the sequenceYk(t) = {y(t−k), . . . , y(t+k)} used
for identification purposes. As an alternative measure of fit, one
can adopt determinant of the following matrix of mean squared
prediction errors

δk(t) = E

[y(t) +9T

(t)θk(t)][y(t) +9T
(t)θk(t)]T


(36)

where the expectation is taken with respect to Yk(t) and Yk(t).
Note that the matrix δk(t) reflects prediction accuracy observed
when the model is verified using an independent dataset.

We will work out the estimate of δk(t) in the case whereθk(t)
is the WLS estimate given by (16), and the process {y(t)} can be
regarded as stationary in the analysis interval [t − k, t + k], i.e., it
is governed by (14).

First, under the assumptions made above and some additional
regression matrix invertibility conditions, such as those given in
Niedźwiecki and Guo (1991), one can show that (see Appendix A)

E[θk(t)] ∼= θ, cov[θk(t)] =
ρ ⊗ 8−1

0

Nk
+ o


1
Nk


(37)

where 80 = E[ϕ(t)ϕT(t)] and

Nk =


k

i=−k
vk(i)

2
k

i=−k
v2
k (i)

∼= k

 1
−1 h

2(x)dx
2

 1
−1 h

4(x)dx
(38)

denotes the equivalent width of the window {vk(i)}, or the
equivalent estimationmemory of theWLS algorithm (Niedźwiecki,
2000) (which in the literature on nonparametric spectrum
estimation is usually referred to as its equivalent noise bandwidth).

Denote by 1θk(t) =θk(t) − θ the parameter estimation error.
Based on (37), and on the fact that the quantitiesϵ(t) and9(t) are
mutually independent and independent ofθk(t), one obtains

δk(t) = E

[ε(t) +9T

(t)1θk(t)][ε(t) +9T
(t)1θk(t)]T


= ρ + E

9T
(t)1θk(t)1θT

k(t)9(t)


= ρ + E
9T

(t)cov[θk(t)]9(t)


∼= ρ +
1
Nk

E

[I ⊗ϕT(t)][ρ ⊗ 8−1

0 ][I ⊗ϕ(t)]


= ρ +
1
Nk

E

ρ ⊗ [ϕT(t)8−1

0 ϕ(t)]


where the last transition follows from the identity (A⊗B)(C⊗D) =

(AC) ⊗ (BD).
Since

E

ρ ⊗ [ϕT(t)8−1

0 ϕ(t)]


= ρ tr[8−1
0 E{ϕ(t)ϕT(t)}]

= ρ tr[8−1
0 80] = ρ mn

one finally arrives at

δk(t) ∼=


1 +

mn
Nk


ρ. (39)

Note that the term (mn/Nk)ρ in (39), which grows when
the estimation bandwidth decreases, can be interpreted as the
prediction ‘‘loss’’ due to inaccuracy of parameter estimates.

Another useful relationship can be obtained by examining the
WLS estimate of the driving noise covariance [which under (17) is
approximately equal to the YW estimate of the same quantity]

ρk(t) =
1
Lk

k
i=−k

vk(i)[y(t + i) + 9T(t + i)θk(t)]

× [y(t + i) + 9T(t + i)θk(t)]T (40)

where

Lk =

k
i=−k

vk(i) (41)

denotes the effective width of the window {vk(i)}.
It can be shown that under stationary conditions it holds (see

Appendix B)

E[ρk(t)] ∼=


1 −

mn
Nk


ρ. (42)

Combining (42) with (39), one arrives at the following estimate of
δk(t)

δk(t) =

1 +
mn
Nk

1 −
mn
Nk

ρk(t) (43)

leading tok(t) = argmin
k∈K

det[δk(t)]
= argmin

k∈K


1 +

mn
Nk

1 −
mn
Nk

m

det[ρk(t)] (44)

which can be recognized as the generalized version of the Akaike’s
multivariate final prediction error (MFPE) criterion (Akaike,
1971) proposed in Niedźwiecki (1984) (with a slightly different
justification) for model order selection.

While the quantity det[ρk(t)] in (44) tends to decrease when
the bandwidth parameter k decreases (reflecting decrease in
bias errors), the bandwidth-dependent multiplier behaves in the
opposite way (reflecting increase in variance errors). Hence, the
choice based on (44) allows one to balance the bias–variance
tradeoff. Note that thismechanism is similar to that observed in the
order selection case, where the residual noise variance decreases
and the multiplier increases with growing n.

4.3. Determinant or trace?

When designing the bandwidth/order selection criteria, one
can consider different scalar measures of the ‘magnitude’ of the
final prediction error matrix (43), determinant and trace being the
two obvious possibilities. To guarantee congruence between the
cross-validation approach and MFPE, we proposed to minimize
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determinant of the matrix Q◦

k(t). However, in principle, one can
also consider the following trace variant of (31)k(t) = argmin

k∈K
tr

Q◦

k(t)


= argmin
k∈K


s∈T (t)

∥e◦

k(s)∥
2. (45)

4.4. Optimization of the bandwidth selection procedures

In this section we will try to find how one should choose the
bandwidth parameters ki, i = 1, . . . , K in order to maximize ro-
bustness of the parallel estimation schemes described above. Our
considerations will be based on a hypothetical model of depen-
dence of the localmean-squared parameter estimation error on the
bandwidth parameter k. For univariate autoregressive processes
such dependencewas rigorously analyzed in Dahlhaus and Giraitis
(1998). Assuming that the AR model is uniformly stable (i.e., the
roots of the characteristic polynomial are uniformly bounded away
from the unit circle), and that parameter trajectories are suffi-
ciently smooth (uniformly bounded first, second and third deriva-
tives), it was shown that

E

∥θk(t) − θ(t)∥2


∼=

b1(t)
k

+ b2(t)k4 (46)

where the first term on the right hand side of (46) corresponds
to the variance component of the MSE, and the second term is its
(squared) bias component. The positive constants b1(t) and b2(t)
depend on the shape of the data taper function h(·) and on the rate
of signal nonstationaritymeasured by the second derivative of θ(t)
with respect to time (interestingly, but not surprisingly, the bias
error is zero if dθ(t)/dt ≠ 0 but d2θ(t)/dt2 = 0, i.e., if signal
parameters vary linearly with time). The optimal instantaneous
value kopt, i.e., the one that minimizes (46) with respect to k, is
given by3

kopt(t) =


b1(t)
4b2(t)

 1
5

. (47)

Of course, when the quantities b1(t) and b2(t) are unknown, which
is almost always the case in practice, one cannot use the analytical
formula (47).

Under the assumptions made in Dahlhaus and Giraitis (1998),
the optimal data window is given by

h(x) =


1 − x2, x ∈ [−1, 1] (48)

which can be recognized as the square root of the Epanechnikov
kernel (Epanechnikov, 1969), widely used in nonparametric
probability density estimation.

It should be stressed that the exact form of the bias–variance
tradeoff depends on the assumed degree of smoothness of
parameter changes. As shown in Niedźwiecki and Gackowski
(2011), when parameter trajectory can be modeled as a random
process with orthogonal increments (such as random walk), the
mean squared parameter estimation error can be expressed in the
form

E

∥θk(t) − θ(t)∥2


∼=

c1(t)
k

+ c2(t)k (49)

leading to kopt(t) = [c1(t)/c2(t)]1/2, and the optimal window
shape is two-sided exponential. Even though this result was
obtained for a different estimation problem – identification of a FIR

3 To avoid unnecessary complications, from this point on, kwill be regarded as a
real number; the approximate integer solution can be obtained by rounding kopt to
the nearest integer number.
systemusing themethod ofweighted least squares – its qualitative
implications seem to be valid also in the currently discussed case.

The analysis carried out below will be based on the following
more general model of the bias–variance tradeoff considered in
Stanković (2004)

E

∥θk(t) − θ(t)∥2


=

d1(t)
kp

+ d2(t)kr

where p, r ≥ 1 are integer numbers.
Assuming that d1(t) and d2(t) vary slowly with time, so that

in the analysis interval T (t) both quantities can be regarded as
(unknown) constants [d1(s) = d1, d2(s) = d2, s ∈ T (t)], our local
performance measure can be approximately written down in the
form

I(k, d1, d2) =
d1
kp

+ d2kr . (50)

For given values of d1 and d2 theminimumof I(k, d1, d2) is attained
for kopt = (pd1/rd2)1/(p+r), leading to

I(kopt, d1, d2) = d
r

p+r
1 d

p
p+r
2

p
r

 r
p+r

+


r
p

 p
p+r


.

Denote by δ = 1 + ε, where ε is a small positive constant,
the multiplier which allows one to specify what is meant by an
‘‘insignificant increase’’ of the performance measure. For example,
if insignificant changes are defined as those not exceeding 10% of
the optimal value, one should set δ = 1.1. To determine the range
of the values of k ∈ Ωk = [k, k] for which the performance of the
identification algorithm is ‘‘suboptimal’’ for fixed values of d1 and
d2, one should solve for k the inequality

I(k, d1, d2) ≤ δ min
k

I(k, d1, d2) = δI(kopt, d1, d2). (51)

The insensitivity zone Ωk can be widened if instead of a single
estimation algorithm, one uses K algorithms with different
bandwidth parameters k1 < k2 < · · · kK . If such a parallel
estimation scheme is equipped with an ideal switching rule,
i.e., the one that always selects the best performance, the
corresponding outcome is

I(K, d1, d2) = min{I(ki, d1, d2), ki ∈ K}

and the insensitivity zone takes the form ΩK =
K

i=1[ki, ki].
Consider the case where K = 2 (two algorithms working in

parallel) and k2 = γ k1, γ > 1. Denote by k∗ the coordinate
of the intersection point of the characteristics I(k1, d1, d2) and
I(k2, d1, d2). To maximize the size of the insensitivity zone while
preserving its compactness, the value of γ should be chosen so as
to guarantee that k1 = k2 = k∗ and (see Fig. 1)

I(k∗, d1, d2) = I(γ k∗, d1, d2) = δI(kopt, d1, d2). (52)

Solving (52), one obtains

k∗ =


d1(γ p

− 1)
d2γ p(γ r − 1)

 1
p+r

and

δ =


γ p(γ r

−1)
γ p−1

 p
p+r

+


γ p

−1
γ p(γ r−1)

 r
p+r


r
p

 p
p+r

+
 p
r

 r
p+r

. (53)

Note that the relationship between the insensitivity multiplier δ
and the bandwidth scaling coefficient γ , established above, does
not depend on d1 and d2 and hence it holds true for all values of
these constants (which are usually unknown).
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Fig. 1. Error characteristics corresponding to the ‘‘ideal’’ switching rule (K = 2).

Fig. 2. Dependence of γ on ε in two cases discussed in the paper.

From the discussion carried out above it is clear that for K > 2
one should set ki+1 = ki, i = 1, . . . , K − 1, which results in
ki+1 = γ ik1, i = 1, . . . , K − 1 and ΩK = [kK , k1], i.e., to maximize
robustness of the parallel estimation scheme, the consecutive
bandwidth parameters ki should form a geometric progression.

When γ obeys (53), the boundaries of the insensitivity zone,
determined by (52), can be expressed in the form

k =


r(γ p

− 1)
pγ p(γ r − 1)

 1
p+r

kopt, k =


rγ p(γ r

− 1)
p(γ p − 1)

 1
p+r

kopt.

Fig. 2 shows dependence of γ on ε in two cases discussed above.
For ε = 0.1 the corresponding values of γ obtained from (53) are
equal to 2.43 for p = r = 1, and 1.57 for p = 1, r = 4. We note
that for p = r = 1 such an inverse relationship can be established

analytically: γ =

√
ε2 + 2ε + ε + 1

2
.

5. Joint bandwidth and order selection

So far we have been assuming that the number of estimated
autocovariance matrices n, i.e., the order of the VARmodel, is fixed
prior to estimation. We will show that the proposed approaches
can be easily extended to joint bandwidth and order selection.

In the context of maximum entropy spectrum estimation,
selection of the model order is an important decision that must
be taken (Stoica & Moses, 1997). When the order is too small,
i.e., the VAR model is underfitted, some important information
about the resonant structure of the analyzed process may be lost.
If the order is too large, i.e., the corresponding model is overfitted,
some nonexistent spectral resonances may be detected leading to
false qualitative conclusions.
Suppose that, instead of a fixed-order model, for each
bandwidth parameter k, one considers a family of VAR models of
different orders n ∈ N = {1, . . . ,N} obtained by solving the
Yule–Walker equations of the form

[I,A1,k|n(t), . . . ,An,k|n(t)] Rk|n(t)
= [ρk|n(t),O, . . . ,O], n = 1, . . . ,N. (54)

The symbolAi,k|n(t) denotes the estimate of thematrix Ai obtained
for the model of order n and bandwidth k, and ρk|n(t) is the
corresponding estimate of the covariance matrix ρ—the additional
subscript n was introduced to distinguish between models of
different orders. Since the matrices Rk|n(t), n = 1, . . . ,N , made
up of the covariance estimates (9), are nested, i.e., Rk|n(t) ≺Rk|n+1(t), n = 1, . . . ,N − 1 (A ≺ B means that A is the principal
submatrix of B), signal identification can be carried out in an order-
recursive manner, i.e., for a given value of k, all VAR models of
orders n = 1, . . . ,N can be obtained during a single run of the
WWR algorithm.

Denote by e◦

k|n(t) the leave-one-out signal interpolation error
obtained (in the way described in the previous section) for the
model of order n and bandwidth k, and let

Q◦

k|n(t) =


s∈T (t)

e◦

k|n(s)[e
◦

k|n(s)]
T.

The spectral density estimate can be obtained fromS(ω, t) =Sk(t)|n(t)(ω, t) (55)

where

{k(t),n(t)} = argmin
k∈K
n∈N

det

Q◦

k|n(t)

. (56)

When the full cross-validatory analysis is applied, the matrix
Q◦

k|n(t) in (56) should be replaced with Q•

k|n(t). Finally, when the
prediction-oriented approach is used, the joint order/bandwidth
selection rule becomes

{k(t),n(t)} = argmin
k∈K
n∈N


1 +

mn
Nk

1 −
mn
Nk

m

det[ρk|n(t)]. (57)

6. Simulation results

To evaluate different approaches to bandwidth and order se-
lection, one needs information about evolution of true parame-
ters and true instantaneous spectrum of the analyzed process. This
precludes using real-world processes as the ‘‘ground truth’’ model
behind such nonstationary data is usually not known. To gener-
ate artificial VAR process that has some practical relevance and
yet fulfills the above requirement, we used the ‘‘morphing’’ tech-
nique. First, 3 time-invariant ‘‘anchor’’ VAR models (A, B, C), of or-
der n = 4, were obtained by performing local identification of a
stereo (m = 2) audio signal. The identified fragments differed in
their resonance structures – see Fig. 3. Anchor models were spec-
ified in the lattice form {11, . . . , 1n,R0}, where 1i, i = 1, . . . , n
denote matrices of normalized reflection coefficients (partial cor-
relation coefficients) which can be obtained as a byproduct of the
WWR algorithm – see Complement C8.6 in Söderström and Stoica
(1988). The lattice representation of a stable VAR model is unique
and can be uniquely transformed into the direct representation
{A1, . . .An, ρ}. It is known that for a stable VARmodel (such as the
one obtained using the WWR algorithm) it holds that σmax(1i) <
1, i = 1, . . . , n, where σmax(1i) denotes the largest singular value
of the matrix 1i, i.e., its spectral norm.

The time-variantmodel used to generate artificial VAR datawas
obtained by morphing one anchor model into another one. For
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Fig. 3. Spectral density functions (autospectra) corresponding to 3 anchor models.
Fig. 4. Morphing scenario used in simulation tests.

example, the transition from the model {1A
1 , . . . , 1A

4 ,R
A
0}, valid at

the instant t1, to the model {1B
1, . . . , 1B

4,R
B
0}, valid at the instant

t2, was realized using the following transformations

R0(t) = µ(t)RA
0 + [1 − µ(t)]RB

0

1i(t) = µ(t)1A
i + [1 − µ(t)]1B

i

i = 1, . . . , 4, t ∈ [t1, t2]

where µ(t) = (t2 − t)/(t2 − t1).
Using the triangle inequality, which holds for all matrix norms,

one can easily show that σmax[1i(t)] < 1, i = 1, . . . , 4, t ∈

[t1, t2], which means that the resulting time-variant model is at
all times stable. It should be stressed that model stability is not
guaranteed if the morphing technique is used to merge direct VAR
representations.

The applied morphing scenario is symbolically depicted in
Fig. 4. The generated signal {y(t), t = 1, . . . , Ts} has periods
of stationarity (A–A, B–B, C–C) interleaved with periods of
nonstationary behavior, both slower (A–B, C–A, B–C) and faster
(B–C, A–B, C–A). Data generation starts 1000 instants prior to t = 1
and continues for 1000 instants after t = Ts (in both cases using the
model A) so that no matter what bandwidth and model order, the
estimation process and evaluation of its results can be in all cases
started at the instant 1 and ended at the instant Ts.

To check performance of the compared algorithms under dif-
ferent rates of signal nonstationarity, 5 different values of Ts were
adopted (2100, 4200, 8400, 16800 and 33600) corresponding to
5 different speeds of parameter variation, further denoted by S1,
S2, S3, S4 and S5, respectively (S1 corresponds to the highest rate of
nonstationarity and S5-to the lowest rate).

Two instantaneous performance measures were used to
evaluate simulation results: the squared parameter estimation
error

dPAR(t) = ∥θ(t) − θ(t)∥2

which quantifies discrepancy between the estimated model and
the true model in the time domain, and the relative entropy rate
(RER) (Ferrante, Masiero, & Pavon, 2012)

dRER(t) =
1
4π

 π

−π


tr

S(ω, t) −S(ω, t)

S−1(ω, t)


− log det

S(ω, t)S−1(ω, t)


dω
Table 1
Estimation results obtained for 5 windows of the same equivalent width
(Epanechnikov, Hann, rectangular, Bartlett, Gauss) under 5 speeds of parameter
variation (S1, S2, S3, S4, S5). The upper table shows mean relative entropy rates
(RER) and the lower one—mean squared parameter estimation errors (PAR). The
best results in each column are shown in boldface.

{v(t)} S1 S2 S3 S4 S5

RER

Epan. 0.647 0.444 0.375 0.366 0.380
Hann 0.432 0.169 0.077 0.051 0.050
rect. 1.830 1.690 1.642 1.650 1.681
Bartlett 0.586 0.368 0.299 0.287 0.301
Gauss 0.764 0.576 0.512 0.503 0.519

PAR

Epan. 5.584 6.299 7.172 7.903 9.074
Hann 1.513 0.594 0.325 0.269 0.332
rect. 30.145 33.215 34.751 35.075 35.047
Bartlett 4.151 4.404 5.193 5.777 6.659
Gauss 8.110 9.800 11.285 12.286 13.316

which is a multivariate extension of the Itakura–Saito spectral
distortion measure.

Final evaluation was based on comparison of the mean scores
obtained after combined time and ensemble averaging of dPAR(t)
and dRER(t) (over t ∈ [1, Ts] and 100 independent realizations of
{y(t)}).
Experiment 1

The aim of this experiment was to check the influence of the
window shape on estimation accuracy. Five different lag windows
v(t) (Epanechnikov, Hann, rectangular, Bartlett and Gauss) were
applied with the same equivalent width equal to 301 samples. The
corresponding data tapers had the form w(t) =

√
v(t). Table 1

summarizes results obtained for different rates of nonstationarity.
It can be easily seen that estimation results depend quite strongly
on the window shape. When the window is rectangular, i.e., no
taper is applied, modeling errors are much higher than those ob-
tained for bell-shaped windows. The Hann window (i.e., cosinu-
soidal taper) consistently yielded the best results, also in other
simulation experiments, not reported here.

Interestingly, the Hann window systematically yielded better
results than the Epanechnikovwindow recommended in Dahlhaus
and Giraitis (1998), which is most probably caused by the fact
that, unlike the first case, in the second case the derivative of the
window prototyping function h2(x) is not equal to zero at both
ends of the analysis interval. Based on this experience, in all further
experiments the cosinusoidal data taper was used.
Experiment 2

The purpose of the second experiment was to check joint
bandwidth and order selection properties of the proposed
approaches. The parallel estimation scheme was made up of 5
algorithms with bandwidth parameters set to k1 = 100, k2 = 150,
k3 = 225, k4 = 337 and k5 = 505 (γ = 1.5). For cosinusoidal
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Table 2
Comparison of mean RER scores obtained for 3 approaches to joint bandwidth and
order selection (cross-validation—CV◦ , full cross-validation—CV• , final prediction
error—MFPE) under 5 speeds of parameter variation (S1, . . . , S5); k1, . . . , k5
denote different bandwidths of fixed-bandwidth–fixed-order algorithms working
in parallel (the best scores are shown in boldface) and K1 = {k1, k2}, K2 =

{k1, k2, k3}, K3 = {k1, k2, k3, k4}, K4 = {k1, k2, k3, k4, k5} denote different
configurations of bandwidth-order selection algorithms. The best results among
CV◦ , CV• and MFPE (for each configuration) are shown in boldface. GT denotes
ground truth results, i.e., results obtained for the true model order (n = 4) under
optimal switching.

k S1 S2 S3 S4 S5

Joint bandwidth and order selection (RER measure)

n = 4

k1 0.261 0.180 0.159 0.155 0.159
k2 0.291 0.138 0.094 0.083 0.087
k3 0.432 0.169 0.077 0.051 0.050
k4 0.705 0.269 0.097 0.044 0.032
k5 1.093 0.460 0.164 0.056 0.026

n = 10

k1 0.378 0.311 0.289 0.283 0.285
k2 0.340 0.208 0.170 0.159 0.162
k3 0.432 0.200 0.121 0.098 0.097
k4 0.654 0.269 0.120 0.072 0.062
k5 1.001 0.424 0.166 0.072 0.045

GT

K1 0.218 0.119 0.090 0.082 0.087
K2 0.207 0.099 0.061 0.048 0.050
K3 0.206 0.093 0.050 0.033 0.030
K4 0.206 0.093 0.047 0.027 0.020

CV◦

K1 0.780 0.665 0.628 0.622 0.666
K2 0.859 0.655 0.587 0.563 0.597
K3 1.117 0.776 0.644 0.601 0.614
K4 1.446 0.953 0.738 0.664 0.652

CV•

K1 0.415 0.289 0.258 0.252 0.252
K2 0.429 0.230 0.170 0.155 0.153
K3 0.552 0.253 0.142 0.107 0.102
K4 0.715 0.343 0.160 0.095 0.078

MFPE

K1 0.246 0.149 0.116 0.104 0.106
K2 0.245 0.136 0.095 0.077 0.074
K3 0.255 0.134 0.089 0.066 0.059
K4 0.286 0.136 0.088 0.062 0.052

taper the corresponding equivalent window widths are given by
Nk = 4(k + 1)/3. For both cross-validation approaches the width
of the evaluation window was set to D = 2d+ 1 = 41; this choice
is by nomeans critical as almost identical results were obtained for
all values of D from the interval [31, 51].

Tables 2 and 3 show the mean RER and PAR scores obtained
for 4 different configurations of the compared bandwidth selection
algorithms (K1 = {k1, k2}, K2 = {k1, k2, k3}, K3 =

{k1, k2, k3, k4}, K4 = {k1, k2, k3, k4, k5}) and 5 speeds of
parameter variation. Additionally, they show the scores obtained
when the order is set to its maximum value n = 10 and to the
true value n = 4, as well as the ground truth scores corresponding
to the best switching scenario (determined experimentally). The
average relative standard deviations of the results shown in
Tables 2 and 3 are equal to 8.6% and 16.4%, respectively.

For all rates of parameter variation (S1, . . . , S5) and all
configurations of the parallel estimation scheme (K1, . . . , K4), the
best results are provided by the MFPE-based approach. Note that
in majority of cases these results are better, or at least comparable,
with those yielded by non-adaptive, fixed-bandwidth–fixed-order
algorithms incorporated in the parallel scheme.
Experiment 3

The last experiment aimed at examining the evolution of
joint bandwidth and order selection decisions in the borderline
situation where both the coefficients and the order of the
underlying signal model change abruptly [we note that the
case of isolated parameter jumps is covered by the theory of
locally stationary processes—see Dahlhaus, 2009]. According to the
simulation scenario, depicted in Fig. 5, at the instant t = 501
Table 3
Comparison of mean PAR scores obtained for 3 approaches to joint bandwidth and
order selection (cross-validation—CV◦ , full cross-validation—CV• , final prediction
error—MFPE) under 5 speeds of parameter variation (S1, . . . , S5); k1, . . . , k5
denote different bandwidths of fixed-bandwidth–fixed-order algorithms working
in parallel (the best scores are shown in boldface) and K1 = {k1, k2}, K2 =

{k1, k2, k3}, K3 = {k1, k2, k3, k4}, K4 = {k1, k2, k3, k4, k5} denote different
configurations of bandwidth-order selection algorithms. The best results among
CV◦ , CV• and MFPE (for each configuration) are shown in boldface. GT denotes
ground truth results, i.e., results obtained for the true model order (n = 4) under
optimal switching.

k S1 S2 S3 S4 S5

Joint bandwidth and order selection (PAR measure)

n = 4

k1 0.994 0.827 0.896 0.985 1.286
k2 1.034 0.539 0.463 0.471 0.612
k3 1.513 0.594 0.325 0.269 0.332
k4 2.486 0.926 0.340 0.200 0.190
k5 4.389 1.510 0.536 0.203 0.132

n = 10

k1 9.108 8.250 8.022 8.007 8.503
k2 7.531 5.955 5.526 5.356 5.564
k3 7.056 4.667 3.924 3.623 3.673
k4 7.683 4.217 2.974 2.511 2.445
k5 9.446 4.445 2.599 1.860 1.665

GT

K1 0.720 0.453 0.429 0.449 0.589
K2 0.658 0.339 0.259 0.238 0.307
K3 0.640 0.301 0.190 0.153 0.162
K4 0.629 0.291 0.163 0.113 0.099

CV◦

K1 9.298 9.432 9.545 9.695 10.488
K2 10.362 9.913 9.679 9.613 10.213
K3 12.451 11.439 10.874 10.636 10.984
K4 14.384 12.805 12.225 11.907 11.987

CV•

K1 4.286 3.872 4.012 4.263 4.460
K2 3.415 2.575 2.515 2.597 2.759
K3 3.929 2.283 1.815 1.704 1.831
K4 4.956 2.666 1.707 1.355 1.387

MFPE

K1 2.888 1.603 1.228 1.156 1.449
K2 2.920 1.477 0.943 0.759 0.854
K3 3.049 1.474 0.874 0.620 0.603
K4 3.516 1.499 0.863 0.581 0.489

the second-order forming filter (D) was switched to the fourth-
order filter (E). Data generation was started 500 instants prior to
t = 1 and continued for 500 instants after t = 1000. Evolution of
the autospectrum of one of the signal channels is shown in Fig. 5.
The parallel estimation scheme was made up of 5 algorithms with
bandwidth parameters set to k1 = 44, k2 = 66, k3 = 100,
k4 = 150 and k5 = 225. Fig. 6 shows the locally time averaged
histograms of the results of bandwidth and order selection (each
time bin covers 20 consecutive time instants) obtained for 100
process realizations.

The results obtained in the MFPE case are satisfactory. Exactly
as one would expect, the estimation bandwidth parameter is
gradually decreased prior to the jump and gradually increased
after the jump. Similarly, most of the time the correct model
order is selected. Note that in the close vicinity of the jump, for
t ∈ [460, 540], MFPE selects high-order models. Since in this
time interval even the shortest analyzed data frames, i.e., those
corresponding to k1 = 44, have a mixed spectral content, such
behavior is fully understandable.

When the full cross-validation approach is used, both band-
width and order selection statistics are less satisfactory than those
observed for the MFPE approach.

Finally, when the standard cross-validation approach is applied,
the results are unsatisfactory in both aspects—the estimation
bandwidth parameter is overestimated and the model order is
quite often underestimated.
Summary of simulation results

The main conclusions that can be drawn from our simulation
study can be summarized as follows:
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Fig. 5. Simulation scenario in the case of abrupt model change (top figure) and the
corresponding time-varying autospectrum of one of the signal channels (bottom
figure).

Fig. 6. Locally time averaged histograms of the results of bandwidth selection
(upper figures) and order selection (lower figures).

(1) When VAR model is identified using the WWR algorithm,
data tapering is an important and highly recommended
preprocessing step. The proposed cosinusoidal taper not only
allows for recursive computation of covariance estimates
needed to run the WWR algorithm, but it also offers very
good estimation bias–variance tradeoff compared with other
windows of the same equivalent width.

(2) The multivariate version of the generalized Akaike’s final
prediction error (MFPE) criterion, originally proposed as a
tool for model order selection only, yields very good results
when applied to joint bandwidth and order selection. It
is also attractive from the computational viewpoint as all
quantities needed to evaluate the MFPE statistics are provided
(at no additional computational cost) by the corresponding
fixed-bandwidthWWR algorithms incorporated in the parallel
estimation scheme.

(3) Both cross-validation approaches discussed in the paper yield
worse results than the MFPE-based approach. Additionally,
they are computationally much more involved. The full cross-
validation approach performs better than its standard version.

(4) When applied to joint bandwidth and order selection, the
MFPE-based parallel estimation schemes usually outperform
the non-adaptive fixed-bandwidth–fixed-order algorithms.

(5) Adoption of the trace variants of the bandwidth/order selection
criteria yielded results that were slightly inferior to those
obtained using (56) and (57).

7. Conclusion

The problem of identification of nonstationary multivariate au-
toregressive process was considered and solved using the parallel
estimation technique. It was shown that the most important task
of parallel estimation – adaptive selection of the estimation band-
width and order of the local autoregressive model – can be accom-
plished using the multivariate version of the generalized Akaike’s
final prediction error criterion. The resulting estimation scheme
usually outperforms the non-adaptive fixed-bandwidth–fixed-
order algorithms it is made up of. It is computationally attractive
and does not rely on any subjectively determined quantities such
as decision thresholds, confidence levels, etc.

The two alternative approaches presented in the paper, based
on the concept of cross-validation, yield worse results than the
final prediction error based criterion.

Appendix A. Outline of derivation of (37)

Straightforward calculations show that under (14) the solution
of (16) obeysθk(t) = θ − [I ⊗ 8−1

k (t)]ξk(t), where

8k(t) =
1
Lk

k
i=−k

vk(i)ϕ(t + i)ϕT(t + i)

ξk(t) =
1
Lk

k
i=−k

vk(i)ϵ(t + i) ⊗ ϕ(t + i).

Using one of the generalized versions of the strong law of large
numbers for weighted sums of random variables [see e.g. Taylor,
1978], one can show that lim k→∞

a.s.
8k(t) = E[8k(t)] = 80,

and hence lim k→∞

a.s.
8−1

k (t) = 8−1
0 , which justifies the following

approximation (valid as long as the effective width of the window
is sufficiently large):θk(t) − θ ∼= −[I ⊗ 8−1

0 ]ξk(t). Based on this
approximation, one obtains E[θk(t)] ∼= θ and

cov[θk(t)] ∼= [I ⊗ 8−1
0 ]0k(t)[I ⊗ 8−1

0 ] (58)

where

0k(t) = E{ξk(t)ξ
T
k(t)} =

1
L2k

k
i1=−k

k
i2=−k

vk(i1)vk(i2)

× E{[ϵ(t + i1)ϵT(t + i2)] ⊗ [ϕ(t + i1)ϕT(t + i2)]}

=
1
L2k

k
i=−k

v2
k (i)[E{ϵ(t + i)ϵT(t + i)}]

⊗ [E{ϕ(t + i)ϕT(t + i)}] =
1
Nk

ρ ⊗ 80. (59)

The third transition in (59) stems from the fact that E[ϵ(t)] = 0 ∀t ,
ϵ(t + i1) and ϵ(t + i2) are mutually independent for i1 ≠ i2, and
ϵ(t + i1) is independent of ϕ(t + i2) for i1 ≥ i2.

Combining (58) with (59), one obtains

cov[θk(t)] ∼=
1
Nk

ρ ⊗ 8−1
0 . (60)
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To show that the approximation in (60) holds up to terms of order
o(1/Nk), some additional technical assumptions must be made
guaranteeing stochastic invertibility of the matrix 8k(t) for finite
values of k.

Appendix B. Outline of derivation of (37)

Letρij,k(t) = [ρk(t)]ij. Straightforward but tedious calculations
lead to

ρij,k(t) =
1
Lk

k
l=−k

vk(l)ϵi(t + l)ϵj(t + l)

− ξTj,k(t)8
−1
k (t)ξi,k(t) = J1(t) + J2(t)

where ξi,k(t) =
1
Lk

k
l=−k vk(l)ϵi(t+ l)ϕ(t+ l). Note that E[J1(t)] =

ρij. Furthermore, using the approximation 8−1
k (t) ∼= 8−1

0 , one
obtains E[J2(t)] ∼= −tr[8−1

0 E{ξi,k(t)ξ
T
j,k(t)}]. According to (59), it

holds that E{ξi,k(t)ξ
T
j,k(t)} = [0k(t)]ij =

ρij
Nk

80, leading to

E[ρij,k(t)] ∼=


1 −

mn
Nk


ρij, i, j = 1, . . . ,m

which is equivalent to (37).
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