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Abstract

A semi-analytical solution of simpli�ed Navier-Stokes and Fourier-
Kirchho¤ equations describing free convective heat transfer from a round
isothermal surface slightly inclined from the vertical is presented. The
solution is based on the assumption, typical for natural convection, that
the velocity component normal to the surface is negligibly small in com-
parison to the tangential one. Next we neglect the nonlinear inertia force
term, but more real mass continuity is taken into account in control vol-
ume approach. This assumption do not permit to use stream function.
The results for a vertical round plate in the form of the boundary layer
thickness and mean Nusselt number are obtained in explicit form. They
are in good agreement with literature solutions for vertical rectangular
or square plates. The correction function to the Nusselt number for in-
clined plate is obtained in the analytical integral form that is calculated
numerically and compared with the experimental values. Analysis of the
results for the correction function indicate that heat transfer is greater for
a positive plate inclination than for a negative one. The solution analysis
also suggests that there are angles for some Rayleigh numbers at which
heat transfer reaches a maximum.

Introduction

The results of theoretical and experimental studies of free convective heat trans-
fer from heated objects of di¤erent con�gurations are widely published and are
very useful for determining convective heat losses from apparatus, devices, pipes
in industrial or energy installations, electronic equipment, buildings and so on
[1]. The simplest and best-studied con�guration between heated objects is the
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one with a plain surface. Such surfaces represent parts of more complicated
objects and are thus important in industrial applications. The geometry of �at
surfaces can be di¤erent but most basic results relate to rectangular plates.
There are numerous theoretical and experimental papers, the results of which
are presented in [2], [3], [4] and [5]. In earlier research Lewandowski and Kubski
[8], [14] presented the results of theoretical and experimental investigations for
upward-facing horizontal plates and for vertical ones.
Heat transfer from a surface of circular geometry is also very important in

many applications. Several experimental studies have been devoted to station-
ary natural convection heat transfer from such surfaces. For a horizontal plate,
Kadambi and Drake [10] proposed the Nusselt - Rayleigh relation of experi-
mental results for air. Faw and Dullforce [11] studied this same case but using
interferometry. With regard to theoretical models, Schulenberg [12] proposed
similarity solutions for the region around the stagnation point on a circular
plate for two cases of isothermal plates and one of constant heat �ux. Fujii
et al. [13] presented a theoretical study of natural convection heat transfer
from downward-facing horizontal surfaces with uniform heat �ux. With respect
to cones, Lewandowski and Leble [7], derived an analytical expression for the
boundary layer thickness at the surface of a horizontal cone. This solution for
an apical angle approaching � and a cone height approaching zero applies to a
vertical circular plate. They also give the Nusselt-Rayleigh relation in explicit
form via special functions.
Warneford and Fussey [15] performed experiments in air for a plate inclined

at 85 deg from the vertical. Hassan and Mohamed studied natural convection
from inclined plates and cones in [16]. In the recent experimental paper [15]
Radziemska and Lewandowski presented results of experimental investigations
of natural convection from circular plates facing upwards at arbitrary angles.
In the present paper we develop the theory initiated in [8] and continued in

[7], by deriving approximate formulas for the natural convection boundary layer
and heat transfer from discs slightly inclined at some angle �. The small para-
meter we introduce is simply tan�; and the approximations arise as expansion
in power series of this parameter. Averaging along the plate surface leads to
the mean Nusselt numbers (Nu) for given Rayleigh numbers (Ra) and angles
in the form of ordinary integrals of local Nusselt number across the plate, para-
metrized by the Ra and angle, which are calculated numerically and compared
with the experiments of [15], [6], [9], [18] and [19].
The �rst section formulates the problem. The second section establishes

the model and basic equation for the boundary layer thickness. The third and
fourth ones solve the basic equation with a small parameter tan� and the re-
sults obtained for the zero and �rst approximations. The �nal section describes
experimental studies of natural convective heat transfer from round isothermal
plates in the vertical and at a slight angle to the vertical and compares them
against the theory. In conclusion we point out the main practical aspects of this
investigation.
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Figure 1: Coordinate system of free convective heat transfer from a sloping
isothermal round plate. The black colour depicts not the thickness of the plate
its thermal insulation.

1 Problem formulation

The physical model of natural convection heat transfer from a round isothermal
plate at a slight angle from the vertical with proposed denotations is shown in
Fig.1. The problem is 3D but the �nal aim of our consideration is heat transfer
from the whole plate, hence the contribution of the boundary vicinity is small.
Next, convection is forced by buoyancy that is x-directed, even in the case of a
slightly inclined plate. Therefore we neglect derivatives with respect to y when
formulating the equations. In three-dimensional local Cartesian co-ordinate
space (x�; y�) the plate is described by the equation:

x2�
�2
+
y2�
�2
= 1 (1)

Each point on this surface is described by (x�; y�) that satisfy (1) or by (�,
�), where:
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x� = � � sin(�) � cos(�); y� = � � cos(�) (2)

At any arbitrary chosen point M on the surface one can distinguish two
tangent unit vectors �� and � � and one normal � to the surface. The relations
for the vectors �� and � � are:

�� =
@�r

@�
; � � =

@�r

@�
(3)

where: �r = (x�; y�)

��x =
@x�
@�

= sin(�) � cos(�); ��y =
@y�
@�

= cos(�) (4)

� �x =
@x�
@�

= � � cos(�) � cos(�); � �y =
@y�
@�

= �� � sin(�) (5)

The unity vector � connected with �� and � �, is calculated as follows:

�� =
n

n
(6)

where the direction and parameter of the normal to the surface vector are:

n = ��� � ��� =

24 sin(�) � cos(�)
cos(�)
0

35�
24 � � cos(�) � cos(�)

�� � sin(�)
0

35 =
24 0

0
� � cos(�)

35 ;
(7)

n = � � cos(�) (8)

and

�� =

24 0
0
1

35 (9)

The choice of the variables as in the Fig.1 gives the vector of acceleration of
gravity as:

�g =

24 �g � cos(�)
0

g � sin(�)

35 ; (10)

which compared with (9) leads to:

(�g; ��) = g � sin(�): (11)

The tangent unity vector �g is calculated in the same way as �:

��g =
s

s
; (12)
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Figure 2: Graphic explanation of control surfaces A and dAk on the heated
surface under consideration.

where:

s = �g � (�g; ��) � �� =

24 �g � cos(�)
0
0

35 ; (13)

s = g � cos(�) (14)

and

��g =

24 �1
0
0

35 (15)

The unit vector �g determines line S on the surface (Fig.1, 2). At every
point Mi the components of gravity g� and g� are normal and tangential to the
curves Si (Fig.2). In view of this property we decided to consider and solve the
Navier-Stokes and Fourier-Kirchho¤ equations, as well as the continuity, in the
form of conservation laws ((33)�(37)) for the control volume limited by control
surfaces A and dAk (See Fig.2), in the two characteristic directions � and � .
In this notation and after applying the simpli�cations typical for natural

convection ([1], [2], [3]):
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- a �uid is incompressible and its �ow is laminar, but we taken into account
density variations due to temperature change (33); The last assumption do not
allow to introduce stream function,
- inertia forces are negligible small in comparison with viscosity forces (see for
example the equation (3.3a) from [1]),
- the physical properties of the �uid in boundary layer and in the undisturbed
region (index 1) are constant,
- the tangent to the heated surface component of the velocity inside the bound-
ary layer is signi�cantly greater than the normal one W�>>W�. Two marginal
regions are excluded from this assumption: 1) where the boundary layer arises
� = ��=2 and 2) where it is transferred into a free buoyant plume � = �=2.
- the temperature of the lateral surface Tw is constant,
- the thicknesses of the thermal and hydraulic boundary layers are the same,
and the Navier-Stokes equations can be written as:

� � @
2W�

@�2
+ g� � � � (T � T1)�

1

�
� @p
@�g

= 0; (16)

g� � � � (T � T1)�
1

�
� @p
@�

= 0: (17)

From equation (9) and (10) and equations (9) and (15) the normal and
tangent components of gravity can be calculated as:

g� = �� � �g =

24 0
0
1

35 �
24 �g � cos(�)

0
g � sin(�)

35 = g � sin(�); (18)

g� = ��g � �g =

24 �1
0
0

35 �
24 �g � cos(�)

0
g � sin(�)

35 = g � cos(�): (19)

2 Temperature pro�le model

We assume that the relation for non-dimentional temperature distribution inside
the boundary layer (18) is a satisfactory solution of Fourier-Kirchho¤ equation
[4], expressed in terms of the variable � along the �� :

� =
(T � T1)
(Tw � T1)

=
�
1� �

�

�2
or (T � T1) = �T �

�
1� �

�

�2
(20)

The introduction (18), (19) and (20) into (16) and (17) gives:

� �
@2W�g

@�2g
+ g � � ��T �

�
1� �

�

�2
� cos(�)� 1

�
� @p
@�g

= 0; (21)

g � � ��T � sin(�) �
�
1� �

�

�2
=
1

�
� @p
@�
: (22)
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Integration of equation (22) for the boundary condition � = �, p� = p1(�=�)

gives a formula for the pressure distribution in the boundary layer directed
tangentially to the heating surface.

p� = p1(�=�) + � � g � � ��T � sin(�) �
�
� � �

2

�
+
�3

3�2
� �

3

�
: (23)

Pressure p1(�=�) represents the excess of pressure over the pressure at the
border of the boundary layer on the following level, which is a function of the
�uid layer thickness over the heating surface. Because our considerations are
concerned with unlimited space, the value of this pressure is constant.
Di¤erentiating equation (23) with respect to �g (directional derivative) gives:

@p

@�g
=
@p

@�
� @�
@�g

; (24)

where:

@p

@�
= g��T sin(�) �

�
�2

�2
� 2�

3

3�3
� 1
3

�
d�

d�
(25)

Calculation the @�/@� is more complicated and need some explanations.
From the enlarged detail "a�in Fig.1 and Fig.2 its obvious that:

d��g =
d�

sin(�)
; (26)

� =
�0

cos(�)
(27)

and

d� =
�0 � sin(�)
cos2(�)

d�: (28)

where: �0 is the distance of the curve S from the central point of the plate
(see Fig.2).
Introducing (26) into (28) leads to:

d�

d��g
=
cos2(�)

�0
(29)

Introducing (25) and (29) into (24) gives:

dp

d�g
= g � � ��T � sin(�) � cos

2(�)

�0
�
�
�2

�2
� 2�

3

3�3
� 1
3

�
d�

d�
: (30)

Substituting equation (30) into equation (16) leads to:

��
@2W�g

@�2
+g��T

�
cos(�)

�
1� �

�

�2
+ sin(�) � cos

2(�)

�0
�
�
�2

�2
� 2�

3

3�3
� 1
3

�
d�

d�

�
= 0:

(31)
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For the boundary condition (for � = 0; �, W� = 0) the double integration of
equation (31) allows the formula of the local and next mean velocity in boundary
layer to be calculated:

W�g =
g � � ��T � �2

�
�
�
cos(�)

40
� sin(�) � cos

2(�)

72 � �0
� d�
d�

�
: (32)

The change in mass �ow intensity is

dm = d
�
A �W�g � �

�
; (33)

where A is the cross-section area of the boundary layer (see Fig.2).The
amount of heat necessary to cause this change in mass �ux is

dQ = �i � dm = � � cp �
�
T � T1

�
� d(A �W�g ): (34)

Substitution of the mean temperature

�
T � T1

�
=
1

�
�
�Z
0

�T �
�
1� �

�

�2
� d� = �T

3
(35)

gives

dQ =
1

3
� � cp ��T � d(A �W�g ): (36)

The heat �ux described by equation (36) can be compared to the heat �ux
determined by Newton�s equation (37):

dQ = � ��T � dAk = �� �
�
@�

@�g

�
�g=0

��T � dAk; (37)

where Ak is the control surface of the heated surface (see Fig.2).
From the simplifying assumption of the temperature pro�le inside boundary

layer (20), the dimensionless temperature gradient on the heated surface can be
evaluated as �

@�

@�

�
�=0

= �2
�
: (38)

By substituting equation (38) into equation (37) and equating the result
with equation (36), one obtains the dependence (39)

1

6 � � � � � cp � � � d(A �W�g ) = dAk: (39)

Introduction (10) and (13) creates coordinate of the line S in three-dimensional
Cartesian space.

sx = �g � cos(�); sy = 0 and sz = 0 (40)
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Di¤erentiating equations (2) gives the coordinate of tangent vector to the
line S:

dx�
d�

=
d�

d�
�sin(�) �cos(�)+� �cos(�) �cos(�); dy�

d�
=
dr

d�
�cos(�)�� �sin(�): (41)

Because the ratio of coordinate (40) and (41) should be constant (s:xd�=dx =
s:yd�=dy = s

:
xdy=d� = s

:
ydx=d� = 0), one can found the equation (42) and then,

after its integrating it, relationship (43):

d�

d�
= � � tan(�) (42)

From Fig.2 and relation (29) we see that the cross-sectional area (A) and
the control surface (dAk) are (see (27)):

A = d�0 � � (43)

dAk = d�0 � d�g =
d�0 � �0 � d�
cos2(�)

(44)

Substituting equations (32), (43) and (44) into equation (39) leads to the
non-linear di¤erential equation:

K� � � � d
�
X1 � �3 �X�

2 � �3 �
d�

d�

�
= X3 � d� (45)

where:

K� =
RaR
6 �R3 =

� � cp
6 � � �

g � � ��T
�

;X1 =
cos(�)

40
; X�

2 =
sin(�) � cos2(�)

72 � �0
; X3 =

�0
cos2(�)
(46)

and the Rayleigh number is conventionally de�ned as:

RaR =
g � � ��T �R3

� � a : (47)

Equation (45) is transformed as

K � � � d
�
�3 �X2 � �3 �

d�

d�

�
= X3 � d� (48)

where the rescaled parameter K and X2 are:

K = K� �X1 =
cos(�)

40

RaR
6 �R3 ; X2 =

X�
2

X1
= :
10 � tan(�) � cos2(�)

9 � �0
(49)
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The zero approximation solution

Di¤erentiating (48) we get the second order di¤erential equation:

K � � �
 
3�2

d�

d�
+

�
10 tan� cos � sin �

9�0

�
�3
d�

d�
�
�
5 tan(�) � cos2(�)

9 � �0

�
�2
�
d�

d�

�2
�
�
5 tan(�) � cos2(�)

9 � �0

�
�3
d2�

d�2

!
(50)

=
�0

cos2(�)
:

Let us introduce the new variables

y(�) = K1=3 � � and r = K1=3�0 (51)

that gives
3@y(�)@� � r

y3(�) cos2 �

� tan�
"
5 cos2 �

9r

�
@y (�)

@�

�2
� 5 cos

2 �

9r
y (�)

@2y (�)

@�@�
+
10 cos � sin �

9r
y (�)

@y (�)

@�

#
= 0:

(52)
The solution for slightly inclined, round vertical plate in the �rst order in

small parameter tan� is described by the �rst two terms of the equation:

3
@y (�)

@�
� r

(cos2 �) (y (�))
3 = 0 (53)

Integrating equation (53) gives:

y (�) =

�
4

3
r (tan(�) + tan(�m))

�1=4
(54)

which corresponds to the original form of boundary layer thickness (compare
with [5]). This fact and, general good results against experiments (see the
Table.2 and plots Fig.5, Fig.6 at the end of our article) con�rm the quality of
approximations setup of our work.

� =

�
4

3K
�0 (tan(�) + tan(�m))

� 1
4

: (55)

The local heat transfer coe¢ cient is determined by:

�M =
2 � �
�

= 2 � � �
�

3 �K
4 � �0 (tan(�) + tan(�m))

� 1
4

(56)

The non-dimentional form of the local and subsequently of the mean value
of this coe¢ cient is expressed by the Nusselt number. The local Nusselt number
NuM = �M �R

� de�nes its mean value by the surface integral:
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Figure 3: The de�nition of variables and model of their integration on the
surface of the round plate.

Nu0 =
1

�R2

Z
�

NuM � d� = 2

�R2

RZ
0

d�0

2�
p
R2��20Z
0

�M (X; �0) �R
�

dX; (57)

where according to Fig.3 the integration variable is de�ned by:

X = �0 (tan(�) + tan(�m)) (58)

Taking into account (55) and (56) in (57) the mean Nusselt number for the
whole surface of the slightly inclined vertical plate after the �rst di¤erentiation
gives:

Nu0 =

�
3 �K
4

� 1
4 2

� �R

RZ
0

0BB@
2�
p
R2��20Z
0

dX

X
1
4

1CCA d�0 = �3 �K4
� 1

4 8 � 2 34
3 � � �R

RZ
0

�
R2 � �20

� 3
8 d�0

(59)
The introduction of a new variable (60) and parameters (49) into (59) leads

to:
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��0
R

�2
= � and d�0 =

R � d�
2 � � 12

(60)

Nu0 = (RaR cos(�))
1=4 2

� � 2401=4

�
8

3

�3=4 1Z
0

�p
1� �

�3=4 d�
�
1
2

(61)

The solution of the integral in equation (61) with the use of Euler functions
B and � takes the value:

1Z
0

�p
1� �

�3=4 d�
�
1
2

= B

�
1

2
;
11

8

�
=
�
�
1
2

�
�( 118 )

�
�
15
8

� = 1: 652 5 (62)

Thus, the zero approximation solution (for � = 0) of convective heat transfer
from vertical slightly inclined round isothermal plate is:

Nu0 =
2

� � 2401=4

�
8

3

�3=4
2

�
�1: 652 5�(RaR cos(�))1=4 = 0:557 8�(RaR cos(�))1=4

(63)

3 The �rst approximation solution

The �rst approximation for the boundary layer thickness is de�ned by:

y (�) = y0 (�) + (tan�) y1 (�) ; (64)

where y0 (�) is determined as the zero approximation of the theory: y0 (�) =�
4
3r (tan(�) + tan(�m))

�1=4
see equation (54). The correction term y1 (�) tan�

contains the small parameter tan�. The equation for the function y1 (�) is
derived by substituting (64) into (52) taking into account the �rst term in
tan�

27r @y1(�)@�
4

q
4
3r (tan �+ tan �m)+

�5 cos2 �
�
r2

3

(tan2 �+1)
2

( 43 r(tan �+tan �m))
7
4
� 2r(tan �)

3
tan2 �+1

( 43 r(tan �+tan �m))
3
4

�q
4
3r (tan �+ tan �m)+

� 5r2 cos2 �
9

(tan2 �+1)
2

( 43 r(tan �+tan �m))
5
4
+27r2y1 (�)

tan2 �+1

( 43 r(tan �+tan �m))
3
4
� 10r(cos � sin �)

3
tan2 �+1

4
p

4
3 r(tan �+tan �m)

=

0:
Transition to the variable with taking into account (52)�
4

3
r (tan(�) + tan(�m))

�1=4
=

�
4

3
K1=3�0 (tan(�) + tan(�m))

�1=4
= s (65)

after some algebra gives the equation for y1 (�) :
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81s3
@y1 (s)

@s
+ 243s2y1 (s)� 20 = 0 (66)

Its solution gives

y1 (s) =
C

s3
+

20

81s2
(67)

We choose the integration constant C = 0, cutting the leading singularity,
having y (�) = s+ (tan�) 20

81s2 .

y (�) =

�
4

3
K1=3�0 (tan(�) + tan(�m))

�1=4
+ (tan�) y1 (�) ; (68)

which corresponds to (55) and to the original form of the boundary layer
thickness (compare with [5])

� = :K�1=3

 �
4

3
K1=3�0 (tan(�) + tan(�m))

�1=4
+ (tan�) y1 (�)

!
: (69)

Further transformations, analogous to (56)-(59) leads to:

�M (X; �0) =
2 � �

K�1=3
��

4
3K

1=3�0 (tan(�) + tan(�m))
�1=4

+ (tan�) y1 (�)
� (70)

Nu = 81
12

�R

RZ
0

d�0

�
4
3K

1=32�
p
R2��20

�1=4Z
0

s5

81s3 + 20 tan�
ds: (71)

Calculating the internal integral by transition to the variable � (60) yields:

Nu = 2
�

1R
0

�
4
3K

1=32 �R
p
1� �

�3=4 �d�
�
1
2
+

� 40
81� tan�

1R
0

�
ln
���� 43K1=32 �R

p
1� �

�3=4
+ 40

81� tan�
���� ln �� 2081 tan���� d�

�
1
2
:

Account for the zero approximation expression for the mean Nusselt number
(61) gives:

Nu = Nu0 �
40

81�
tan�

1Z
0

ln

����1 + 2: 147 2tan�
(RaR cos�)

1=4
(1� �)

3
8

���� d�� 12 : (72)

This means that the dependence the mean Nusselt number Nu on Rayleigh
RaR takes the form:

Nu = 0:557 8 � (RaR cos(�))1=4 � �(�;RaR); (73)
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the function �(�;RaR) will be presented below numerically.
In literature [20], [21], [22] and [23] the problem of natural convection from

the heated inclined surfaces is considered with account of nonlinear inertia term.
However the resulting system of ordinary di¤erential equations is too compli-
cated to be solved analytically. In the book [20] the table of velocity and tem-
perature gradients on the plate surface is presented (Table 5.2.1, see also in the
[21]). The values of the parameters are numerically calculated in the mentioned
works by means of approximate expansion method at small angles of plate in-
clination. By means of the given table perhaps is di¢ cult to solve practical
problems.
We also obtain the nonlinear equation for the width of boundary layer 51

and solve it by the approximation method that is described above. This method
allows to obtain the solution presented in our paper and may be considered as a
base for engineering. The advantage of our method of the problem solution is in
compact explicit form of resulting expressions. The form allows us to evaluate
heat transfer intensity as function of Rayleigh number by integration over the
whole palate within some inclinations range (72). This and the generally good
results against experiments (see Table 2 and the plots on Figs.5 and 6 at the
end of our article) con�rm the quality of the approximations setup of our work.

4 The numerical evaluation against experiment

The function �(�;RaR) calculated from (61) for the range of angles � from -20
to 20 deg and the Rayleigh numbers RaR from 103 do 108 are presented in Table
1. and Fig.4.
Table.1 The values of function �(�;RaR) calculated numerically for RaR.=

103� 108 and -20 � � � 20 deg
�(�;RaR)

� RaR = 10
3 104 105 106 107 108

-20 -0.3552 -0.421 11 -0.48606 -0.550 50 -0.61464 -0.678 63
-10 -0.21283 -0.244 21 -0.27538 -0.306 43 -0.33742 -0.368 37
-5 -0.12462 -0.140 07 -0.15547 -0.170 83 -0.18619 -0.201 53
-2 -5.958E-2 -6.571 6E-2 -7.185E-2 -7. 797 2E-2 -8.409E-2 -9.021 6E-2
-1 -3.348E-2 -3.653 9E-2 -3.960E-2 -4. 266 1E-2 -4.572E-2 -4.878 1E-2
0 7.019E-5 7.325E-5 7.630E-5 7.936E-5 8.242E-5 8.548E-5
1 3.350E-2 3.655 1E-2 3.960 8E-2 4.266 5E-2 4.572E-2 4.878 2E-2
2 5.966E-2 6.576 3E-2 7.187 3E-2 7.798 7E-2 8. 410 3E-2 9.022 1E-2
5 0.12515 0.140 36 0.15563 0.170 93 0.18624 0.201 56
10 0.21498 0.245 42 0.27606 0.306 81 0.33763 0.368 49
20 0.36446 0.426 31 0.48898 0.552 14 0.61557 0.679 15
The plots below are related to the comparison of our solution with experi-

ments. It is important to note that the experimental presentation implies re-
calculation of Ra and Nu on the basis of the authors�de�nitions. In all cited
articles [6], [9], [18] and [19] on experimental studies, the authors use the diam-
eter of the vertical plate D as a characteristic linear dimension in the Nusselt -
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Figure 4: The plots represent results of evaluation of the correction � as function
of angle � for given values of Rayleigh number (a) and as function of Rayleigh
number for given values of the angle (b).
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Figure 5: Theory vs. experiment [18,19] for air: the dependence of mean Nusselt
number on the Rayleigh number from 103 till 106 for zero and �20 deg angles

Rayleigh relation (compare with our de�nition 61). Therefore, we have recalcu-
lated all experimental points of RaD and criterion relations NuD = CDRa

1=4
D

in Figs 5, 6 using the factors RaR = RaD=21=4 and NuR = (CD=21=4)Ra
1=4
R :

Recalculated in this way the analytical, numerical and experimental results
of other authors lead to Nusselt -Rayleigh relations which are converge with our
solution for limiting case of inclined plate - vertical ones (Nu = 0:558Ra1=4R ):

Nu = 0:461Ra
1=4
R analytical solution [6] (-17.4%),

Nu = 0:484Ra
1=4
R experiments for water (-15.3%), Nu = 0:551Ra1=4R (-1.3%)

experiments for air D = 0:07m [6] ,
Nu = 0:587Ra

1=4
R numerical solution [6] (+4.9%),

Nu = 0:642Ra
1=4
R analytical solution of horizontal cone for apex angle zero

(vertical plate) [7] (+13.1%),
Nu = 0:336Ra

1=4
R the mean correlation of all results of free convection in

water [9] (-66.1%). The discrepancy is the last case is explained by the method
that the authors used to average all measurement results obtained for inclined
round plates with a slope varying from � = 0 (vertical) to � = �=2 (horizontal
position).
In papers [18] and [19] the exponents n in Nusselt-Rayleigh relations are

di¤erent from n 6= 1=4 which does not allow one to convert them using the
factor 21=4:Accordingly, individual experimental dots of Ra values in Fig 5 and
Fig. 6 were respectively converted according to the formula:RaRi = RaDi=21=4:
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Figure 6: Theory vs. experiment and numerics [6, 9, 18]: the dependence of the
mean Nusselt number on the Rayleigh number from 105 till 108 for zero and
�20 deg angles.

Both �gures present the results of measurements of free convective heat
transfer from isothermal round plates in vertical or inclined position mainly in
air and water [6], [9]. For better presentation, the wide of Rayleigh numbers
range is divided in two parts from 103 till 106 and from 105 till 108 - to include
the results of Hassani and Hollands [18].
To validate the theoretical results on the basis of (72); (73) we numeri-

cally build the correspondent Tables 1 and 2. and plot dependences in the
conventional form of mean Nusselt - Rayleigh numbers relations. For better
presentation we show the solution for a vertical plate � = 0
NuR = 0:558Ra

0:25
R

and for border values of angles � = �20 deg
NuR = 0:461Ra0:259R for � = �20 deg and Nu = 0:640Ra0:218R for

� = 20deg :
Table.2 The values of mean Nusselt numbers Nu calculated numerically

from (72); (73) for 103 � RaR � 108 and �20 � � � 20 deg
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Figure 7: Plots showing the dependences of the mean Nusselt number on angles
for a given Rayleigh number in graphical and algebraic form.

Nu
� RaR = 10

3 104 105 106 107 108

-20 3, 4435 5, 913 10, 252 17, 918 31, 498 55, 598
-10 3, 3376 5, 8009 10, 157 17, 878 31, 585 55, 935
-5 3, 2584 5, 7128 10, 065 17, 793 31, 524 55, 928
-2 3, 1958 5, 6429 9, 9896 17, 714 31, 447 55, 862
-1 3, 1701 5, 6143 9, 9585 17, 681 31, 412 55, 827
0 3, 1367 5, 5779 9, 9192 17, 639 31, 367 55, 780
1 3, 1031 5, 5412 9, 8793 17, 596 31, 32 55, 729
2 3, 0766 5, 5114 9, 8459 17, 559 31, 279 55, 681
5 3, 0086 5, 4323 9, 7542 17, 451 31, 151 55, 525
10 2, 9098 5, 3113 9, 6053 17, 265 30, 910 55, 198
20 2, 7239 5, 0656 9, 2772 16, 815 30, 268 54, 24
The results de�nitely point a more e¤ective heat exchange for inclined plates

of positive angles compared with vertical one. The opposite situation gives less
e¤ective convective heat transfer, as clearly evident from our theoretical solution
(72) because the extra term � is proportional to the odd function of �:
This conclusion encouraged us to investigate the dependence of the correction

term on � and RaR in more details. The results of these investigations are shown
in Fig.7.
The resulting plots at some Rayleigh numbers exhibit maximum of the func-

18

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


tion Nu(�), which allows the optimal angle of inclination of the heated plate
to be chose for practical use. This conclusion, however, requires experimental
con�rmation.

5 Conclusion

To conclude, we wish to stress that the main result of our investigation, the
rather compact formulas (72) and (73), is validated by theoretical and exper-
imental analysis in the validity range �20 deg < � < 20 deg. The results of
numerical evaluation and graphical presentation give the user tool for practical
application in engineering for a given angle and Rayleigh number ranges.
Analysis of our solution also indicate that heat transfer is greater for a

positive plate inclination (� < 0) than for a negative one (� > 0) and that are
angles for some Rayleigh numbers at which heat transfer reaches a maximum.
Equation (52), which we derived in this paper, gives a more exact dependence

of the correction on angle � and Rayleigh number, but its order is two and
the presence of non-linearity seriously complicates its solution. Moreover, the
validity of the whole theory is restricted by the approximation we used: for large
angles it is necessary to take both velocity components into account.

6 Nomenclature

a thermal di¤usivity (m2/s)
A control surface across the boundary layer (m2)
B Euler function (62) ( - )
cp speci�c heat at constant pressure (J/(kg�K))
dAk control surface of heated surface (m2)
g acceleration due to gravity (m/s2)
K parameter (49) ( - )
m ..mass (kg)
Nu = ��R

� Nusselt number ( - )
Q heat �ux (W)
p pressure (N/m2)
R radius of the plate (m)
Ra Rayleigh number (47) (-)
T temperature (oC or K)
�T temperature di¤erence (K)
W velocity of the �uid (m/s)
x; y; z Cartesian co-ordinates and distances (m)
X integration variable (58) and Fig.3
Greek symbols
� angle of plate inclination (deg)
� heat transfer coe¢ cient (W/(m2�K))
� average volumetric thermal expansion coe¢ cient (1/K)
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� boundary layer thickness (m)
� angular coordinate (deg)
� thermal conductivity of the �uid (W/mK)
� kinematic viscosity of the �uid (m2/s)�
� radial distance (m)
� normal to the surface unity vector ( - )vector
� tangent to the surface unity vector ( - )
� Euler function (62) ( - )
� dimensionless temperature de�ned by (20) ( - )

References

[1] Y.Jaluria.:Natural Convection Heat and Mass Transfer; Pergamon Press,
Oxford, 1980.

[2] Latif M. Jiji.: Heat Convection, Springer-Verlag Berlin Heidelberg, 2009.

[3] M.Favre-Marinet, S.Tardu, Convective Heat Transfer. Solved Problems,
ISTE Ltd, John Wiley & Sons, Inc., 2009

[4] Bosworth, R. L. C., Heat Transfer Phenomena, Wiley, New York, 1952.

[5] S.W.Churchill.: Free convection around immersed bodies, 2.5 Single - Phase
Convective Heat Transfer Hemisphere Publishing Corporation, 1983.

[6] W.M.Lewandowski, E.Radziemska; Heat transfer by free convection from
an isothermal vertical round plate in unlimited space, Applied Energy 68
(2001) 347-366

[7] S.Leble, W.M.Lewandowski, A theoretical consideration of a free convective
boundary layer on an isothermal horizontal conic, Applied Mathematical
Modelling 28 (2004) 305-321

[8] W.M. Lewandowski.: Natural convection heat transfer from plate of �nite
dimensions, International Journal of Heat and Mass Transfer, Vol. 34, No.
3, 1991, pp. 875�885

[9] E.Radziemska, W.M.Lewandowski; Experimental Investigations of Natural
Convection from Circular Plates at Variable inclination, JOURNAL OF
THERMOPHYSICS AND HEAT TRANSFER Vol. 21, No. 4, October�
December 2007

[10] Kadambi, V., and Drake, R. M., �Free Convection Heat Transfer from
Horizontal Surfaces for Prescribed Variations in Surface Temperature and
Mass Flow Through the Surface,� Princeton University, TR Mechanical
Engineering HT-1, 1960.

20

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


[11] Faw, R. E., and Dullforce, T. A., �Holographic Interferometric Measure-
ment of Convective Heat Transport Beneath a Heated Horizontal Circular
Plate in Air,� International Journal of Heat and Mass Transfer, Vol. 25,
No. 8, 1982, pp. 1157�1166.

[12] Schulenberg, T., �Natural Convection Heat Transfer Below Downward-
Facing Horizontal Surfaces,�International Journal of Heat and Mass Trans-
fer, Vol. 28, No. 2, 1985, pp. 467�477

[13] Fujii, T., Honda, H., and Morioka, I., �A Theoretical Study of Natural
Convection Heat Transfer from Downward-Facing Horizontal Surfaces with
Uniform Heat Flux,�International Journal of Heat and Mass Transfer, Vol.
16, No. 3, 1973, pp. 611�62

[14] Lewandowski, W. M., and Kubski, P., �Methodical Investigation of Free
Convection from Vertical and Horizontal Plates,�Wärme-und Sto¤überta-
gung, Vol. 17, No. 3, 1983, pp. 147�154.

[15] Warneford, I. P., and Fussey, D. E., �Natural Convection from a Constant-
Heat-Flux Inclined Flat Plate,�Proceedings of the Fifth International Heat
Transfer Conference, 1974.

[16] Hassan, K. E., and Mohamed, S. A., �Natural Convection at Inclined Plates
and Cones,� PCH. Physico-Chemical Hydrodynamics, Vol. 5, Nos. 2/4,
1984, pp. 299.

[17] Al-Arabi, M., and El-Riedy, M., �Natural Convection Heat Transfer from
Isothermal Horizontal Plates of Di¤erent Shapes,�International Journal of
Heat and Mass Transfer, Vol. 19, No. 12, 1976, pp. 1399�1404.

[18] A.V.Hassani, K.G.T.Hollands, A simple method for estimating natural con-
vection heat transfer from bodies of arbitrary shape, 24th National Heat
Transfer Conference, Pittsburg, Pennsylvania, August 9-12, 1987.

[19] C.J.Kobus, G.L.Wedekind, An empirical correlation for natural convec-
tion heat transfer from thin isothermal circular disks at arbitrary angles
of inclination, International Journal of Heat and Mass Transfer 45 (2002)
1159-1163.

[20] B.Gebhart, Y.Jaluria, R.I.Mahajan, B.Sammakia, Buoyancy-Inducted
Flows and Transport, Springer, (1988).

[21] Hasan, M. M., and Eichhorn, R. (1979). J. Heat Transfer 101, 642.

[22] Sparrow, E. M ., and Yu, H. S. (1971). J. Heat Transfer 93, 328.

[23] Minkowycz, W. J., and Cheng, P. (1976). Int. J. Heat Mass Transfer 19,
805.

21

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl



