Anisotropic Orlicz-Sobolev spaces of vector valued functions and Lagrange equations

M. Chmara^{a,*}, J. Maksymiuk^a

^aDepartment of Technical Physics and Applied Mathematics, Gdańsk University of Technology, Narutowicza 11/12, 80-952 Gdańsk, Poland

Abstract

In this paper we study some properties of anisotropic Orlicz and Orlicz-Sobolev spaces of vector valued functions for a special class of G-functions. We introduce a variational setting for a class of Lagrangian Systems. We give conditions which ensure that the principal part of variational functional is finitely defined and continuously differentiable on Orlicz-Sobolev space.

Keywords: anisotropic Orlicz space, anisotropic Orlicz-Sobolev space,

Lagrange equations, variational functional

2010 MSC: 46E30, 46E40

1. Introduction

In this paper we make some preliminary steps for variational analysis in anisotropic Orlicz-Sobolev spaces of vector valued functions. We consider the Euler-Lagrange equation

$$\frac{d}{dt}L_v(t, u(t), \dot{u}(t)) = L_x(t, u(t), \dot{u}(t)), \quad t \in (a, b)$$
(1)

where Lagrangian is of the form L(t, x, v) = F(t, x, v) + V(t, x).

If $F(v) = \frac{1}{2}|v|^2$ then the equation (1) reduces to $\ddot{u}(t) + \nabla V(t, u(t)) = 0$. One can consider more general case $F(v) = \phi(|v|)$, where ϕ is convex and nonnegative. In the above cases F does not depend on v directly but rather on its norm |v| and the growth of F is the same in all directions, i.e. F has isotropic growth. Equation (1) with Lagrangian $L(t, x, v) = \frac{1}{p}|v|^p + V(t, x)$ has been studied by

^{*}corresponding author

 $[\]label{eq:mail_addresses: mchmara@mif.pg.gda.pl} $$Email\ addresses: $$ mchmara@mif.pg.gda.pl\ (M.\ Chmara), jmaksymiuk@mif.pg.gda.pl\ (J.\ Maksymiuk) $$$

many authors under different conditions. The classical reference is [1]. isotropic Orlicz-Sobolev space setting was considered in [2].

We are interested in anisotropic case. This means that F depends on all components of v not only on |v| and has different growth in different directions. A simple example of such function is $F(v) = \sum_{i=1}^{N} |v_i|^{p_i}$ or $F(v) = \sum_{i=1}^{N} \phi_i(|v_i|)$, where ϕ_i are N-functions. We wish to consider more general situation. We assume that $F: [a, b] \times \mathbb{R}^N \times \mathbb{R}^N \to \mathbb{R}$ satisfies

- (F_1) $F \in C^1$,
- (F_2) |F(t,x,v)| < a(|x|)(b(t) + G(v)),
- $(F_3) |F_x(t,x,v)| \le a(|x|)(b(t) + G(v)),$
- (F_4) $G^*(F_v(t, x, v)) \le a(|x|)(c(t) + G^*(\nabla G(v))),$

where $a \in C(\mathbb{R}_+, \mathbb{R}_+)$, $b, c \in \mathbf{L}^1(I, \mathbb{R}_+)$ and $G: \mathbb{R}^N \to \mathbb{R}$ is a G-function. Conditions (F_1) – (F_4) are direct generalization of standard growth conditions from [1] (see also [2]). We show (see Theorem 5.7) that under these conditions the functional $\mathcal{I} \colon \mathbf{W}^1 \mathbf{L}^G \to \mathbb{R}$ given by

$$\mathcal{I}(u) = \int_{I} F(t, u, \dot{u}) dt$$

is continuously differentiable.

We restrict our considerations to a special class of G-functions. Here $G: \mathbb{R}^n \to \mathbb{R}^n$ $[0,\infty)$ is convex, G(-x)=G(x), supercoercive, G(0)=0 and satisfies Δ_2 and ∇_2 conditions. We define the anisotropic Orlicz space to be

$$\mathbf{L}^{G}(I, \mathbb{R}^{N}) = \{u \colon I \to \mathbb{R}^{N} \colon \int_{I} G(u) \, dt < \infty\}.$$

The Orlicz space \mathbf{L}^G equipped with the Luxemburg norm

$$||u||_{\mathbf{L}^G} = \inf \left\{ \alpha > 0 \colon \int_I G\left(\frac{u}{\alpha}\right) dt \le 1 \right\}$$

is a reflexive Banach space. An important example of Orlicz space is classical Lebesgue \mathbf{L}^p space, defined by $G(x) = \frac{1}{p}|x|^p$. In this case, the Luxemburg norm and the standard \mathbf{L}^p norm are equivalent. Therefore, Orlicz spaces can be viewed as a straightforward generalization of \mathbf{L}^p spaces.

Properties of N-functions and Orlicz spaces of real-valued functions has been studied in great details in monographs [3, 4, 5] and [6]. The standard references for vector-valued case are [7, 8, 9] and [10, 11] for Banach-space valued functions. In [7, 8] author considers a class of G-functions together with a uniformity conditions

which, for example, excludes the function $G(x) = \sum |x_i|^{p_i}$ unless $1 < p_1 = \cdots =$ $p_N < \infty$. Moreover G is not necessarily assumed to be an even function. As was pointed out in [11], if G is not even then \mathbf{L}^G is no longer a vector space (see also [10, Example 2.1]).

Our strong conditions on G allow us to work in Orlicz spaces without worry about some technical difficulties arising in general case. For example, it is well known that the set $\mathbf{L}^G(I,\mathbb{R}^N)$ is a vector space if and only if G satisfies Δ_2 condition. Otherwise \mathbf{L}^G is only a convex set. Another difficulty is the convergence notion. In Lebesgue spaces $||u_n - u||_{\mathbf{L}^p} \to 0$ means simply $\int |u_n - u|^p \to 0$. For arbitrary G-function G, convergence in Luxemburg norm is not equivalent to $\int G(u_n - u) dt \to 0$ unless G satisfies Δ_2 . The Δ_2 condition is also crucial for separability and reflexivity of \mathbf{L}^G .

The main consequence of anisotropic nature of G is the lack of monotonicity of the norm. It is no longer true that $|u| \leq |v|$ implies $||u||_{\mathbf{L}^G} \leq ||v||_{\mathbf{L}^G}$. In anisotropic case, standard dominance condition $|u_n| \leq f$ does not implies convergence in \mathbf{L}^G norm and must be replaced by $G(u_n) \leq f$ (see Theorem 3.17).

For every G there exist $p, q \in (1, \infty)$ such that $\mathbf{L}^q \hookrightarrow \mathbf{L}^G \hookrightarrow \mathbf{L}^p$. If G(x) = $\sum |x_i|^{p_i}$ then \mathbf{L}^G can be identified with the product of \mathbf{L}^{p_i} but in many cases an anisotropic Orlicz Space is not equal to the space $\mathbf{L}^{p_1} \times \mathbf{L}^{p_2} \times ... \times \mathbf{L}^{p_N}$ (see Example 3.7).

To give a proper variational setting for equation (1) we introduce a notion of an anisotropic Orlicz-Sobolev space $\mathbf{W}^1 \mathbf{L}^G$ of vector-valued functions. It is defined to be

$$\mathbf{W}^1 \mathbf{L}^G(I, \mathbb{R}^N) = \{ u \in \mathbf{L}^G(I, \mathbb{R}^N) \colon \dot{u} \in \mathbf{L}^G(I, \mathbb{R}^N) \}$$

with the norm

$$\|u\|_{\mathbf{W}^1 \, \mathbf{L}^G} = \|u\|_{\mathbf{L}^G} + \|\dot{u}\|_{\mathbf{L}^G}$$

To the authors best knowledge there is no reference for the case of anisotropic norm and vector-valued functions of one variable. The references for other cases are [2, 9, 12, 13, 14, 15, 16, 17, 18, 19].

In [9] and [18] the space $H^0(G,\Omega)$, $\Omega \subset \mathbb{R}^n$ is defined as a completion of $C_0^1(\Omega,\mathbb{R}^n)$ under norm $||u||_{H^0(G,\Omega)} = ||Du||_{G,\Omega}$. It is classical result due to Trudinger $H^0(G,\Omega) \hookrightarrow L_A(\Omega)$, where A is some N-function (see also Cianchi [14]).

In [17] and [19] the anisotropic Orlicz-Sobolev space W^1L_G is defined for Gfunction $G: \mathbb{R}^{n+1} \to [0, \infty]$ as a space of weakly differentiable functions $u: \mathbb{R}^n \supset$ $\Omega \to \mathbb{R}$ such that $(u, D_1 u, D_2 u, ..., D_n u)$ belongs to the Orlicz space generated by G. A norm for W^1L_G is given by

$$||u||_{1,G,\Omega} = ||(u,Du)||_{G,\Omega}.$$

In [12] we can find definition of isotropic Orlicz-Sobolev space of real valued functions

$$W_A^1(\Omega) = \{ u \in \Omega \to \mathbb{R} \text{ measurable } : u, |\nabla u| \in L_A \},$$

where L_A is Orlicz Space and A is an N-function.

In [2] the isotropic Orlicz-Sobolev space of vector-valued functions is defined to be a space of absolutely continuous functions $u:[0,T]\to\mathbb{R}^d$ such that u and \dot{u} belongs to Orlicz space generated by an N-function. Similar treatment can be found in [20].

2. G-functions

Let $\langle \cdot, \cdot \rangle$ denote the standard inner product on \mathbb{R}^N and $|\cdot|$ is the induced norm. We assume that $G: \mathbb{R}^N \to [0, \infty)$ satisfies the following conditions:

- (G_1) G(0) = 0,
- (G_2) G is convex,
- (G_3) G is even,
- (G_4) G is supercoercive:

$$\lim_{|x| \to \infty} \frac{G(x)}{|x|} = \infty,$$

 (G_5) G satisfies the Δ_2 condition:

$$\exists_{K_1 \ge 2} \exists_{M_1 > 0} \forall_{|x| \ge M_1} G(2x) \le K_1 G(x),$$
 (\Delta_2)

 (G_6) G satisfies the ∇_2 condition:

$$\exists_{K_2 \ge 1} \ \exists_{M_2 > 0} \ \forall_{|x| \ge M_2} \ G(x) \le \frac{1}{2K_2} G(K_2 x). \tag{V_2}$$

A function G is a G-function in the sense of Trudinger [9]. In general, Gfunction can be unbounded on bounded sets and need not satisfy conditions (G_4) - (G_6) but only $\lim_{x\to\infty} G(x) = \infty$. A G-function of one variable is called N-function. Some typical examples of G are:

- 1. $G_p(x) = \frac{1}{p}|x|^p$, 1 ,
- 2. $G(x) = \sum_{i=1}^{N} G_{p_i}(x_i), 1 < p_i < \infty,$
- 3. $G(x_1, x_2) = (x_1 x_2)^2 + x_2^4$.

A function G can be equal to zero in some neighborhood of 0. So that a function

$$G(x) = \begin{cases} 0 & |x| \le 1\\ |x|^2 - 1 & |x| > 1 \end{cases}$$

is also admissible. Condition Δ_2 implies that G is of polynomial growth (see Lemma 2.4 below and [3]). A function $f: \mathbb{R}^2 \to \mathbb{R}$ $f(x) = e^{|x|} - |x| - 1$ does not satisfy Δ_2 .

Since G is convex and finite on \mathbb{R}^n , G is locally Lipschitz and therefore continuous. Note that for every $x \in \mathbb{R}^N$

$$G(\alpha x) \le \alpha G(x)$$
, if $0 \le \alpha \le 1$, $\alpha G(x) \le G(\alpha x)$, if $1 \le \alpha$.

We get immediately that G is non-decreasing along any half-line through the origin i.e. for every $x \in \mathbb{R}^N$

$$0 < \alpha \le \beta \implies G(\alpha x) \le G(\beta x).$$
 (2)

Our assumptions on G imply that for every $x_0 \in \mathbb{R}^N$ there exists $a \in \mathbb{R}^N$ and $b \in \mathbb{R}$ such that for all $x \in \mathbb{R}^N$

$$\langle a, x_0 \rangle + b = G(x_0)$$
 and $\langle a, x \rangle + b \leq G(x)$.

From this, we can easily obtain the Jensen integral inequality. Let $I \subset \mathbb{R}$ be a finite interval and let $u \in \mathbf{L}^1(I, \mathbb{R}^N)$. Then

$$G\left(\frac{1}{\mu(I)}\int_I u\,dt\right) \le \frac{1}{\mu(I)}\int_I G(u)\,dt.$$

We will often make use of the following simple observation.

Proposition 2.1. For all $\alpha \in \mathbb{R}$ there exists $K_1(\alpha) > 0$ such that

$$G(\alpha x) \leq K_1(\alpha)G(x)$$

for all $|x| \geq M_1$.

In fact, the above proposition provides a characterization of Δ_2 (see [7, 11]). It follows that for every $\alpha \in \mathbb{R}$ there exists $C_{\alpha} > 0$ such that for $x \in \mathbb{R}^N$

$$G(\alpha x) \leq C_{\alpha} + K_1(\alpha)G(x).$$

We recall a notion of Fenchel conjugate. Define $G^*: \mathbb{R}^N \to [0, \infty)$ by

$$G^*(y) := \sup_{x \in \mathbb{R}^N} \{ \langle x, y \rangle - G(x) \}.$$

A function G^* is called Fenchel conjugate of G. As an immediate consequence of definition we have the so called Fenchel inequality:

$$\forall_{x,y \in \mathbb{R}^N} \ \langle x, y \rangle \le G(x) + G^*(y).$$

Consider arbitrary $f: \mathbb{R}^N \to [0, \infty)$. It is obvious that the conjugate function f^* is always convex. But in general f^* need not be continuous, finite or coercive, even if f is. From the other hand, it is well known that if f is convex and l.s.c. then $f^* \not\equiv \infty$ and $(f^*)^* = f$.

Example 2.2.

1. If

$$g(x) = \begin{cases} 0 & |x| \le 1\\ \infty & |x| > 1 \end{cases}$$

then $g^*(x) = |x|$. Note that g and g^* are G-functions but do not satisfy our assumptions.

- 2. If $G_p(x) = \frac{1}{p}|x|^p$, then $G_p^*(x) = \frac{1}{q}|x|^q$, $\frac{1}{p} + \frac{1}{q} = 1$.
- 3. If $G(x) = \sum_{i=1}^{N} G_{p_i}(x_i)$, then $G^*(x) = \sum_{i=1}^{N} G_{p_i}^*(x_i)$,
- 4. If $G(x,y) = (x-y)^2 + y^4$, then

$$G^*(x,y) = \frac{1}{4}x^2 + \frac{3}{4}(x+y)\left(\frac{x+y}{4}\right)^{\frac{1}{3}}.$$

More information on general theory of conjugate functions can be found in standard books on convex analysis, see for instance [21, 22].

If a function $G: \mathbb{R}^n \to [0, \infty)$ satisfies conditions (G_1) - (G_6) then the same is true for its conjugate G^* . This is main reason we want to restrict class of considered functions.

Theorem 2.3. If G satisfies conditions (G_1) – (G_6) then G^* also satisfies (G_1) – (G_6) and $(G^*)^* = G$.

Proof. It is evident that G^* satisfies (G_1) , (G_2) and (G_3) . It is well known that, under our conditions, G^* is finite (proposition 1.3.8, [21]), G^* is supercoercive (proposition 1.3.9, [21]) and G^* satisfies (G_5) and (G_6) (remark 2.3, [10]). Corrollary [21, cor. 1.3.6] gives $(G^*)^* = G$.

In order to compare growth rate of G-functions we define two relations. Let G_1 and G_2 be G-functions. Define

$$G_1 \prec G_2 \iff \exists_{M \ge 0} \ \exists_{K > 0} \ \forall_{|x| \ge M} \ G_1(x) \le G_2(K x)$$

and

$$G_1 \prec \prec G_2 \iff \forall_{\alpha>0} \lim_{|x|\to\infty} \frac{G_2(\alpha x)}{G_1(x)} = \infty.$$

For conjugate functions we have (see [3, thm. 3.1])

$$G_1 \prec G_2 \Rightarrow G_2^* \prec G_1^*$$
.

Obviously $G_1 \prec \prec G_2$ implies $G_1 \prec G_2$. Assumption (G_4) implies $|x| \prec \prec G$. It is true that $|x| \prec G$ holds under weaker assumption: $G(x) \to \infty$. Note that, if p>1 then $|x|\prec \prec |x|^p$. Hence, if $|x|^p\prec G$ then $|x|\prec \prec G$. Since G satisfies (G_5) and (G_6) we have the following bounds for the growth of G.

Lemma 2.4 ([10, Lemma 2.4]). There exist $p, q \in (1, \infty)$ such that

$$|x|^p \prec G \prec |x|^q$$
.

The exponents p and q depend on the constants in the ∇_2 and Δ_2 conditions respectively. Immediately from the above we get $|x|^{\frac{q}{q-1}} \prec G^* \prec |x|^{\frac{p}{p-1}}$.

3. Orlicz spaces

Let $I \subset \mathbb{R}$ be a finite interval. The Orlicz space $\mathbf{L}^G = \mathbf{L}^G(I, \mathbb{R}^n)$ is defined to be

$$\mathbf{L}^{G}(I,\mathbb{R}^{n}) = \left\{ u \colon I \to \mathbb{R}^{n} \colon u \text{ - measurable, } \int_{I} G\left(u\right) \, dt < \infty \right\}.$$

As usual, we identify functions equal a.e. For $u \in \mathbf{L}^G$ define:

$$||u||_{\mathbf{L}^G} = \inf \left\{ \alpha > 0 \colon \int_I G\left(\frac{u}{\alpha}\right) dt \le 1 \right\}.$$

The function $\|\cdot\|_{\mathbf{L}^G}$ is called the Luxemburg norm. It is easy to see that

$$\int_I G\left(\frac{u}{\|u\|_{\mathbf{L}^G}}\right) \, dt = 1,$$

since G satisfies Δ_2 . Moreover

$$\int_{I} G\left(\frac{u}{k}\right) dt \le 1 \iff ||u||_{\mathbf{L}^{G}} \le k.$$

Using Fenchel's inequality we obtain the Hölder inequality

$$\int_{I} \langle u, v \rangle \, dt \le 2 \|u\|_{\mathbf{L}^{G}} \|v\|_{\mathbf{L}^{G^{*}}}, \ u \in \mathbf{L}^{G} \text{ and } v \in \mathbf{L}^{G^{*}}$$

Similarly to [3] and [8] one can show that L^G is a linear ([3, thm. 8.2]) and normed space ([8, thm. 2.3]). Completeness and separability of \mathbf{L}^G can be obtained in the same way as in [11, thm. 6.1, thm. 6.3, cor. 6.1]. Since $\mathbf{L}^G \hookrightarrow \mathbf{L}^p \hookrightarrow \mathbf{L}^{p_0} \hookrightarrow \mathbf{L}^1$ (see propositions 3.3 and 3.4 below) and $1 < p_0 < p$, it follows that \mathbf{L}^G is reflexive space. The proof, in more general case, can be found

According to above remarks, we have the following theorem.

Theorem 3.1. If $G: \mathbb{R}^n \to [0, \infty)$ satisfies $(G_1) - (G_6)$, then $(\mathbf{L}^G(I, \mathbb{R}^n), \|\cdot\|_{\mathbf{L}^G})$ is a separable, reflexive Banach space.

Remark 3.2.

- 1. All properties of \mathbf{L}^G remains true for \mathbf{L}^{G^*} , since G and G^* belongs to the same class of functions.
- 2. For an arbitrary G-function $f: \mathbb{R}^n \to [0, \infty)$ which does not satisfies Δ_2 the set \mathbf{L}^f is not a linear space but only a convex set. In fact, it is well known that the set \mathbf{L}^f is linear space if and only if a G-function f satisfies Δ_2 condition.
- 3. It was pointed out by Schappacher [11, example 3.1] that if f is not bounded on bounded sets (i.e. we allow $f(x) = +\infty$ for some $x \in \mathbb{R}^n$) then \mathbf{L}^f need not be a linear space, even if f satisfies Δ_2 condition (see [3, 11]).
- 4. It is well known that if G-function does not satisfies Δ_2 condition then \mathbf{L}^G is not separable. One can define a subspace E^G as the closure of bounded functions under Luxemburg norm. In this case, the space E^G is a proper subset of \mathbf{L}^G and is always separable (see [3, 11]).
- 5. For every $F \in (\mathbf{L}^G)^*$ there exists unique $v \in \mathbf{L}^{G^*}$ such that for every $u \in \mathbf{L}^G$

$$Fu = \int_{I} \langle u, v \rangle \, dt.$$

As a consequence we obtain that $\mathbf{L}^{G^*} \simeq (\mathbf{L}^G)^*$. Since $G^{**} = G$, we also get $\mathbf{L}^G \simeq (\mathbf{L}^{G^*})^*$ (see [3, 8, 11]).

6. If G-function does not satisfies Δ_2 and ∇_2 conditions, then \mathbf{L}^G is not reflexive and $(\mathbf{L}^G)^*$ is not isomorphic to \mathbf{L}^{G^*} (see [3, 11]).

An important example of Orlicz space is a classical Lebesgue space $(\mathbf{L}^p, \|\cdot\|_{\mathbf{L}^p})$, $p \in (1, \infty)$ defined by $G(x) = \frac{1}{p}|x|^p$. It is easy to check that in this case $\mathbf{L}^G = \mathbf{L}^p$ and the Luxemburg norm and standard \mathbf{L}^p norm are equivalent. Two important examples of Lebesgue spaces are not covered in our setting, namely \mathbf{L}^1 and \mathbf{L}^{∞} .

The space \mathbf{L}^1 is generated by f(x) = |x| and the space \mathbf{L}^{∞} generated by f^* . We exclude these two spaces because we want to have only reflexive spaces in the class of Orlicz spaces we consider.

We will use the symbols \hookrightarrow and $\hookrightarrow\hookrightarrow$ for, respectively, continuous and compact embeddings. Using the same methods as in [6, th. 8.12, 8.24] we obtain basic embedding theorems for anisotropic Orlicz spaces.

Proposition 3.3. Assume that $F \prec G$. Then $L^G \hookrightarrow L^F$ and

$$||u||_{\mathbf{L}^F} \le K(C\mu(I)+1)||u||_{\mathbf{L}^G}$$

for some C > 0.

Proposition 3.4. If $F \prec \prec G$ then $\mathbf{L}^G \hookrightarrow \hookrightarrow \mathbf{L}^F$.

Directly from Lemma 2.4 we obtain that Orlicz spaces can be viewed as a spaces between two Lebesgue spaces determined by constants in Δ_2 and ∇_2 conditions.

Proposition 3.5. For every G there exist $p, q \in (1, \infty)$ such that

$$\mathbf{L}^q \hookrightarrow \mathbf{L}^G \hookrightarrow \mathbf{L}^p$$
.

In particular $\mathbf{L}^{\infty} \hookrightarrow \mathbf{L}^G \hookrightarrow \hookrightarrow \mathbf{L}^1$.

In some cases \mathbf{L}^G is simply a product of $\mathbf{L}^{p_i}(I,\mathbb{R})$, but there exist Orlicz spaces which are not in the form $\mathbf{L}^p(I,\mathbb{R}) \times \mathbf{L}^q(I,\mathbb{R})$ (cf. [9, pp. 18-20]).

Example 3.6. Consider the Orlicz space $\mathbf{L}^G = \mathbf{L}^G(I, \mathbb{R}^2)$ generated, by G(x) = $|x_1|^{p_1} + |x_2|^{p_2}, p_1, p_2 > 0.$ If $u = (u_1, u_2) \in \mathbf{L}^{p_1}(I, \mathbb{R}) \times \mathbf{L}^{p_2}(I, \mathbb{R}),$ then

$$\int_{I} G(u) dt = \int_{I} |u_{1}|^{p_{1}} dt + \int_{I} |u_{2}|^{p_{2}} dt < \infty.$$

Conversely, if $u = (u_1, u_2) \in \mathbf{L}^G$ then

$$\int_{I} |u_{1}|^{p_{1}} dt \leq \int_{I} G(u) dt < \infty \text{ and } \int_{I} |u_{2}|^{p_{2}} dt \leq \int_{I} G(u) dt < \infty.$$

Hence $u \in \mathbf{L}^{p_1}(I, \mathbb{R}) \times \mathbf{L}^{p_2}(I, \mathbb{R})$.

Example 3.7. Consider the Orlicz space $\mathbf{L}^G = \mathbf{L}^G(I, \mathbb{R}^2)$ generated, by G(x) = $(x_1-x_2)^4+x_2^2$. From Lemma 2.4 and Proposition 3.5 we obtain that $\mathbf{L}^4(I,\mathbb{R}^2) \hookrightarrow$ $\mathbf{L}^G \hookrightarrow \mathbf{L}^2(I,\mathbb{R}^2)$. Let u_1 be a function in $\mathbf{L}^2(I,\mathbb{R})$ such that $u_1 \notin \mathbf{L}^p(I,\mathbb{R})$, for p > 2. Set $u = (u_1, u_1)$, then

$$\int_{I} G(u) dt = \int_{9}^{I} |u_1|^2 dt < \infty$$

but

$$\int_{I} |u|^{p} dt = \infty.$$

Therefore for every p > 2 there exists $u \in \mathbf{L}^G$ such that $u \notin \mathbf{L}^p(I, \mathbb{R}^2)$. Moreover, $u \notin \mathbf{L}^p(I,\mathbb{R}) \times \mathbf{L}^2(I,\mathbb{R})$ for any p > 2. From the other hand if $u = (u_1, u_2) \in$ $\mathbf{L}^4(I,\mathbb{R}) \times \mathbf{L}^4(I,\mathbb{R})$ then $u \in \mathbf{L}^G$. Therefore

$$\mathbf{L}^4(I,\mathbb{R}) \times \mathbf{L}^4(I,\mathbb{R}) \hookrightarrow \mathbf{L}^G \hookrightarrow \mathbf{L}^2(I,\mathbb{R}) \times \mathbf{L}^2(I,\mathbb{R})$$

but \mathbf{L}^G cannot be identified with any

$$\mathbf{L}^4(I,\mathbb{R}) \times \mathbf{L}^4(I,\mathbb{R}) \hookrightarrow \mathbf{L}^p(I,\mathbb{R}) \times \mathbf{L}^q(I,\mathbb{R}) \hookrightarrow \mathbf{L}^2(I,\mathbb{R}) \times \mathbf{L}^2(I,\mathbb{R}).$$

3.1. Convergence

Now we investigate relations between Luxemburg norm and the integral

$$R_G(u) := \int_I G(u) dt.$$

A functional R_G is called modular. Theory of modulars is well known and is developed in more general setting than ours. More information can be found in [23, 5].

For Lebesgue spaces a notions of modular and norm are indistinguishable because modular $\int_I |u|^p dt$ is equal to $||u||_{\mathbf{L}^p}^p$. But in Orlicz spaces relation between R_G and $\|\cdot\|_{\mathbf{L}^G}$ is more complex.

There is remarkable difference between isotropic and anisotropic spaces. It is clear that if $u, v \in \mathbf{L}^p$ (or more generally in isotropic Orlicz space) then $|u(t)| \leq$ |v(t)| a.e. implies $||u||_{\mathbf{L}^p} \leq ||v||_{\mathbf{L}^p}$. In anisotropic case it is no longer true, even if G(u(t)) < G(v(t)). Next two examples illustrates this point.

Example 3.8. Let $G(x,y) = (x-y)^2 + y^4$, I = [0,1], u(t) = (2,0) and v(t) = (2,0)(2,3/2). Then |u(t)| < |v(t)|, G(u(t)) < G(v(t)) and $R_G(u) \le R_G(v)$, but $2 = ||u||_{\mathbf{L}^G} > ||v||_{\mathbf{L}^G} \simeq 1.6.$

Example 3.9. Let $G(x,y) = x^2 + y^4$, u(t) = (1,0) and $v(t) = \frac{11}{10}(\cos t, \sqrt{\sin t})$. In $\mathbf{L}^G([0,\pi], \mathbb{R}^2)$ we have $\sqrt{\pi} = \|u\|_{\mathbf{L}^G} > \|v\|_{\mathbf{L}^G} \simeq 1.7$, but |u(t)| < |v(t)|, G(u(t)) < G(v(t)) for all $t \in [0, \pi]$ and $R_G(u) < R_G(v)$.

Definition 3.10. We say that a subset $K \subset \mathbf{L}^G$ is modular bounded if there exists C > 0 such that

$$R_G(u) \leq C$$
, for all $u \in K$.

Modular boundedness is sometimes called mean boundedness. It is evident that $R_G(u) \le ||u||_{\mathbf{L}^G}$ if $||u||_{\mathbf{L}^G} \le 1$ and $R_G(u) > ||u||_{\mathbf{L}^G}$ if $||u||_{\mathbf{L}^G} > 1$.

Lemma 3.11. Let $u \in \mathbf{L}^G$.

- 1. If $R_G(u) \leq C$ then $||u||_{\mathbf{T}^G} \leq \max\{C, 1\}$.
- 2. If $||u||_{\mathbf{L}^G} \leq C$ then $R_G(u) \leq \mu(I)\widetilde{C} + K_1(C)$ for some $\widetilde{C} > 0$.

Moreover, a set $K \subset \mathbf{L}^G$ is modular bounded if and only if is norm bounded.

Proof. Assume that $R_G(u) \leq C$. If $C \leq 1$ then $||u||_{\mathbf{L}^G} \leq 1$. If C > 1 then

$$\int_I G\left(\frac{u}{C}\right)\,dt \leq \frac{1}{C}\int_I G(u)\,dt \leq 1.$$

This implies $||u||_{\mathbf{L}^G} \leq \max\{C,1\}$. For the second statement, assume $||u||_{\mathbf{L}^G} \leq C$.

$$R_{G}(u) = \int_{I_{1}} G\left(u\right) dt + \int_{I \setminus I_{1}} G\left(C \frac{u}{C}\right) dt \le \mu(I_{1}) \widetilde{C} + K_{1}(C) \int_{I} G\left(\frac{u}{C}\right) dt,$$

where $I_1 = \{t \in I : |u(t)| \le M_1C\}$ and $\widetilde{C} > 0$. To finish the proof observe that

$$\int_{I}G\left(\frac{u}{C}\right)\,dt \leq \int_{I}G\left(\frac{u}{\left\|u\right\|_{\mathbf{L}^{G}}}\right)\,dt = 1.$$

Definition 3.12. We say that a sequence of functions $u_k \in \mathbf{L}^G$ is modular convergent to $u \in \mathbf{L}^G$ if $R_G(u_k - u) \to 0$ as $k \to \infty$.

Modular convergence is sometimes called mean convergence. Norm convergence always implies modular convergence. Let $||u_k||_{\mathbf{L}^G} \to 0$ as $k \to \infty$. We can assume that $\forall_k \|u_k\|_{\mathbf{L}^G} \leq 1$, then

$$\frac{1}{\|u_k\|_{\mathbf{L}^G}} R_G(u_k) \le R_G \left(\frac{u_k}{\|u_k\|_{\mathbf{L}^G}}\right) = 1.$$

Hence $0 \le R_G(u_k) \le ||u_k||_{\mathbf{L}^G}$. In general, converse is not true unless G satisfies Δ_2 condition (see [3, 11]).

Theorem 3.13. Norm convergence is equivalent to modular convergence.

Proof. We need only to prove that modular convergence implies norm convergence. Fix $\varepsilon > 0$ and assume that $\{u_k\}$ is modular convergent to 0. Define

$$I_{1,k} = \{ t \in I : |u_k(t)| \le M_1 \}.$$

Since G satisfies Δ_2 , for all k > 0 we have

$$\begin{split} \int_I G(u_k/\varepsilon) \, dt &\leq \mu(I_{1,k}) \, C_{1/\varepsilon} + K_1(1/\varepsilon) \int_{I \backslash I_{1,k}} G(u_k) \, dt \leq \\ &\leq \mu(I) \, C_{1/\varepsilon} + K_1(1/\varepsilon) \int_I G(u_k) \, dt. \end{split}$$

For sufficiently large k we have

$$\int_{I} G(u_k) dt \le \frac{1}{K_1(1/\varepsilon)}$$

and

$$\int_{I} G(u_{k}/\varepsilon) dt \le \mu(I) C_{1/\varepsilon} + 1 = C.$$

Finally, Lemma 3.11 shows that $||u_k||_{\mathbf{L}^G} \leq C\varepsilon$ and hence $||u_k||_{\mathbf{L}^G} \to 0$.

It is standard result due to Riesz that for f_n , $f \in \mathbf{L}^p$

$$f_n \to f \text{ a.e.} \implies (\|f_n\|_{\mathbf{L}^p} \to \|f\|_{\mathbf{L}^p} \iff \|f_n - f\|_{\mathbf{L}^p} \to 0).$$

Following lemmas establish Orlicz space version of this fact.

Lemma 3.14. For every k > 1 and $0 < \varepsilon < \frac{1}{k}$ and $x, y \in \mathbb{R}^n$

$$|G(x+y) - G(x)| \le \varepsilon |G(kx) - kG(x)| + 2G(C_{\varepsilon}y)$$

where $C_{\varepsilon} = \frac{1}{\varepsilon(k-1)}$

The proof can be found in [24] (see also [25]).

Lemma 3.15. If $u_n \to u$ in \mathbf{L}^G then $R_G(u_n) \to R_G(u)$.

Proof. In Lemma 3.14 set $x+y=u_n, \ x=u, \ k=2$. Then $\varepsilon<1/2, \ C_\varepsilon=\frac{1}{\varepsilon}$ and

$$|G(u_n) - G(u)| \le \varepsilon |G(2u) - 2G(u)| + 2G\left(\frac{u_n - u}{\varepsilon}\right).$$

Since $u_n \to u$ in \mathbf{L}^G , there exists n_0 such that for $n > n_0$ we have $||u_n - u||_{\mathbf{L}^G} < n_0$ $\varepsilon^2 \le \varepsilon < 1$. Thus

$$\int_{I} G\left(\frac{u_{n}-u}{\varepsilon}\right) dt \leq \frac{1}{\varepsilon} ||u_{n}-u||_{\mathbf{L}^{G}} < \varepsilon.$$

From this and inequality above we obtain

$$|R_G(u_n) - R_G(u)| \le \varepsilon \int_I |G(2u) - 2G(u)| dt + 2\varepsilon.$$

Letting $\varepsilon \to 0$ we have $R_G(u_n) \to R_G(u)$.

According to the above lemma, if $u_n \to u$ in \mathbf{L}^G then:

1. Since $\mathbf{L}^G \hookrightarrow \mathbf{L}^1$ (see Lemma 3.5 below), we can extract a subsequence u_{n_k} such that

$$u_{n_k} \to u$$
 a.e and $|u_{n_k}| \le h \in \mathbf{L}^1(I, \mathbb{R})$.

2. Since $R_G(u_n-u) \to 0$, $G(u_n-u) \to 0$ in \mathbf{L}^1 . Thus we can extract a

$$G(u_{n_k}-u)\to 0$$
 a.e and $G(u_{n_k}-u)\leq h\in \mathbf{L}^1(I,\mathbb{R}).$

3. Since $R_G(u_n) \to R_G(u)$, $G(u_n) \to G(u)$ in \mathbf{L}^1 . Hence there exists a subsequence $\{u_{n_k}\}$ such that

$$G(u_{n_k}) \to G(u)$$
 a.e and $G(u_{n_k}) \le h \in \mathbf{L}^1(I, \mathbb{R})$.

Lemma 3.16. Let $\{u_n\} \subset \mathbf{L}^G$ and $u \in \mathbf{L}^G$. Suppose that

- 1. $u_n \to u$ a.e.,
- 2. $R_G(u_n) \to R_G(u)$.

Then $u_n \to u$ in \mathbf{L}^G .

Proof. This lemma was proved in [4, p. 83] for N-functions. Since G is convex, we get $\frac{1}{2} \left(G(u_n(t)) + G(u(t)) \right) - G\left(\frac{u_n(t) - u(t)}{2} \right) \ge 0$. Continuity of G and $u_n \to u$ a.e. implies

$$\frac{1}{2}\left(G(u_n(t))+G(u(t))\right)-G\left(\frac{u_n(t)-u(t)}{2}\right)\to G(u) \text{ a.e.}$$

So that by the Fatou Lemma, we have

$$\begin{split} \int_I G(u) \, dt & \leq \liminf_{n \to \infty} \int_I \frac{1}{2} (G(u_n) + G(u)) \, dt - G\left(\frac{u_n - u}{2}\right) \, dt \leq \\ & \leq \lim_{n \to \infty} \int_I \frac{1}{2} (G(u_n) + G(u)) \, dt - \limsup_{n \to \infty} \int_I G\left(\frac{u_n - u}{2}\right) \, dt = \\ & = \int_I G(u) \, dt - \limsup_{n \to \infty} \int_I G\left(\frac{u_n - u}{2}\right) \, dt. \end{split}$$

This implies that

$$\int_{I} G\left(\frac{u_k(t) - u(t)}{2}\right) dt \to 0$$

and $||u_k - u||_{\mathbf{L}^G} \to 0$ by Theorem 3.13.

As a consequence we obtain dominated convergence theorem for anisotropic Orlicz spaces:

Theorem 3.17. Suppose that $\{u_n\} \subset \mathbf{L}^G$ and

- 1. $u_n \to u$ a.e.
- 2. there exists $h \in \mathbf{L}^1(I,\mathbb{R})$ such that $G(u_n) \leq h$ a.e.

Then $u \in \mathbf{L}^G$ and $u_n \to u$ in \mathbf{L}^G .

Proof. Since G is continuous and $u_n \to u$ a.e., $G(u_n) \to G(u)$ a.e. It follows that $G(u) \leq h$ a.e. Thus $G(u) \in \mathbf{L}^1(I,\mathbb{R})$ and hence $u \in \mathbf{L}^G$. In a standard way we get $R_G(u_n) \to R_G(u)$. Hence $u_n \to u$ in \mathbf{L}^G , by the Lemma 3.16.

In the above theorem, assumption $G(u_n) \leq h$ can be replaced by $G(u_n) \leq h$ $G(h), h \in \mathbf{L}^G$. Consider a sequence $\{u_n\} \subset \mathbf{L}^G$ convergent pointwise to measurable function u. Under standard dominance condition (i.e. $|u_n| \leq |g|, g \in \mathbf{L}^G$) it is not true in general that $u_n \to u \in \mathbf{L}^G$.

Example 3.18. Let $G(x,y) = x^2 + y^4$, I = (0,1), $u(t) = (0,t^{-1/4})$ and $h(t) = (0,t^{-1/4})$ $(t^{-3/8}, 0)$. Define

$$u_n(t) = \begin{cases} u(t) & |u(t)| \le n \\ 0 & |u(t)| > n \end{cases}$$

Then $u_n \to u$ a.e., $u_n, h \in \mathbf{L}^G$ and $|u_n| \leq |h|$ for every t. But $G(u(t)) = t^{-1} \notin \mathbf{L}^G$ $\mathbf{L}^1(I,\mathbb{R})$. Hence $u \notin \mathbf{L}^G$.

Remark 3.19. Modular R_G is called monotone modular if $|x| \leq |y|$ implies $R_G(x) \leq R_G(y)$. If R_G is monotone modular then $u_k \to u$ a.e and $|u_k| \leq |g|$, $g \in \mathbf{L}^G$ implies $u \in \mathbf{L}^G$ and $||u_k - u||_{\mathbf{L}^G} \to 0$. We refer the reader to [25] for more details.

4. Orlicz-Sobolev spaces

The Orlicz-Sobolev space $\mathbf{W}^1\,\mathbf{L}^G=\mathbf{W}^1\,\mathbf{L}^G(I,\mathbb{R}^n)$ is defined to be

$$\mathbf{W}^1 \mathbf{L}^G(I,\mathbb{R}^n) := \{ u \in \mathbf{L}^G(I,\mathbb{R}^n) : \dot{u} \in \mathbf{L}^G(I,\mathbb{R}^n) \}.$$

For $u \in \mathbf{W}^1 \mathbf{L}^G$ we define

$$||u||_{\mathbf{W}^1 \mathbf{L}^G} := ||u||_{\mathbf{L}^G} + ||\dot{u}||_{\mathbf{L}^G}$$

Define $\mathbf{W}_0^1 \mathbf{L}^G = \mathbf{W}_0^1 \mathbf{L}^G(I, \mathbb{R}^n)$ as the closure of $C_0^1(I, \mathbb{R}^n)$ in $\mathbf{W}^1 \mathbf{L}^G$ with respect to the $\|\cdot\|_{\mathbf{W}^1\mathbf{L}^G}$.

Theorem 4.1. The space $(\mathbf{W}^1 \mathbf{L}^G, \| \cdot \|_{\mathbf{W}^1 \mathbf{L}^G})$ is a separable reflexive Banach space.

Proof is standard and will be omitted, see for instance [26]. If G(x) = $\frac{1}{p}|x|^p$, then the Orlicz-Sobolev space $\mathbf{W}^1\mathbf{L}^G$ coincides with the Sobolev space $\mathbf{W}^{1,p}(I,\mathbb{R}^n)$. Observe that $u_n \to u$ in $\mathbf{W}^1 \mathbf{L}^G$ is equivalent to $R_G(u_n - u) \to 0$ and $R_G(\dot{u}_n - \dot{u}) \to 0$.

Since there exist $p,q\in(1,\infty)$ such that $\mathbf{L}^q\hookrightarrow\mathbf{L}^G\hookrightarrow\mathbf{L}^p,$ the following continuous embeddings exist

$$\mathbf{W}^{1,q} \hookrightarrow \mathbf{W}^1 \mathbf{L}^G \hookrightarrow \mathbf{W}^{1,p}$$

Using standard results from the theory of Sobolev spaces we get

- 1. $\mathbf{W}^1 \mathbf{L}^G(I, \mathbb{R}^n) \hookrightarrow \hookrightarrow \mathbf{W}^{1,1}$.
- 2. $\mathbf{W}^1 \mathbf{L}^G(I, \mathbb{R}^n) \hookrightarrow \hookrightarrow \mathbf{L}^q$, for all $1 \leq q \leq \infty$,
- 3. $\mathbf{W}^1 \mathbf{L}^G(I, \mathbb{R}^n) \hookrightarrow \hookrightarrow C(\overline{I})$.

As a consequence we have

Theorem 4.2. A function $u \in \mathbf{W}^1 \mathbf{L}^G$ is absolutely continuous. Precisely, there exists absolutely continuous representative of u such that for all $a, b \in I$

$$u(b) - u(a) = \int_{a}^{b} \dot{u}(t)dt.$$

Directly from definition of $\mathbf{W}_0^1 \mathbf{L}^G$ we obtain important property of functions in $\mathbf{W}_0^1 \mathbf{L}^G$.

Theorem 4.3. If $u \in \mathbf{W}_0^1 \mathbf{L}^G$, then u = 0 on ∂I .

Using embeddings mentioned above we have for every $u \in \mathbf{W}^1 \mathbf{L}^G$

$$||u||_{\mathbf{L}^{\infty}} \le C||u||_{\mathbf{W}^1 \mathbf{L}^G} \tag{3}$$

Theorem 4.4 (Sobolev inequality). For every function $u \in \mathbf{W}^1 \mathbf{L}^G$

$$||u - u_I||_{\mathbf{L}^G} \le \mu(I)||\dot{u}||_{\mathbf{L}^G}$$

where $u_I = \frac{1}{\mu(I)} \int_I u$.

Proof. Since u is absolutely continuous, there exists $t_0 \in I$ such that $u(t_0) = I$ $\frac{1}{u(I)}\int_I u$ and for every $t \in I$ we have

$$u(t) - u(t_0) = \int_{t_0}^t \dot{u} \, dt.$$

By Jensen's inequality,

$$\begin{split} G\left(\frac{u(t)-u(t_{0})}{\mu(I)\|\dot{u}\|_{\mathbf{L}^{G}}}\right) &= G\left(\frac{1}{|t-t_{0}|}\int_{t_{0}}^{t}\frac{|t-t_{0}|}{\mu(I)}\frac{\dot{u}}{\|\dot{u}\|_{\mathbf{L}^{G}}}\,dt\right) \leq \\ &\leq \frac{1}{|t-t_{0}|}\int_{t_{0}}^{t}G\left(\frac{|t-t_{0}|}{\mu(I)}\frac{\dot{u}}{\|\dot{u}\|_{\mathbf{L}^{G}}}\right)\,dt \leq \frac{1}{\mu(I)}\int_{I}G\left(\frac{\dot{u}}{\|\dot{u}\|_{\mathbf{L}^{G}}}\right)\,dt \leq \frac{1}{\mu(I)}. \end{split}$$

Integrating both sides over I we get

$$\int_I G\left(\frac{u-u(t_0)}{\mu(I)\|\dot{u}\|_{\mathbf{L}^G}}\right) dt \le 1.$$

Thus $||u - u_I||_{\mathbf{L}^G} \le \mu(I) ||\dot{u}||_{\mathbf{L}^G}$.

In similar way we get

Theorem 4.5 (Poincaré inequality). For every $u \in \mathbf{W}_0^1 \mathbf{L}^G$

$$\|u\|_{\mathbf{L}^G} \leq \mu(I) \|\dot{u}\|_{\mathbf{L}^G}$$

It follows that one can introduce equivalent norm in $\mathbf{W}_0^1 \mathbf{L}^G$:

$$\|u\|_{\mathbf{W}_0^1\mathbf{L}^G} = \|\dot{u}\|_{\mathbf{L}^G}.$$

Every linear functional F on $\mathbf{W}_0^1 \mathbf{L}^G$ can be represented in the form

$$F(u) = \int_{I} \langle u, v_0 \rangle + \langle \dot{u}, v_1 \rangle dt,$$

where $v_0, v_1 \in \mathbf{L}^{G^*}$. Moreover, $||F|| = \max\{||v_0||_{\mathbf{L}^{G^*}}, ||v_1||_{\mathbf{L}^{G^*}}\}$. In the case of Sobolev space $\mathbf{W}^{1,p}$ the proof is given in [26, proposition 8.14], but it remains the same for Orlicz-Sobolev spaces. As was pointed out in [26], the first assertion of the above proposition holds for every linear functional on $\mathbf{W}^1 \mathbf{L}^G$.

5. Variational setting

In this section we examine the principal part

$$\mathcal{I}(u) = \int_{I} F(t, u, \dot{u}) dt \tag{4}$$

of the variational functional associated with Euler-Lagrange equation

$$\frac{d}{dt}F_v(t, u, \dot{u}) = F_x(t, u, \dot{u}) + \nabla V(t, u), \quad t \in I$$

where $u: I \to \mathbb{R}^N$ and the Lagrangian $L: I \times \mathbb{R}^N \times \mathbb{R}^N \to \mathbb{R}$ is given by L(t, x, v) =F(t, x, v) + V(t, x).

In definition of the Orlicz space we need not to assume that G is differentiable, but when we consider the functional \mathcal{I} we need it to show that $\mathcal{I} \in C^1$. Throughout this section we will assume, in addition to (G_1) – (G_6) , that G satisfies

 (G_7) G is of a class C^1 .

Remark 5.1. Differentiability of f is not sufficient to differentiability of f^* . But if f is finite, strictly convex, 1-coercive and differentiable then so is f^* . This result is in close relation with Legendre duality (see [21, p. 239] and [1] for more details).

It is well known that if G is continuously differentiable then for all $x, y \in \mathbb{R}^n$

$$G(x) - G(x - y) \le \langle \nabla G(x), y \rangle \le G(x + y) - G(x) \tag{5}$$

and

$$\langle x, \nabla G(x) \rangle = G(x) + G^*(\nabla G(x)).$$

Let y = x in (5). Then $\langle \nabla G(x), x \rangle \leq G(2x) - G(x)$. Therefore, for all $x \in \mathbb{R}^N$

$$G^*(\nabla G(x)) \le G(2x).$$

Directly from the above we get

Proposition 5.2. If $u \in \mathbf{L}^G$ then $\nabla G(u) \in \mathbf{L}^{G^*}$.

Lemma 5.3 (cf. [16, lemma A.5]). If $u_n \to u$ in \mathbf{L}^G then $R_{G^*}(\nabla G(u_n)) \to$ $R_{G^*}(\nabla G(u)).$

Proof. There exists a subsequence $\{u_{n_k}\}$ such that $u_{n_k} \to u$ a.e., $G(u_{n_k}) \to u$ G(u) a.e. and $G(u_{n_k}) \leq h \in \mathbf{L}^1(I,\mathbb{R})$. By continuity of ∇G and G^* we have $\nabla G(u_{n_k}) \to \nabla G(u)$ a.e. and

$$G^*(\nabla G(u_{n_k})) \to G^*(\nabla G(u))$$
 a.e.

Since $G^*(\nabla G(x)) \leq G(2x)$,

$$G^*(\nabla G(u_{n_k})) \le G(2u_{n_k}) \le C + K_1 G(u_{n_k}) \le C + K_1 h.$$

By dominated convergence theorem $R_{G^*}(\nabla G(u_{n_k})) \to R_{G^*}(\nabla G(u))$. Since this holds for any subsequence of $\{u_n\}$ we have that

$$R_{G^*}(\nabla G(u_n)) \to R_{G^*}(\nabla G(u)).$$

As a direct consequence of the above lemma and Lemma 3.16 we obtain

Proposition 5.4.

$$||u_n - u||_{\mathbf{L}^G} \to 0 \implies ||\nabla G(u_n) - \nabla G(u)||_{\mathbf{L}^{G^*}} \to 0.$$

5.1. Case I

We shall first examine a special case F(t, x, v) = G(v), now functional (4) takes the form

$$\mathcal{I}(u) = \int_{I} G(\dot{u}) \, dt.$$

Theorem 5.5. $\mathcal{I} \in C^1(\mathbf{W}^1 \mathbf{L}^G, \mathbb{R})$. Moreover

$$\mathcal{I}'(u)\varphi = \int_{I} \langle \nabla G(\dot{u}), \dot{\varphi} \rangle dt. \tag{6}$$

Proof. The proof follows similar lines as [2, th. 3.2] (see also [1, thm 1.4]). First, note that $\dot{u} \in \mathbf{L}^G$ implies

$$0 \le \mathcal{I}(u) < \infty$$
.

It suffices to show that \mathcal{I} has at every point u directional derivative $\mathcal{I}'(u) \in$ $(\mathbf{W}^1\mathbf{L}^G)^*$ given by (6) and that the mapping $\mathcal{I}':\mathbf{W}^1\mathbf{L}^G\to(\mathbf{W}^1\mathbf{L}^G)^*$ is continuous. Let $u\in\mathbf{W}^1\mathbf{L}^G$, $\varphi\in\mathbf{W}^1\mathbf{L}^G\setminus\{0\}$, $t\in I$, $s\in[-1,1]$. Define

$$H(s,t) := G(\dot{u}(t) + s\dot{\varphi}(t)).$$

By (5) we obtain

$$\int_{I} |H_{s}(s,t)| dt = \int_{I} |\langle \nabla G(\dot{u}+s\dot{\varphi}), \dot{\varphi}\rangle| dt \leq \int_{I} G(\dot{u}+(s+1)\dot{\varphi}) + \int_{I} G(\dot{u}+s\dot{\varphi}) dt < \infty.$$

Consequently, \mathcal{I} has a directional derivative and

$$\mathcal{I}'(u)\varphi = \frac{d}{ds} \mathcal{I}(u + s\varphi)\Big|_{s=0} = \int_{I} \langle \nabla G(\dot{u}), \dot{\varphi} \rangle dt.$$

By Proposition 5.2 and the Hölder inequality

$$|\mathcal{I}'(u)\varphi| = \Big|\int_I \langle \nabla G(\dot{u}), \dot{\varphi} \rangle dt \Big| \leq 2\|\nabla G(\dot{u})\|_{\mathbf{L}^{G^*}} \|\dot{\varphi}\|_{\mathbf{L}^G} \leq C\|\varphi\|_{\mathbf{W}^1 \mathbf{L}^G}.$$

To finish the proof it suffices to show that if $u_n \to u$ in $\mathbf{W}^1 \mathbf{L}^G$, then $\mathcal{I}'(u_n) \to u$ $\mathcal{I}'(u)$ in $(W^1L^G)^*$. Using the Hölder inequality and Proposition 5.4 we obtain

$$\begin{split} |\,\mathcal{I}'(u_n)\varphi - \mathcal{I}'(u)\varphi| &= \left| \int_I \langle \nabla G(\dot{u}_n) - \nabla G(\dot{u}), \dot{\varphi} \rangle \, dt \right| \leq \\ &\leq 2 \|\nabla G(\dot{u}_n) - \nabla G(\dot{u})\|_{\mathbf{L}^{G^*}} \|\dot{\varphi}\|_{\mathbf{L}^G} \to 0. \end{split}$$

5.2. Case II

We turn to general case. Suppose that $F: I \times \mathbb{R}^N \times \mathbb{R}^N \to \mathbb{R}$ satisfies

- $(F_1) \ F \in C^1$.
- (F_2) |F(t,x,v)| < a(|x|)(b(t) + G(v)),
- $(F_3) |F_x(t,x,v)| \le a(|x|)(b(t) + G(v)).$
- (F_4) $G^*(F_v(t, x, v)) \le a(|x|)(c(t) + G^*(\nabla G(v))).$

where $a \in C(\mathbb{R}_+, \mathbb{R}_+), b, c \in \mathbf{L}^1(I, \mathbb{R}_+).$

If $G(v) = |v|^p$ then conditions (F_2) , (F_3) and (F_4) take the standard form (Theorem 1.4 from [1]). In [2] there are similar conditions with $G(v) = \Phi(|v|)$, where Φ is an N-function. In this case, condition (F_4) takes the form $|F_v(t,x,v)| \leq$ $\tilde{a}(|x|)(\tilde{c}(t)+\Phi'(|u|))$. In anisotropic case we need to use G^* , because vector valued G-function is not necessarily monotone with respect to | · |.

Lemma 5.6. If $u \in \mathbf{W}^1 \mathbf{L}^G$, then $F_x(\cdot, u, \dot{u}) \in \mathbf{L}^1$ and $F_v(\cdot, u, \dot{u}) \in \mathbf{L}^{G^*}$.

Proof. Define non decreasing function

$$\alpha(s) = \sup_{\tau \in [0,s]} a(\tau).$$

Then, for $u \in \mathbf{W}^1 \mathbf{L}^G$ we have

$$a(|u(t)|) \le \alpha(||u||_{\mathbf{L}^{\infty}}) \le \alpha(C||u||_{\mathbf{W}^1\mathbf{L}^G}). \tag{7}$$

Let $u \in \mathbf{W}^1 \mathbf{L}^G$. By (7) and (F_3)

$$\int_{I} |F_{x}(t, u, \dot{u})| dt \leq \int_{I} a(|u(t)|)(b(t) + G(\dot{u})) dt \leq
\leq \alpha(C||u||_{\mathbf{W}^{1}\mathbf{L}^{G}}) \int_{I} (b(t) + G(\dot{u})) dt < \infty.$$

Moreover, by (F_4) and Proposition 5.2

$$\int_{I} G^{*}(F_{v}(t, u, \dot{u})) dt \leq \alpha(C \|u\|_{\mathbf{W}^{1} \mathbf{L}^{G}}) \int_{I} (c(t) + G^{*}(\nabla G(\dot{u}))) dt < \infty.$$

Theorem 5.7. $\mathcal{I} \in C^1(\mathbf{W}^1 \mathbf{L}^G, \mathbb{R})$. Moreover

$$\mathcal{I}'(u)\varphi = \int_{I} \langle F_x(t, u, \dot{u}), \varphi \rangle dt + \int_{I} \langle F_v(t, u, \dot{u}), \dot{\varphi} \rangle dt.$$
 (8)

Proof. By (F_2)

$$|\mathcal{I}(u)| \leq \int_I a(|u|)(b(t) + G(\dot{u}))dt \leq \alpha(\|u\|_{\mathbf{W}^1\mathbf{L}^G}) \int_I (b(t) + G(\dot{u}))dt < \infty.$$

It suffices to show that directional derivative $\mathcal{I}'(u) \in (\mathbf{W}^1 \mathbf{L}^G)^*$ exists, is given by (8) and that the mapping $\mathcal{I}' : \mathbf{W}^1 \mathbf{L}^G \to (\mathbf{W}^1 \mathbf{L}^G)^*$ is continuous.

Let
$$u \in \mathbf{W}^1 \mathbf{L}^G$$
, $\varphi \in \mathbf{W}^1 \mathbf{L}^G \setminus \{0\}$, $t \in I$, $s \in [-1, 1]$. Define

$$H(s,t) := F(t, u + s\varphi, \dot{u} + s\dot{\varphi}).$$

By (F_3) , continuity of φ , (7) and the fact that $u + s\varphi \in \mathbf{W}^1\mathbf{L}^G$ we obtain

$$\int_{I} |\langle F_{x}(t, u + s\varphi, \dot{u} + s\dot{\varphi}), \varphi \rangle| dt \leq \int_{I} |F_{x}(t, u + s\varphi, \dot{u} + s\dot{\varphi})||\varphi| dt \leq
\leq \int_{I} a(|u + sv|)(b(t) + G(\dot{u} + s\dot{\varphi}))|\varphi| dt \leq
\leq \alpha(\|u + s\varphi\|_{\mathbf{W}^{1}\mathbf{L}^{G}}) \int_{I} (b(t) + G(\dot{u} + s\dot{\varphi}))|\varphi| dt < \infty.$$

By the Fenchel inequality, (F_4) and Lemma 5.6 we obtain

$$\int_{I} |\langle F_{v}(t, u + s\varphi, \dot{u} + s\dot{\varphi}), \dot{\varphi}\rangle| dt \leq \int_{I} [G^{*}(F_{v}(t, u + s\varphi, \dot{u} + s\dot{\varphi})) + G(\dot{\varphi})] dt < \infty.$$

It follows that

$$\int_{I} |H_{s}(s,t)| dt = \int_{I} |\langle F_{x}(t,u+s\varphi,\dot{u}+s\dot{\varphi}),\varphi\rangle + \langle F_{v}(t,u+s\varphi,\dot{u}+s\dot{\varphi}),\dot{\varphi}\rangle| dt < \infty.$$

Consequently, \mathcal{I} has a directional derivative and

$$\mathcal{I}'(u)\varphi = \frac{d}{ds}\mathcal{I}(u+s\varphi)\Big|_{s=0} = \int_{I} \langle F_x(t,u,\dot{u}),\varphi\rangle dt + \int_{I} \langle F_v(t,u,\dot{u}),\dot{\varphi}\rangle dt.$$

By Lemma 5.6, the Hölder inequality and (3) we get

$$|\mathcal{I}'(u)\varphi| \le ||F_x(\cdot, u, \dot{u})||_{\mathbf{L}^1} ||\varphi||_{\mathbf{L}^{\infty}} + ||F_v(\cdot, u, \dot{u})||_{\mathbf{L}^{G^*}} ||\dot{\varphi}||_{\mathbf{L}^G} \le C ||\varphi||_{\mathbf{W}^1 \mathbf{L}^G}.$$

To finish the proof it suffices to show that \mathcal{I}' is continuous. Since $u_n \to u$ in $\mathbf{W}^1 \mathbf{L}^G$, it follows that $u_n \to u$ in \mathbf{L}^G , $\dot{u}_n \to \dot{u}$ in \mathbf{L}^G and there exists M > 0 such that $||u_n||_{\mathbf{W}^1\mathbf{L}^G} < M$.

By Lemma 3.15 we have $G(\dot{u}_n) \to G(\dot{u})$ in $\mathbf{L}^1(I,\mathbb{R})$. Hence there exists a subsequence $\{u_{n_k}\}$ and $h \in \mathbf{L}^1(I,\mathbb{R})$ such that

$$G(\dot{u}_{n_k}) \to G(\dot{u})$$
 a.e and $G(\dot{u}_{n_k}) \leq h$.

By (F_3) and since $\{u_{n_k}\}$ is bounded, we obtain

$$|F_x(t, u_{n_k}, \dot{u}_{n_k})| \le \alpha (\|u_{n_k}\|_{\mathbf{W}^1 \mathbf{L}^G}) (b(t) + G(\dot{u}_{n_k})) dt \le \alpha (M) (b(t) + h(t)).$$

By (F_1) we have

$$F_x(t, u_{n_k}(t), \dot{u}_{n_k}(t)) \to F_x(t, u(t), \dot{u}(t))$$

for a.e $t \in I$. Applying dominated convergence theorem we obtain

$$\int_{I} \langle F_x(t, u_{n_k}, \dot{u}_{n_k}), \varphi \rangle dt \to \int_{I} \langle F_x(t, u, \dot{u}), \varphi \rangle dt.$$

Since this holds for any subsequence of $\{u_n\}$ we have that

$$\int_{I} \langle F_x(t, u_n, \dot{u}_n), \varphi \rangle dt \to \int_{I} \langle F_x(t, u, \dot{u}), \varphi \rangle dt.$$

By (F_4) and Lemma 5.6

$$G^*(F_v(t, u_{n_k}(t), \dot{u}_{n_k}(t))) \le \alpha(M)(c(t) + G^*(\nabla G(\dot{u}_{n_k}(t)))).$$

In the same way as in the proof of Lemma 5.3 we obtain

$$G^*(F_n(t, u_{n_k}(t), \dot{u}_{n_k}(t))) \le \alpha(M)(c(t) + C + K_1 h(t)).$$

By continuity of F_v we obtain

$$G^*(F_v(t, u_{n_v}(t), \dot{u}_{n_v}(t))) \to G^*(F_v(t, u(t), \dot{u}(t)))$$

for a.e $t \in I$ and consequently

$$\int_I G^*(F_v(t, u_{n_k}, \dot{u}_{n_k}))dt \to \int_I G^*(F_v(t, u, \dot{u}))dt.$$

It follows that

$$\int_I G^*(F_v(t, u_n, \dot{u}_n))dt \to \int_I G^*(F_v(t, u, \dot{u}))dt.$$

Application of Lemma 3.16 to R_{G^*} yields $||F_v(\cdot, u_n, \dot{u}_n) - F_v(\cdot, u, \dot{u})||_{\mathbf{L}^{G^*}} \to 0$. By the Hölder inequality

$$\Big| \int_{I} \langle F_v(t, u_n, \dot{u}_n) - F_v(t, u, \dot{u}), \dot{\varphi} \rangle dt \Big| \leq 2 \|F_v(\cdot, u_n, \dot{u}_n) - F_v(\cdot, u, \dot{u})\|_{\mathbf{L}^{G^*}} \|\dot{\varphi}\|_{\mathbf{L}^G} \to 0.$$

Finally,

$$\int_{I} \langle F_v(t, u_n, \dot{u}_n), \dot{\varphi} \rangle dt \to \int_{I} \langle F_v(t, u, \dot{u}), \dot{\varphi} \rangle dt.$$

References

- [1] J. Mawhin, M. Willem, Critical point theory and Hamiltonian systems, Springer-Verlag, New York, 1989.
- [2] S. Acinas, L. Buri, G. Giubergia, F. Mazzone, E. Schwindt, Some existence results on periodic solutions of Euler-Lagrange equations in an Orlicz-Sobolev space setting, Nonlinear Anal. 125 (2015) 681-698.
- [3] M. A. Krasnoselskii, J. B. Rutickii, Convex functions and Orlicz spaces, P. Noordhoff Ltd., Groningen, 1961.
- M. M. Rao, Z. D. Ren, Theory of Orlicz spaces, New York: M. Dekker, 1991.
- [5] M. M. Rao, Z. D. Ren, Applications of Orlicz spaces, M. Dekker, 2002.
- [6] R. A. Adams, Sobolev spaces, Academic Press, New York-London, 1975.
- [7] M. Skaff, Vector valued Orlicz spaces. I, Pacific J. Math. 28 (1969) 193–206.
- [8] M. Skaff, Vector valued Orlicz spaces. II, Pacific J. Math. 28 (1969) 413–430.
- [9] N. S. Trudinger, An imbedding theorem for $H_0(G, \Omega)$ spaces, Studia Math. 50 (1974) 17–30.
- [10] W. Desch, R. Grimmer, On the wellposedness of constitutive laws involving dissipation potentials, Trans. Amer. Math. Soc. 353 (12) (2001) 5095-5120.
- [11] G. Schappacher, A notion of Orlicz spaces for vector valued functions, Appl. Math. 50 (4) $(2005)\ 355-386.$
- [12] M. Fuchs, V. Osmolovski, Variational integrals on Orlicz-Sobolev spaces, Z. Anal. Anwend. 17 (2) (1998) 393-415.
- [13] A. Cianchi, A fully anisotropic Sobolev inequality, Pacific J. Math. 196 (2) (2000) 283–295.
- [14] A. Cianchi, A sharp embedding theorem for Orlicz-Sobolev spaces, Indiana Univ. Math. J. 45 (1) (1996) 39–65.
- [15] A. Cianchi, Some results in the theory of Orlicz spaces and applications to variational problems, in: Nonlinear Analysis, Function Spaces and Applications, Czech Academy of Sciences, Mathematical Institute, 1999, pp. 50–92.
- [16] P. Clément, B. d. Pagter, G. Sweers, F. Thélin, Existence of Solutions to a Semilinear Elliptic System through Orlicz-Sobolev Spaces, Mediterr. J. Math 1 (3) (2004) 241–267.
- [17] T. K. Donaldson, N. S. Trudinger, Orlicz-Sobolev spaces and imbedding theorems, J. Funct. Anal. 8 (1971) 52-75.
- [18] P. Jain, D. Lukkassen, L.-E. Persson, N. Svanstedt, Imbeddings of anisotropic Orlicz-Sobolev spaces and applications, Math. Inequal. Appl. 5 (2) (2002) 181–195.

- [19] V. K. Le, On second order elliptic equations and variational inequalities with anisotropic principal operators, Topol. Methods Nonlinear Anal. 44 (1) (2014) 41–72.
- [20] V. D. Radulescu, D. Repovs, Partial Differential Equations with Variable Exponents Variational Methods and Qualitative Analysis, Chapman and Hall/CRC, 2015.
- [21] J. Hiriart-Urruty, C. Lemaréchal, Fundamentals of Convex Analysis, Springer Berlin Heidelberg, 2004.
- [22] J.-P. Aubin, Optima and equilibria: an introduction to nonlinear analysis, Springer, 1998.
- [23] Musielak, J., Orlicz Spaces and Modular Spaces, Springer, 1983.
- [24] H. Brezis, E. Lieb, A relation between pointwise convergence of functions and convergence of functional, Proc. Amer. Math. Soc. 88 (3) (1983) 486-490.
- M. A. Khamsi, W. M. Kozlowski, Fixed point theory in modular function spaces, Birkhäuser/Springer, 2015.
- H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer New York, 2011.

