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Abstract

In this paper we study some properties of anisotropic Orlicz and Orlicz-Sobolev
spaces of vector valued functions for a special class of G-functions. We introduce
a variational setting for a class of Lagrangian Systems. We give conditions which
ensure that the principal part of variational functional is finitely defined and
continuously differentiable on Orlicz-Sobolev space.
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1. Introduction

In this paper we make some preliminary steps for variational analysis in
anisotropic Orlicz-Sobolev spaces of vector valued functions. We consider the
Euler-Lagrange equation

S Lu(t,u(t),0(0)) = Lt u(e), 4(0)), ¢ € (a,0) (1
where Lagrangian is of the form L(t,z,v) = F(t,z,v) + V (¢, x).

If F(v) = %|v|* then the equation (1) reduces to ii(t) + VV (t,u(t)) = 0. One
can consider more general case F'(v) = ¢(|v|), where ¢ is convex and nonnegative.
In the above cases F' does not depend on v directly but rather on its norm |v|
and the growth of F' is the same in all directions, i.e. F has isotropic growth.
Equation (1) with Lagrangian L(t,z,v) = %|v|p + V(t,z) has been studied by
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many authors under different conditions. The classical reference is [1]. The
isotropic Orlicz-Sobolev space setting was considered in [2].

We are interested in anisotropic case. This means that I depends on all
components of v not only on |v| and has different growth in different directions.
A simple example of such function is F(v) = Zfil |vi|Pi or F(v) = Zfil oi(Jvil),
where ¢; are N-functions. We wish to consider more general situation. We assume
that F': [a,b] x RY x RNV — R satisfies

FecCh

[F(t,2,0)] < a(lz])(b(t) + G(v)),

[Fo(t, 2, 0)| < a(lz])(b(t) + G(v)),
“(Fu(t,z,v) < allz])(c(t) + GH(VG(v))),

where a € C(Ry,Ry), b,c € LY(I,R;) and G: RV — R is a G-function. Con-
ditions (F1)—(Fy) are direct generalization of standard growth conditions from
[1] (see also [2]). We show (see Theorem 5.7) that under these conditions the
functional Z: W' L% — R given by

I

(F1)
(F2)
(F3)
(Fy) G

Fy

Z(u) = /F(t,u,u) dt
I
is continuously differentiable.
We restrict our considerations to a special class of G-functions. Here G: R" —
[0,00) is convex, G(—z) = G(x), supercoercive, G(0) = 0 and satisfies Ag and
Vo conditions. We define the anisotropic Orlicz space to be

LE(LRY) = {u: T - RY: /G(u)dt < oo}
1

The Orlicz space L equipped with the Luxemburg norm

u
lul|Le 1nf{a>0. /[G(Oé) dt < 1}

is a reflexive Banach space. An important example of Orlicz space is classical
Lebesgue L? space, defined by G(z) = %\x|p . In this case, the Luxemburg norm
and the standard LP norm are equivalent. Therefore, Orlicz spaces can be viewed
as a straightforward generalization of L? spaces.

Properties of N-functions and Orlicz spaces of real-valued functions has been
studied in great details in monographs [3, 4, 5] and [6]. The standard references for
vector-valued case are [7, 8, 9] and [10, 11] for Banach-space valued functions. In

[7, 8] author considers a class of G-functions together with a uniformity conditions
2
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which, for example, excludes the function G(x) = ) |z;/P* unless 1 <p; =--- =
pn < 00. Moreover G is not necessarily assumed to be an even function. As was
pointed out in [11], if G is not even then LY is no longer a vector space (see also
[10, Example 2.1]).

Our strong conditions on G allow us to work in Orlicz spaces without worry
about some technical difficulties arising in general case. For example, it is well
known that the set LE(I,RY) is a vector space if and only if G satisfies Ay con-
dition. Otherwise L& is only a convex set. Another difficulty is the convergence
notion. In Lebesgue spaces |lu, — ulr» — 0 means simply [ |u, — u[P — 0.
For arbitrary G-function G, convergence in Luxemburg norm is not equivalent
to [ G(u, —u)dt — 0 unless G satisfies Ap. The Ay condition is also crucial for
separability and reflexivity of LE.

The main consequence of anisotropic nature of GG is the lack of monotonicity of
the norm. It is no longer true that |u| < |v| implies ||u|| ¢ < ||v||e. In anisotropic
case, standard dominance condition |u,| < f does not implies convergence in L
norm and must be replaced by G(u,) < f (see Theorem 3.17).

For every G there exist p,q € (1,00) such that LY < LY < LP. If G(z) =
S|P then LE can be identified with the product of LP but in many cases
an anisotropic Orlicz Space is not equal to the space LP' x LP? x... x LPN (see
Example 3.7).

To give a proper variational setting for equation (1) we introduce a notion
of an anisotropic Orlicz-Sobolev space W! LY of vector-valued functions. It is
defined to be

WLILY (I, RY) = {u e LE(I,RY): w € LE(I,RY)}

with the norm
lullw e = ullpe + llullge

To the authors best knowledge there is no reference for the case of anisotropic
norm and vector-valued functions of one variable. The references for other cases
are [2, 9, 12, 13, 14, 15, 16, 17, 18, 19].

In [9] and [18] the space H(G,Q), @ C R™ is defined as a completion of

Cy(2,R™) under norm |[ull o) = [[Dullgo. It is classical result due to
Trudinger H°(G,Q) < La(Q2), where A is some N-function (see also Cianchi
[14]).

In [17] and [19] the anisotropic Orlicz-Sobolev space WL is defined for G-
function G : R"*1 — [0, 00] as a space of weakly differentiable functions u : R" D
Q — R such that (u, Dyu, Dau, ..., Dyu) belongs to the Orlicz space generated by
G. A norm for W'Lg is given by

[ull1.c.0 = [[(u, Du)|lg,0-

3
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In [12] we can find definition of isotropic Orlicz-Sobolev space of real valued
functions
Wi(Q) = {u € Q — R measurable : u,|Vu| € L4},

where L 4 is Orlicz Space and A is an N-function.

In [2] the isotropic Orlicz-Sobolev space of vector-valued functions is defined
to be a space of absolutely continuous functions u : [0, 7] — R such that u and
1 belongs to Orlicz space generated by an N-function. Similar treatment can be
found in [20].

2. G-functions

Let (-,-) denote the standard inner product on RY and |- | is the induced
norm. We assume that G: RY — [0, 00) satisfies the following conditions:

(G1) G(0) =

(Ga) G is convex,

(G3) G is even,

(G4) G is supercoercive:

lim G(z) =

2|00 ||

(G5) G satisfies the Ag condition:
3k >2 I >0 Vjg>an G(22) < KiG(w), (A2)

(Gg) G satisfies the Vg condition:

Iko>1 IMy>0 Vja>m, G(7) < WG(K%U) (Va)
2

A function G is a G-function in the sense of Trudinger [9]. In general, G-
function can be unbounded on bounded sets and need not satisfy conditions
(G4)—(Gg) but only limy oo G(x) = co. A G-function of one variable is called
N-function. Some typical examples of G are:

1. Gp(x) = %\xP’, 1 <p<oo,
2. G(z) = N Gy, (), 1 < p; < oo,

3. G(x1,x2) = (1 — x2)2 + a:%.
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A function G can be equal to zero in some neighborhood of 0. So that a function
0 <1
owy=1" =
lz|* =1 |z| >1

is also admissible. Condition Ay implies that G is of polynomial growth (see
Lemma 2.4 below and [3]). A function f:R? — R f(z) = el*l — || — 1 does not
satisfy As.

Since (G is convex and finite on R”, G is locally Lipschitz and therefore con-
tinuous. Note that for every z € RV

Glar) < aG(x),if 0 < a <1,
aG(z) < Glax), if 1 < a.

We get immediately that G is non-decreasing along any half-line through the
origin i.e. for every x € RY

0<a<p = Glar) < G(px). (2)

Our assumptions on G imply that for every xo € RY there exists a € RY and
b € R such that for all 2 € RY

(a,z0) + b= G(x0) and (a,z) + b < G(z).

From this, we can easily obtain the Jensen integral inequality. Let I C R be a
finite interval and let u € L'(I,R"Y). Then

G(M(ll)/ludt> < ,u(ll)/IG(u)dt.

We will often make use of the following simple observation.
Proposition 2.1. For all a € R there exists K;(a) > 0 such that
G(ar) < Ki(a)G(x)
for all |z| > M;.

In fact, the above proposition provides a characterization of Ag (see [7, 11]).
It follows that for every o € R there exists C,, > 0 such that for x € RY

G(ax) < Cqy + Ki(a)G(z).
We recall a notion of Fenchel conjugate. Define G* : RV — [0, 00) by

G*(y) :== sup {(z,y) — G(z)}.

zeRN
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A function G* is called Fenchel conjugate of G. As an immediate consequence of
definition we have the so called Fenchel inequality:

vx,yeRN <$7 y> < G(.CL‘) +G” (y)

Consider arbitrary f: RY — [0,00). It is obvious that the conjugate function
f* is always convex. But in general f* need not be continuous, finite or coercive,
even if f is. From the other hand, it is well known that if f is convex and l.s.c.

then f* # oo and (f*)* = f.
Example 2.2.
1. If

oo x| >1

g(x) = {0 = <1

then g*(x) = |z|. Note that g and g* are G-functions but do not satisfy our
assumptions.

2. If Gy(x) = J|2[P, then Gy(x) = flz]? 5+ =1
3. If G(z) = 1Yy Gp, (24), then G*(z) = Y1, G (x4),
4. If G(x,y) = (z — y)? + y*, then

1
3
G*(z,y) = iaﬂ + Z(l‘ +v) <x 1— y> .
More information on general theory of conjugate functions can be found in
standard books on convex analysis, see for instance [21, 22].
If a function G: R™ — [0,00) satisfies conditions (G1)—(Gg) then the same
is true for its conjugate G*. This is main reason we want to restrict class of
considered functions.

Theorem 2.3. If G satisfies conditions (G1)—(Gg) then G* also satisfies (G1)—
(Gg) and (G*)* = G.

Proof. 1t is evident that G* satisfies (G1), (G2) and (G3). It is well known that,
under our conditions, G* is finite (proposition 1.3.8, [21]), G* is supercoercive
(proposition 1.3.9, [21]) and G* satisfies (G5) and (Gg) (remark 2.3, [10]). Cor-
rollary [21, cor. 1.3.6] gives (G*)* = G. O

In order to compare growth rate of G-functions we define two relations. Let
G1 and G9 be G-functions. Define

G1 < G2 <= Iu>0 Ix>0 Yz>m Gi(z) < Go(K 1)
6
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and

Gi1 << Gy <= VY,4>0 lim Gafaz) =
|z| =00 Gl(x)

For conjugate functions we have (see [3, thm. 3.1])

G1 <Gy = G5 < GY.

Obviously G7 << G9 implies G; < G3. Assumption (G4) implies |z] << G.
It is true that |z| < G holds under weaker assumption: G(x) — co. Note that, if
p > 1 then |z| << |z|P. Hence, if [z|P < G then |z] << G. Since G satisfies (G5)
and (Gg) we have the following bounds for the growth of G.

Lemma 2.4 ([10, Lemma 2.4]). There exist p,q € (1,00) such that
|z < G < |z|.
The exponents p and ¢ depend on the constants in the Vo and Ao conditions

respectively. Immediately from the above we get |ac]q%1 <G* < ‘$|1’%

3. Orlicz spaces

Let I C R be a finite interval. The Orlicz space LY = LE(I,R") is defined to
be

LE(I,R") = {u: I — R™: u — measurable, /G(u) dt < oo}.
I

As usual, we identify functions equal a.e. For u € LY define:

u
=1 : — < .
ullc 1nf{a>0 /IG<a) dt_l}

The function || - ||,¢ is called the Luxemburg norm. It is easy to see that

/G< 4 )dtzl,
1 \lullge

since GG satisfies Ay. Moreover

u
— < < k.
/Ia(k) dt<1 < |ulgo <k

Using Fenchel’s inequality we obtain the Holder inequality

/(u,v> dt < 2ljullpolloll e, ue L and v e LY
I
7
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Similarly to [3] and [8] one can show that L is a linear ([3, thm. 8.2])
and normed space ([8, thm. 2.3]). Completeness and separability of L& can
be obtained in the same way as in [11, thm. 6.1, thm. 6.3, cor. 6.1 ]. Since
LE < LP s LPO 5 L} (see propositions 3.3 and 3.4 below) and 1 < py < p, it
follows that LY is reflexive space. The proof, in more general case, can be found
in [11].

According to above remarks, we have the following theorem.

Theorem 3.1. If G: R” — [0, 00) satisfies (G1)~(Gs), then (LE(I,R"), || - [l.¢)
is a separable, reflexive Banach space.

Remark 3.2.

1.

All properties of LY remains true for L¢", since G and G* belongs to the
same class of functions.

. For an arbitrary G-function f: R™ — [0,00) which does not satisfies Ay

the set LY is not a linear space but only a convex set. In fact, it is well
known that the set L’ is linear space if and only if a G-function f satisfies
A9 condition.

It was pointed out by Schappacher [11, example 3.1] that if f is not bounded
on bounded sets (i.e. we allow f(x) = 400 for some = € R") then L/ need
not be a linear space, even if f satisfies Ay condition (see [3, 11]).

It is well known that if G-function does not satisfies Ay condition then L¢
is not separable. One can define a subspace EC as the closure of bounded
functions under Luxemburg norm. In this case, the space E is a proper
subset of LY and is always separable (see [3, 11]).

For every F € (L%)* there exists unique v € LY such that for every u € L¢
Fu= /(u,v) dt.
I

As a consequence we obtain that L& ~ (L)*. Since G** = G, we also get
LE ~ (LY)* (see [3, 8, 11]).

If G-function does not satisfies Ay and V5 conditions, then LS is not re-
flexive and (LY)* is not isomorphic to LY (see [3, 11]).

An important example of Orlicz space is a classical Lebesgue space (L, [|-||L?),
p € (1,00) defined by G(z) = L|z[P. Tt is easy to check that in this case LY = L?

TP

and the Luxemburg norm and standard L” norm are equivalent. Two important
examples of Lebesgue spaces are not covered in our setting, namely L' and L.

A\ MOST
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The space L' is generated by f(x) = |#| and the space L generated by f*. We
exclude these two spaces because we want to have only reflexive spaces in the
class of Orlicz spaces we consider.

We will use the symbols < and << for, respectively, continuous and com-
pact embeddings. Using the same methods as in [6, th. 8.12, 8.24] we obtain
basic embedding theorems for anisotropic Orlicz spaces.

Proposition 3.3. Assume that F' < G. Then L¢ — L and
lullyr < K(Cul) + 1)ullgo

for some C' > 0.

Proposition 3.4. If ' << G then LE << LT

Directly from Lemma 2.4 we obtain that Orlicz spaces can be viewed as
a spaces between two Lebesgue spaces determined by constants in Ao and Vs
conditions.

Proposition 3.5. For every G there exist p,q € (1,00) such that
LY — LY — L”.
In particular L>® « LE <y L.

In some cases L is simply a product of LP (I,R), but there exist Orlicz
spaces which are not in the form LP(I,R) x L9(I,R) (cf. [9, pp. 18-20]).

Example 3.6. Consider the Orlicz space LY = LY (I, R?) generated, by G(z) =
|z1|PY + |z2[P2, p1,p2 > 0. If w = (u1,u2) € LP*(I,R) x LP?*(I,R), then

/awﬁ:/wmﬁ+/mwﬁ<m
I 1 1

Conversely, if u = (u1,uz) € LY then

/]u1|p1 dt < /G(u) dt < oo and /u2|p2 dt < /G(u) dt < oo.
1 1 1 I

Hence u € L' (I,R) x LP?(I,R).

Example 3.7. Consider the Orlicz space L = L% (I, R?) generated, by G(z) =
(z1—x9)*+22. From Lemma 2.4 and Proposition 3.5 we obtain that L*(I, R?) «—
LY < L2(I,R?). Let u; be a function in L?(I,R) such that u; ¢ LP(I,R), for
p > 2. Set u = (u1,u1), then

lﬂ@ﬁzéMﬁﬁ<w
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/|u|p dt = oo.
I

Therefore for every p > 2 there exists u € LY such that u ¢ LP(I, R?). Moreover,
u ¢ LP(I,R) x L%(I,R) for any p > 2. From the other hand if u = (uy,us) €
L*(I,R) x L*(I,R) then u € LY. Therefore

L*(I,R) x L*(I,R) — LY — L*(I,R) x L2(I,R)
but LE cannot be identified with any
LY(I,R) x L*(I,R) — LP(I,R) x LY(I,R) — L%*(I,R) x L%(I,R).

3.1. Convergence

Now we investigate relations between Luxemburg norm and the integral

Rg(u) :== /IG(u) dt.

A functional Rg is called modular. Theory of modulars is well known and is
developed in more general setting than ours. More information can be found in
[23, 5].

For Lebesgue spaces a notions of modular and norm are indistinguishable
because modular [; [u[P dt is equal to ||ul|} ». But in Orlicz spaces relation between
R and || - ||f,¢ is more complex.

There is remarkable difference between isotropic and anisotropic spaces. It is
clear that if u,v € LP (or more generally in isotropic Orlicz space) then |u(t)| <
|v(t)| a.e. implies ||ul|rr < ||v]|Lr. In anisotropic case it is no longer true, even if
G(u(t)) < G(v(t)). Next two examples illustrates this point.

Example 3.8. Let G(z,y) = (z —y)? +y*, I = [0,1], u(t) = (2,0) and v(t) =
(2,3/2). Then |u(t)] < |v(t)], G(u(t)) < G(v(t)) and Rg(u) < Rg(v), but
2 = JJullge > [[ollye = 1.6.

Example 3.9. Let G(z,y) = 2> + y*, u(t) = (1,0) and v(t) = 13 (cost, Vsint).
In LE([0,7],R?) we have 7 = |lullyc > |vllge =~ 1.7, but |u(t)] < |v(t)],
G(u(t)) < G(v(t)) for all t € [0, 7] and Rg(u) < Ra(v).

Definition 3.10. We say that a subset K C L is modular bounded if there
exists C' > 0 such that
Rg(u) < C, for all u € K.

Modular boundedness is sometimes called mean boundedness. It is evident
that Rg(u) < |lullge if ||ullpe <1 and Rg(u) > ||ullye if |lullpe > 1.
10
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Lemma 3.11. Let u € LY.

1. If Rg(u) < C then [juye < max{C,1}.

2. If ||ullpec < C then Re(u) < u(I)C + K1(C) for some C > 0.
Moreover, a set K C L% is modular bounded if and only if is norm bounded.

Proof. Assume that Rg(u) < C. If C <1 then |ju|pe¢ < 1. If C' > 1 then

/1G<g’) dtgé/IG(u)dtgl.

This implies ||ul|,¢ < max{C,1}. For the second statement, assume ||ul|p ¢ < C.
Then

Re(u) = hGWﬁﬁ+wa(Cg>ﬁguUQ5+Km%zG<g)%

where I} = {t € I': [u(t)| < M;C} and C > 0. To finish the proof observe that

/fl(é) dt§/1G<|\UﬁLG> dt =1.

O

Definition 3.12. We say that a sequence of functions u, € LY is modular
convergent to u € LY if Rg(ugp —u) — 0 as k — oo.

Modular convergence is sometimes called mean convergence. Norm conver-
gence always implies modular convergence. Let [Jug|/;¢ — 0 as k — co. We can
assume that Vj |Jug|e < 1, then

1

ug
Tarllie GRG(uk:) < RG(7> =1
L

lukllLe

Hence 0 < Rg(ug) < |luk|lpe. In general, converse is not true unless G satisfies
Ay condition (see [3, 11]).

Theorem 3.13. Norm convergence is equivalent to modular convergence.

Proof. We need only to prove that modular convergence implies norm conver-
gence. Fix € > 0 and assume that {uy} is modular convergent to 0. Define

L= {tel: |ju)] <M}

11
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Since G satisfies Ao, for all £ > 0 we have

/ Glup/e) dt < u(I1y) Cue + Ka(1/2) / Gl dt <
I TAVIY

<) €y + K1(1/2) [ Gl ar

For sufficiently large k we have

1
G(ug) dt < ———
e < iz
and
/G(uk/s) dt < u(I) Cyje+1=C.
I
Finally, Lemma 3.11 shows that ||uy|| ¢ < Ce and hence ||ug||y¢ — 0. O

It is standard result due to Riesz that for f,, f € L?

fo = fae = ([fullr = [[fllLr <= [[fo = flLr = 0).
Following lemmas establish Orlicz space version of this fact.
Lemma 3.14. For every k > 1 and 0 < e < % and z,y € R"
Gz +y) - Ga)| < elG(kz) — kG(2)| + 2G(Cey)
where C, = E(klﬁ
The proof can be found in [24] (see also [25]).
Lemma 3.15. If u,, — u in LY then Rg(u,) — Ra(u).

Proof. In Lemma 3.14 set © +y = up, z =u, k =2. Then e < 1/2, C. = % and

G(un) — G(u)] < £G(2u) — 2G(u)] +2G (“n; “) .

Since u, — u in LY, there exists ng such that for n > ng we have |lu, — ulpc <

g2 <e< 1. Thus
— 1
/G <un u) dt < —llu, —ullpe <e.
T 3 3

From this and inequality above we obtain

Rer(un) — Re(u)] < 5/1 1G(2u) — 2G ()] dt + 2¢.

Letting € — 0 we have Rg(un,) = Ra(u). O
12
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According to the above lemma, if u,, — u in LE then:

1. Since LY < L! (see Lemma 3.5 below), we can extract a subsequence uu,,,
such that
Up, — u a.e and |u,, | < h € L'(I,R).

2. Since Rg(up —u) — 0, G(u, —u) — 0 in L*. Thus we can extract a
subsequence {uy, } such that

G(tn, —u) = 0 a.e and G(up, —u) < h € LY(I,R).

3. Since Rg(un) — Rg(u), G(u,) — G(u) in L. Hence there exists a subse-
quence {uy, } such that

G(un,) — G(u) a.e and G(un,) < h € LY(I,R).

Lemma 3.16. Let {u,} C LY and u € LY. Suppose that
1. u, — u a.e.,
2. Rg(up) — Rg(u).

Then u, — w in LC.

Proof. This lemma was proved in [4, p. 83] for N-functions. Since G is convex,
we get 3 (G(un(t)) + G(u(t)) — G (M) > 0. Continuity of G and u,, — u
a.e. implies

% (Glun(®)) + Gu(®) — G <“”(t)2_“(t)> L G(u) ae.

So that by the Fatou Lemma, we have

!AQMﬁgmMM/;@m@+Gw»ﬁ—G<%;u>ﬁg

n—oo I

< lim %(G(un) + G(u))dt — limsup/G (Un — U) dt =
I

:/IG(u) dt—liﬂgp/jG(un;u) dt.
ﬁg(WW;M”>mao

and ||ux — ul|p¢ — 0 by Theorem 3.13. O
13

This implies that
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As a consequence we obtain dominated convergence theorem for anisotropic
Orlicz spaces:

Theorem 3.17. Suppose that {u,} ¢ L% and

1. u, — u a.e.

2. there exists h € LY(I,R) such that G(u,) < h a.e.
Then v € LE and Uy — U IN LC.

Proof. Since G is continuous and u,, — u a.e., G(u,) — G(u) a.e. It follows that
G(u) < h a.e. Thus G(u) € L*(I,R) and hence u € L®. In a standard way we
get Rg(un) — Re(u). Hence u, — u in LY, by the Lemma 3.16. O

In the above theorem, assumption G(u,) < h can be replaced by G(u,) <
G(h), h € LE. Consider a sequence {u,} C LY convergent pointwise to measur-
able function u. Under standard dominance condition (i.e. |u,| < |g, g € LY) it
is not true in general that u, — u € L.

Example 3.18. Let G(z,y) = 22 +y*, I = (0,1), u(t) = (0,t~/*) and h(t) =
(t=3/8,0). Define
<
N CONOIES:
0 lu(t)| >n

Then u, — u a.e., up, h € LE and |u,| < |h| for every t. But G(u(t)) =t ¢
LY(I,R). Hence u ¢ LC.

Remark 3.19. Modular Rg is called monotone modular if |z| < |y| implies
Rc(xz) < Rg(y). If Rg is monotone modular then uy — w a.e and |ug| < |g|,
g € LY implies u € LY and |jug — ul|yc — 0. We refer the reader to [25] for more
details.

4. Orlicz-Sobolev spaces
The Orlicz-Sobolev space W! LY = W! LY(I,R") is defined to be
WLLY(I,R") := {u e LY(I,R") : & € LE(I,R™)}.
For u € W LY we define
lullwr o == lullpe + lillgo
Define W LY = W{LE(I,R") as the closure of C}(I,R") in W! LS with

respect to the || - [|y1La-
14
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Theorem 4.1. The space (W!LE, || - |i1c) is a separable reflexive Banach
space.

Proof is standard and will be omitted, see for instance [26]. If G(z) =
%|x|p, then the Orlicz-Sobolev space W' L coincides with the Sobolev space
WLP(I,R"). Observe that u, — u in WL is equivalent to Rg(u, — u) — 0
and Rg(ty, — 1) — 0.

Since there exist p,q € (1,00) such that L¢ — L¢ < LP, the following
continuous embeddings exist

Whi s WILE 5 WP
Using standard results from the theory of Sobolev spaces we get
1. WILY(I,R?) < WHL
2. WILE(I,R") s L9, for all 1 < g < oo,
3. WILE(I,R") —— C(I).
As a consequence we have

Theorem 4.2. A function u € W! LY is absolutely continuous. Precisely, there
exists absolutely continuous representative of v such that for all a,b € I

Directly from definition of W(l) LY we obtain important property of functions
in W} LC.

Theorem 4.3. If u € W} LY, then v = 0 on 91I.
Using embeddings mentioned above we have for every u € W! L&
[uflLee < Cllullw: e (3)
Theorem 4.4 (Sobolev inequality). For every function u € W1 LY
lu = urllpe < p(D)lile

where u; = ﬁ 7 u.

15
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Proof. Since u is absolutely continuous, there exists g € I such that u(tp) =
me) f[ u and for every t € I we have

u(t) — ulty) = /t ad.

to

By Jensen’s inequality,
G(“@)“@o)) :G< 1 |t*t0| u >
p(I)|f ]| e t —to| Jiy (D) |dllge

< t:GCtﬂ_(Itf'HmL) “ <>/G<HuHLG> @<

Integrating both sides over I we get

Thus [ju —us|lge < p(l)l|llge- -

In similar way we get
Theorem 4.5 (Poincaré inequality). For every u € W§ LY
lulle < p(Dlla]lge
It follows that one can introduce equivalent norm in W§ LE:
S

Every linear functional F' on W(l) LY can be represented in the form
Fw) = [ o) + fion)
I

where vg,v1 € LY. Moreover, ||F|| = max{||vo|[pc,||v1]lye-}. In the case of
Sobolev space WP the proof is given in [26, proposition 8.14], but it remains
the same for Orlicz-Sobolev spaces. As was pointed out in [26], the first assertion
of the above proposition holds for every linear functional on W' LC.

16
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5. Variational setting

In this section we examine the principal part

~—

T(u) = / Pt u, ) dt (4
I
of the variational functional associated with Euler-Lagrange equation

d
aFv(t,u,u) = F(t,u,0) +VV(t,u), tel

where u: I — R and the Lagrangian L: I xRN xRN — Ris given by L(t, z,v) =
F(t,z,v) + V(t,x).

In definition of the Orlicz space we need not to assume that G is differen-
tiable, but when we consider the functional Z we need it to show that Z € C*.
Throughout this section we will assume, in addition to (G1)-(Gg), that G satisfies

(G7) G is of a class O,

Remark 5.1. Differentiability of f is not sufficient to differentiability of f*. But
if f is finite, strictly convex, 1-coercive and differentiable then so is f*. This
result is in close relation with Legendre duality (see [21, p. 239] and [1] for more
details).

It is well known that if G is continuously differentiable then for all x,y € R"
G(z) = Gz —y) < (VG(2),y) < Gz +y) — G(z) (5)

and

(x,VG(x)) = G(z) + G*(VG(x)).
Let y = z in (5). Then (VG(z),z) < G(2x) — G(x). Therefore, for all x € RY
G*(VG(z)) < G(2z2).
Directly from the above we get
Proposition 5.2. If v € LY then VG(u) € LY.

Lemma 5.3 (cf. [16, lemma A.5]). If u, — u in LY then Rg-(VG(un)) —
Ra-(VG(u)).

Proof. There exists a subsequence {uy,} such that u,, — u ae., G(up,) —
G(u) a.e. and G(u,,) < h € L'(I,R). By continuity of VG and G* we have
VG(up,) = VG(u) a.e. and

G*(VG(up,)) = G*(VG(u)) ae.
17
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Since G*(VG(z)) < G(2z),
G*(VG(up,)) < G(2uy,) < C+ K1G(up,) < C+ Kih.

By dominated convergence theorem Rg+(VG(up,)) = Rg+(VG(u)). Since this
holds for any subsequence of {u,} we have that

Ra=(VG(un)) = Ra=(VG(u)).

As a direct consequence of the above lemma and Lemma 3.16 we obtain
Proposition 5.4.
|un —ullpe =0 = [[VG(uy) — VG(u)| e+ — 0.

5.1. Case I

We shall first examine a special case F'(t,z,v) = G(v), now functional (4)
takes the form

T(u) = /I G(a) dt.

Theorem 5.5. 7 € C'(W!' L% R). Moreover

T'(u)p = /I (VG(i1), g (6)

Proof. The proof follows similar lines as [2, th. 3.2] (see also [1, thm 1.4]). First,
note that @ € LY implies
0 <Z(u) < oo.

It suffices to show that Z has at every point u directional derivative Z'(u) €
(W!LY)* given by (6) and that the mapping Z' : W' LE — (W! L%)* is contin-
uous. Let u € WILY o € WILE\{0},t € I, s € [-1,1] . Define

H(s,t) :== G(u(t) + sp(t)).

By (5) we obtain

/I|Hs(s,t)|dt:/I|<VG(u+sgb),gb>|dt < /IG(u+(s+1)¢)+/IG(u+s¢) it < o,

Consequently, Z has a directional derivative and
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By Proposition 5.2 and the Holder inequality

T (gl =| [ (VG(@. $)it] < 296 (@)ler 14leo < Cleliw: s

To finish the proof it suffices to show that if u, — u in W' L then Z'(u,) —
T'(u) in (WLLE)*. Using the Holder inequality and Proposition 5.4 we obtain

| T (un)p — T'(u) | =

[ 6ta) - Ve, ¢) dt] <
< 2V i) — VC(i) - | Elle — 0.
O

5.2. Case Il
We turn to general case. Suppose that F': I x RY x RN — R satisfies

(F1) Fec,
(F2) |[F(t,z,0)| < al]z])(b(t) + G(v)),
(F3) |Fo(t,2,0)| < a(|z])(b(t) + G(v)),
(Fu) G*(Fy(t,z,v)) < al[z])(c(t) + G*(VE(v))).
where a € C(R;,Ry), b,c € L1(I,R,).
If G(v) = |v|P then conditions (F»), (F3) and (Fy) take the standard form
(Theorem 1.4 from [1]). In [2] there are similar conditions with G(v) = ®(|v|),

where @ is an N-function. In this case, condition (F}) takes the form |F, (¢, z,v)| <

a(|x])(e(t)+P'(Ju])). In anisotropic case we need to use G*, because vector valued
G-function is not necessarily monotone with respect to | - |.

Lemma 5.6. If u € W' LY, then F,(-,u,%) € L' and F,(-,u,%) € LY.

Proof. Define non decreasing function

a(s) = sup a(r).
T€0,s]

Then, for u € W' LY we have

a(lu(t)]) < a(llull>) < a(Cllullwge)- (7)
Let u € WYLY. By (7) and (F3)

/ Pyt )| dt < / a(ju(®)) () + G(@)) dt <
I I

(Cllullyr 16) /I(b(t) +G(@)) dt < oo,
19
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Moreover, by (F4) and Proposition 5.2

/G*(Fv(t,u, W) dt < a(Clullwi 1) /(c(t) + GH(VG(1))) dt < oo
I I

Theorem 5.7. T € C'(W! L% R). Moreover

T'(u)p = /I<Fx(t,u,u),cp)dt+ /I<Fv(t,u,u),gb)dt. (8)
Proof. By (F3)
| Z(u)] < /Ia(|u|)(b(t) + G(a)dt < afllullwr ) /I(b(t) + G(a))dt < oo.
It suffices to show that directional derivative Z'(u) € (W!L%)* exists, is given

by (8) and that the mapping Z' : W' L — (W! LY)* is continuous.
Let u € WILY o € WLLE\{0},t € I, s € [-1,1]. Define

H(s,t) == F(t,u+ sp, i+ sp).

By (F3), continuity of ¢, (7) and the fact that u 4+ s¢ € W! L we obtain
/I\(Fx(t,u T i+ 59, )| dt < /l Foltu+ sp.i+ )l dt <
< [ allu+ sol(bte) + G+ sl de <

< allu+ spllwi o) [ (¢0) +Gli+ sp)lel dt < .

By the Fenchel inequality, (F;) and Lemma 5.6 we obtain
/I [(Fy(t,u + s, 0+ sp), p)|dt < /I[G*(Fv(t, u+sp, U+ s9)) + G(p)|dt < oo.

It follows that
/I|Hs(s,t)\dt - /I (Fu(tu+ s, i+ 50), 9) + (Fulty u+ s, 1+ 53), )]t < .
Consequently, Z has a directional derivative and

d
T(we = T I(u+sp)

_ /<Fx(t,u,u),¢>dt+/<Fv(t,u,u),¢>dt.
I 20 I

s=0
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By Lemma 5.6, the Holder inequality and (3) we get

| Z' ()] < [|1Fa(u, @) lollne + I1Fu( u @) e [€llLe < Cliellw Lo

To finish the proof it suffices to show that Z’ is continuous. Since u,, — u in
W!LE, it follows that u, — win L®, @, — @ in L and there exists M > 0 such
that [|u,|lwi e < M.

By Lemma 3.15 we have G(u,) — G(%) in L'(I,R). Hence there exists a
subsequence {u,, } and h € L'(I,R) such that

G(ip, ) — G(u) a.e and G(iy, ) < h.
By (F3) and since {uy, } is bounded, we obtain
| Fe(F s iy, )| < al[[umg [l 1,6) (0(F) + G (iin, ))dt < a(M)(b(E) + h(t)).

By (F1) we have
Foy (s uny (1), ny, (1) = Fo(t, u(t), a(t))

for a.e t € I. Applying dominated convergence theorem we obtain

L/}fg(uzhw,uﬂk),¢>dt-+L/}zg(t,u,u),¢>dt
I I

Since this holds for any subsequence of {u,} we have that

[ttt ) )it~ [ (Bt 00). )t
I I
By (F4) and Lemma 5.6

G*(Fo (b, uny (1), n (1)) < a(M)(c(t) + G (VG (i, (1))))-
In the same way as in the proof of Lemma 5.3 we obtain

G (Fo(t, tny (1), in, (1)) < a(M)(c(t) + C + K1h(t)).
By continuity of F,, we obtain
G (Fy(t, tny (), iny (1)) = G (Fu(t, u(t), i(t)))

for a.e t € I and consequently

/@%@MWWWﬁ/ﬁM@mWﬁ
I I
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It follows that

/ G (Fy(t, tun, ) )dt — / G*(F,(t, u, 0))dt.
I I

Application of Lemma 3.16 to Rg+ yields || Fy (-, tun, tin) — Fy(-, u, )|l ,e+ — 0. By
the Holder inequality

‘/<F’v(tvun7an)Fv(tau7u)7¢> dt‘ < 2||F’U('7un7ﬂn>7FU("uvﬂ)HLG* HQOHLG — 0.
I

Finally,
/ (Fy(t, tns i), @)t — / (Fy(t, u, @), ).
1 1
O
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