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Abstract. In the paper we present parallel implementations as well as execution
times and speed-ups of three different algorithms run in various environments such
as on a workstation with multi-core CPUs and a cluster. The parallel codes, imple‐
menting the master-slave model in C+MPI, differ in computation to communica‐
tion ratios. The considered problems include: a genetic algorithm with various ratios
of master processing time to communication and fitness evaluation times, matrix
multiplication and numerical integration. We present how the codes scale in the
aforementioned systems. For the numerical integration code that scales very well
we also show performance in a hybrid CPU+Xeon Phi environment.
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1 Introduction

In the current high performance computing landscape, there are a variety of powerful 
compute devices that can be exploited with parallel programming. This includes multi‐
core CPUs such as Intel Xeons with typically 2 CPUs per workstation with up to 48 
cores and 96 threads with Xeon E7-8894 v4 CPUs, up to 72 physical cores of the Xeon 
Phi x200 7290 processor. Apart from such CPUs, typically workstations and cluster 
nodes are equipped with GPUs. The latest NVIDIA V100 features 5120 CUDA cores 
and 16 GB HBM2 VRAM.

In terms of parallel programming paradigms, several can be distinguished including: 
master-slave, geometric parallelism, pipelining and divide-and-conquer. In this paper, 
we focus on three parallel master-slave applications that differ in compute-communi‐
cation ratios and demonstrate how this affects speed-ups using various compute devices, 
including a multi-core CPU, a cluster and a hybrid CPU+Xeon Phi x100 coprocessor 
environment. This allows readers to predict speed-ups of other parallel applications with 
similar compute-communication ratios. Furthermore, it is a step towards building a 
precise model for such applications and systems in the MERPSYS execution time and 
energy simulation environment [1, 2].



The structure of the paper is as follows. Section 2 contains review of related works on
parallelization of master-slave computations. Section 3.1 presents our testbed environ‐
ments while Sects. 3.2, 3.3 and 3.4 our three representative parallel applications along
with results of test runs performed in the aforementioned environments. Section 4
includes conclusions that summarize obtained results and link to the future work based
on this paper – simulation of created applications in the MERPSYS environment designed
for modeling and simulation of execution time and energy consumption [1, 2].

2 Related Work

There are several works that address parallelization and scheduling of master-slave
processing schemes in high performance computing environments. These are possible
with several programming APIs such as MPI, OpenMP and CUDA [3].

Paper [4] deals with off-line and on-line scheduling on heterogeneous master-slave
platforms, including metrics such as total completion time, makespan, maximum
response time. The authors have concluded that heuristics taking into consideration
communication links’ parameters offer best results. Experiments were conducted with
MPI.

Work [5] presents very interesting theoretical modeling of evolutionary master-slave
computing in terms of speed-ups for assumed both network and processing parameters.
The authors present both theoretical and practical experiments showing almost linear
speed-ups for around 100 slaves, however with an assumption that fitness evaluation in
a slave requires 0.25 s/individual. The authors have used Distributed BEAGLE - their
implementation of the master-slave architecture. The authors considered a Beowulf
cluster made of homogeneous computers and a 100 Mbits/s Ethernet switch.

Paper [6] analyzes parallelization of a genetic algorithm for image restoration
including various components that contribute to execution time: computations to be
parallelized on the slave part T_np, sequential computations on the master T_nq as well
as communication time T_nc. It has been concluded that observable parallelization can
be seen on condition T_np≫T_nq+T_nc.

Paper [7] presents a Double-Layer Master-Slave Model (DMSM) that is targeted for
distribution of independent tasks among cluster nodes (through MPI) and then processed
within a node by a number of threads using OpenMP. The HPCVL developed DMSM
library realized the proposed processing scheme in Fortran 90 and C. The authors
presented that DMSM allows to reduce work imbalance of optimizations of the H2O2
molecule with fixed angles and varying bond lengths to 20% over 16 Sun T5140 nodes
and presented benefits of their approach compared to MPI or OpenMP only solutions.
It should be noted that recently, apart from the classic cluster systems with multi-core
CPUs, more and more accelerators and coprocessors have been engaged for parallel
processing. On one hand, such devices such as GPUs or Intel Xeon Phi x100 coproces‐
sors (many-core CPUs in the latest x200 series) offer very good performance/Watt. On
the other hand, exploiting full potential of such devices is not easy because it requires
highly scalable code due to many more but less powerful cores compared to a standard
multi-core CPU.
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Paper [8] analyzes both performance and power consumption of several applications
on an Intel Xeon Phi coprocessor, a SandyBridge Xeon CPU and Tesla C2050. The tests
use the SHOC application benchmark. Tests for FFT, GEMM, MD and reduction show
limits up to which the applications scale.

Paper [9] presents KernelHive – a framework for parallelization of computations
and data - a set of independent data chunks and OpenCL processing kernels are distrib‐
uted and scheduled across compute devices such as CPUs and GPUs in a cluster or even
among clusters. The system is able to optimize kernel configurations including the
numbers of groups and work items and take communication costs into consideration.
The paper presents scalability of a parallel MD5 password-breaking application using
brute force on a cluster with 16 nodes and a heterogeneous configuration with various
CPUs and GPUs. A similar application is presented in [10] for encryption and decryption
of large amounts of data using for various CPUs, GPUs and in a cluster environment,
demonstrating good scalability for up to 4 nodes.

Paper [11] presents parallel computation of similarity measures between large
vectors in a hybrid environment with multi-core CPUs and Intel Xeon Phi coprocessors.
It is demonstrated how to best partition input data in such an environment, what the best
numbers of threads per CPUs and Xeon Phis are as well as gain from overlapping
communication and computations. It is shown that the implementation benefits from
adding new compute devices in a heterogeneous environment.

Papers [12, 13] analyzed master-slave parallelization of matrix multiplication and
numerical integration for various numbers of nodes and various data sizes.

3 Applications and Experiments

3.1 Testbed Environments

As two default testbed environments we used a workstation with two multi-core CPUs
and a cluster of machines with multicore CPUs, both located at the Faculty of Elec‐
tronics, Telecommunications and Informatics, Gdansk University of Technology,
Poland.

The multi-core workstation includes two Intel® Xeon™ CPUs E5-2680 v2 with 10
2.80 GHz physical cores with HyperThreading, 25 MB Cache and 128 GB RAM. It is
running Linux kernel version 2.6.32. We used Intel’s implementation of MPI and
launched 1 master and slaves on physical cores. In the case of one of the three master-
slave applications analyzed and benchmarked in this paper we extended the aforemen‐
tioned multi-core testbed environment with 2 Intel® Xeon Phi™ coprocessors which
consist of 60 physical 1.052 GHz cores each with the possibility to use four logical
processors per one core. We call this environment hybrid because of various perform‐
ances of the CPUs and the Xeon Phis.

The cluster environment consists of 3 racks, each with 36 Intel® Xeon™ E5345
CPUs with 4 physical 2.33 GHz cores and HyperThreading, 4 MB cache and 8 GB RAM.
Each node is running Linux kernel 2.6.32. For the cluster we used Open MPI. It should
be noted that the performance of the workstation CPU is considerably higher than that
of the cluster node CPU.
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3.2 Parallel Genetic Algorithm

The first representative application is a parallel genetic algorithm in which the master
is in charge of execution of successive iterations with successive populations. The master
sends chromosomes for evaluation to slave processes. Slaves calculate the value of the
fitness function and send the best individual back to the master. The master, based on
results received from slaves, generates a new population and redistributes new individ‐
uals to slaves to repeat the procedure with a new generation. The application runs for
given number of generations and returns the best achieved result.

Scalability of the solution will largely depend on the ratio of the time spent by the
master (t_m) compared to the sum of the time of calculations performed by a slave (t_s)
with the time of master-slave communication (t_c). In our initial Traveling Salesman
Problem implementation using the genetic algorithm this ratio is large because fitness
evaluation is just computing the path length. But it is easy to imagine that the length of
the route between combinations of nodes (cities) is not the only factor that could be
optimized. Other examples of fitness functions for the same set of data prepared by
master (combination of nodes) could be evaluating e.g. difficulty level or cost of each
path. Optimal conditions for different criteria for the same combination of nodes result
in a complex optimization problem that was modeled by us in the paper. Because of that
we tested a few ratios of (t_m/(t_c+t_s)) (calculated for 1 master+1 slave configuration).
As a representative we have chosen solution of a problem for 50 nodes run for 500
generations of the genetic algorithm. The size of the population was set to 2000. Different
ratios of (t_m/(t_c+t_s)) were obtained by multiple execution of fitness function during
fitness evaluation in a slave node for one individual. Complexity of the optimization
problem was modeled for 1, 100, 500 and 1000 loops of fitness function evaluation.
Various ratios were marked respectively in the figures showing the tendency of

Fig. 1. Execution time of genetic algorithm application for various ratios of (t_m/(t_c+t_s)) for
multi-core CPUs (left chart) and cluster (right chart) versus the number of slaves.
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improving scalability and speed-up for decreasing (t_m/(t_c+t_s)) ratios. The applica‐
tion was run on both of the two default testbed environments mentioned in Sect. 3.1.
Figure 1 presents execution times while Fig. 2 presents speed-ups.

Fig. 2. Speedup of genetic algorithm parallel application for various ratios of (t_m/(t_c+t_s)) for
multi-core CPUs (left chart) and on cluster (right chart) versus the number of slaves.

3.3 Parallel Algorithm for Matrix Multiplication

Matrix multiplication is the next problem that was considered by us in this paper in the
context of parallelization in order to shorten the time of calculations. For the purpose of
resolving this problem we have implemented another master-slave application. The
algorithm we used assumes division of an output result matrix into sub-matrices and
calculation of each sub-matrix using the standard algorithm. In our solution the master
loads two multiplied input matrices and distributes the data required for each sub-matrix
calculation among all the slaves. Slaves are designed to calculate sub-matrices (of a
given size) of the result matrix. In order to be able to perform the calculations the master
must prepare a data package containing proper columns and rows from two input
matrices. A slave sends the result sub-matrix back to master and waits for the next
calculation task. Therefore, the size of sub-matrix given to slaves to be calculated
impacts strictly the size of data exchanged by a pair of master and slave in each iteration.
That also – as in the previous genetic algorithm example, results in different communi‐
cation to calculations ratios which affects the final scalability of the application.

For the purposes of this paper we chose multiplication of two square matrices of size
8000 × 8000. The size of the considered computational problem was determined by the
least size of RAM available in considered testbed environments. The sizes of sub-
matrices calculated by slaves varied during test runs starting from 800 × 800, through
400 × 400, 200 × 200 down to 100 × 100. Figure 3 presents execution times obtained
during test runs for each sub-matrix size while Fig. 4 presents speedups. Both present
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the results for various numbers of slaves. The application was run in both testbed envi‐
ronments. The best scalability and execution times were obtained with the largest sub-
matrices (800 × 800).

Fig. 3. Execution time for the matrix multiplication application in a multi-core testbed
environment (left chart) and in a cluster (right chart) in relation to number of slaves.

Fig. 4. Speedup for the parallel matrix multiplication application in a multi-core testbed
environment (left chart) and in a cluster (right chart) in relation to number of slaves.

3.4 Parallel Algorithm of Integrate Calculation

The third considered problem is numerical integration. We implemented numerical
integration in a master-slave paradigm as before, with a trapezoidal rule for computation
of subranges. The master is responsible for distribution of subranges to be calculated by
slaves as long as there are any left. Slaves perform integration of a given function for
each subrange received from the master and send the result back. Complexity of
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computation blocks in slave nodes depends on the given accuracy of calculation set by
PRECISION parameter. The tests were run for several values of the aforementioned
parameter.

The results presented below were obtained for integration of the exp(sin(x)) function
in the range of [−5,1500]. The PRECISION parameter during test runs was decreased
100 times per each run starting from the value 0.1 down to 0.0000001 and the size of
subranges sent to the slaves was fixed and set to 1 in each case. Therefore, complexity
of slaves’ computation blocks was increased 100 times in each next test run while the
communication and size of exchanged data remained the same. The communication to
computation ratios were different again in each of the presented test runs.

Fig. 5. Execution time for the integration application in a multi-core testbed environment (left
chart) and in a cluster (right chart) in relation to number of slaves.

Fig. 6. Speedup for the integration in a multi-core testbed environment (left chart) and in a cluster
(right chart) in relation to number of slaves.
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The aforementioned application was run not only in both default testbed environ‐
ments but also in a hybrid environment i.e. with two multi-core Intel Xeon CPUs with
one or even two Intel Xeon Phi coprocessors added. The execution times and speedup
values for the multi-core testbed environment and the cluster are presented in Figs. 5
and 6 respectively. The results allow to compare execution times as well as scalability
between testbed environments also in the computation complexity context.

In the hybrid testbed environment we run the tests only for the best scaling case with
the PRECISION parameter set to 0.0000001. The execution times and speedups for
aforementioned hybrid testbed environment are presented in Figs. 7 and 8 respectively.
It should be noted that the speed-up values were calculated against the performance of
a single CPU core which is much more powerful than a single Phi core added for new
slaves run on the Phi. Nevertheless we can see decrease in execution times and improve‐
ment of speed-ups when adding more slave threads that utilize cores of the first and the
second Intel Xeon Phi coprocessor.

Fig. 7. Execution time for the integration application in the hybrid multi-core CPUs+Xeon Phi
coprocessor(s) testbed environment in relation to number of slaves.

Fig. 8. Speedup for the integration application in the hybrid multi-core CPUs+Xeon Phi
coprocessor(s) testbed environment in relation to number of slaves.
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4 Summary and Future Work

In the paper we presented parallel implementations of three different C+MPI master-
slave applications that differ in computation to communication ratios. The applications
include a genetic algorithm, matrix multiplication and numerical integration. We ran
experiments in two environments: a workstation with multicore CPUs and a cluster with
nodes with multicore CPUs.

For the genetic algorithm as well as parallel matrix multiplication and numerical
integration we presented conditions that are needed for obtaining good speed-ups in a
parallel environment. Parallel matrix multiplication appeared to be a middle scaling
application while the embarrassingly parallel numerical integration was scaling very
well not only in a shared memory multicore CPUs machine and in a cluster but also in
a hybrid CPUs+Xeon Phis environment.

Obtained speed-ups and growth for the genetic algorithm are in line with observa‐
tions from [6], which suggests that good values are possible on condition that fitness
evaluation is considerable compared to communication and synchronization costs in
terms of time required. Speed-ups and their growth obtained for the matrix multiplication
and numerical integration are similar to those obtained in [12] and in [13] respectively.
In [13] adaptive integration generated subranges recursively based on a particular func‐
tion. The subrange integration phase, however, is analogous to the one performed in this
work. Differences in values stem from various startup times, bandwidths, synchroniza‐
tion costs, specific to the given environment.

We implemented the algorithms and obtained results as representative (in terms of
various speed-ups) applications to be used next in our MERPSYS simulator for modeling
and simulation of execution time and energy consumption [1, 2] for even greater sizes
of input data and sizes of the environment. Another outcome of this work to readers is
the possibility to assess potential scalability of such frequently used algorithms in
various modern parallel environments.
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