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Abstract: In the open shop scheduling with bioperational jobs each job consists 

of two unit operations with a delay between the end of the first operation and 

the beginning of the second one. No-wait requirement enforces that the delay 

between operations is equal to 0. No-idle means that there is no idle time on 

any machine. We model this problem by the interval incidentor (1, 1)-coloring 

(IIR(1, 1)-coloring) of a graph with the minimum number of colors which was 

introduced and researched extensively by Pyatkin and Vizing. An incidentor is a 

pair (v, e), where v is a vertex and e is an edge incident to v. In the 

incidentor coloring of a graph the colors of incidentors at the same vertex 

must differ. The interval incidentor (1, 1)-coloring is a restriction of the 

incidentor coloring by two additional requirements:colors at any vertex form an 

interval of integers and the colors of incidentors of the same edge differ 

exactly by one. In the paper we proposed the polynomial time algorithm solving 

the problem of IIR(1, 1)-coloring for graphs with degree bounded by 4, i.e., we 

solved the problem of minimum makespan open shop scheduling of bioperational 

jobs with no-wait & no-idle requirements with the restriction that each machine 

handles at most 4 job.  
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1. OPEN SHOP SCHEDULING WITH BIOPERATIONAL 

JOBS 

The open shop scheduling problem is given by a set of machines and jobs and their restrictions. Let 

M = {M1, M2... Mm} be a set of machines, and J = {J1, J2... Jn} be a set of jobs (also called tasks). 

Each task consists of distinct operations Jj = {O1j, O2j, ...}, each of them being assigned to a distinct 

machine. Each machine may process at most one operation at any given time. At most one 

operation of each task may be processed at any given time. Operations within a task may be 

processed in any order. Each operation has a certain processing time assigned, denoted by pij for Oij 

operation of task Jj, executed by machine Mi. The problem of open shop scheduling is one of the 

classic scheduling theory problems, first introduced by Gonzalez and Sahni in 1976 [Gonzalez 

1976]. In the three-field notation, first introduced in 1982 by Graham et al.[Graham 1982], open 

shop is denoted by O in the α field. 

Additional constraints are often imposed on the open shop scheduling problems [Giaro 2003], i.e., 

restricted delays between execution of subsequent operations within a job, availability of resources, 

and restrictions on the space of considered instances, i.e., limited number of machines [Giaro 2003] 

or UET only operations. In general, open shop scheduling is NP-hard, even when restricted to UET 

only operations [Giaro 2003]. Introducing restrictions on the space of the instances may allow us to 

construct polynomial time exact algorithms for certain subclasses of the open shop scheduling 

problem. In the open shop with bioperational tasks each job consists of exactly two operations. An 

example could be a scenario with read and write mode operations, which cannot be executed 

concurrently, e.g., in databases. We will denote this constraint on the number of operations within a 

job Jj by opj = 2 in the β field. Assuming UET only operations, we will denote restriction on the 

maximum load per machine, i.e., the number of operations executed by machine, by load ≤ k, for 

load no greater than k. An instance of open shop problem with bioperational tasks may be modeled 

by a graph, where machines are represented by vertices and bioperational jobs by edges. 

Common constraints on feasible solution space include no-wait and no-idle restrictions [Giaro 

2003]. No-wait requirement enforces that the delay between operations within a job is equal to 0. 

No-idle means that there is no idle time on any machine, once the machine started working. We 

will denote no-wait and no-idle restriction by NWI in the β field in three-field notation. 

Open shop with bioperational tasks and UET operations, and with no-wait and no-idle restrictions 

is considered in this paper. The problem may be solved by computing an incidentor coloring of a 

graph that models the instance of a problem. 

2. INCIDENTOR COLORING 

The notion of incidentors was first introduced by A.A. Zykov in 60s [Pyatkin 1997, Pyatkin 2002]. 

The incidentor coloring model however remained unknown until the 90s, when A.V. Pyatkin and 

V.G. Vizing focused their research on the model and its applications in the network transmission 

and scheduling theory [Pyatkin 2002, Pyatkin 2006, Vizing 2009, Vizing 2012, Vizing 2007, 
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Chromatic scheduling is one of the approaches used in solving open shop scheduling problems 

[Giaro 2003]. The general idea behind the chromatic scheduling is first to create a graph model of 

the instance of a problem, then choose the adequate graph coloring model, construct a feasible 

coloring and construct the schedule from the coloring. Open shop with bioperational tasks may be 

solved by constructing a graph model, later called incidentor scheduling graph, and then computing 

incidentor coloring of the graph. Machines are modeled by vertices in the graph. Tasks are modeled 

by edges between vertices corresponding to the machines, on which constituent operations are 

executed. Operations are modeled by incidentors. Colors of incidentors correspond to time 

windows, in which relevant operations are executed. With an additional no-idle restriction, this 

problem may be modeled by interval incidentor (IIR) coloring. No-wait restriction is modeled by 

IR(1, 1)-coloring. No-wait and no-idle restriction is modeled by the IIR(1, 1)-coloring. Restrictions 

of the instance space of open shop scheduling problem, that limit the maximum degree of 

scheduling graph, may allow construction of polynomial time algorithms, even if the problem is 

NP-hard in general. 

3. INTERVAL INCIDENTOR COLORING OF GRAPHS 

WITH Δ BOUNDED BY 4 

In this section the linear time algorithm for construction of IIR(1, 1)-coloring of graphs with Δ 

bounded by 4, using 4 colors, is presented. This algorithm may be used to solve the no-wait and no-

idle open shop scheduling problem with bioperational jobs and at most 4 operations per machine. 

The problem can be described in the three-field notation by: O | UET, opj = 2, load ≤ 4, NWI | Cmax. 

Let G = (V, E), with Δ(G) ≤ 4, be an incidentor scheduling graph. Consider an edge e ∊ E(G) from 

vertex u to vertex v, where u, v ∊ V (G). The following partial orientation of graph G: 

• every vertex of degree 4 is adjacent to exactly two incoming arcs, 

• every vertex of degree 3 is adjacent to exactly one incoming arc, 

• every vertex of degree 3 or 4 is adjacent to exactly two outgoing arcs or undirected edges, 

we call a legal partial orientation of graph G. An example of a legal partial orientation is shown in 

Figure 2. 

Figure 2: Example of partial orientation D. 
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Lemma 1. It is possible to construct a legal partial orientation D of the incidentor scheduling graph 

G, Δ(G) ≤ 4, in polynomial time. 

Proof. We first create a partial orientation of a graph with some vertices split, then we join split 

vertices again and obtain a partial orientation D of original graph G. Only vertices of degree 3 or 4 

will be split and only when one of the following conditions occurs: 

• vertex of degree 3 is adjacent to exactly one incoming arc; 

• vertex of degree 4 is adjacent to exactly two incoming arc. 

No vertices of degree 3 in G may have more than one adjacent incoming arc, and no vertices 

of degree 4 in G may have more than two adjacent incoming arcs. We call vertices with these 

configurations legal. Only legal vertices may be split. Legal configurations of arcs and edges are 

shown in Fig. 3.  

Figure 3: Straight lines represent edges or outgoing arcs. The ”legal” 

combinations of the arcs and edges: left – vertices of degree 2, middle 

– vertices of degree 3, right – vertices of degree 4. 

In the splitting process, vertex v is split into two vertices: one incident only to the incoming arcs 

(one, if in G, d(v) = 3, and two, if in G, d(v) = 4), and one incident only to two outgoing arcs or 

undirected edges. The splitting process is shown in Fig. 4. 

Figure 4: The splitting of vertices of degrees 3 (left) and 4 (right). 

The following algorithm may be used to construct the partial orientation D: 

In a loop: 

1. Detect an undirected cycle C in a subgraph induced by vertices of degree 3 and 4 in the 

remaining graph. 

2. Transform the cycle into a directed cycle. 

3. Split vertices of degrees 3 and 4 in the remaining graph, if their configuration is already 

legal. 
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Once no more cycles can be found, in a loop: 

4. Detect a path of maximal length in the remaining graph, so that a vertex of degree 1 in the 

remaining graph is the end of the path. 

5. Transform the path into a directed path, starting in a vertex of degree 1. 

6. Split vertices of degrees 3 and 4 in the remaining graph, if their configuration is already 

legal. 

An example of contraction is shown in Fig. 5.  

Figure 5: Contraction and reconstruction of the edges in undirected 

paths: left – original path, right – contracted path. 

The algorithm returns a decomposition of G into paths and cycles. After joining split vertices again, 

we obtain a partial orientation D of original graph G. 

Since Δ(G) is bounded by 4, it can be approximated by a constant. Both cycles and paths can be 

found in linear time, hence construction of D can be done in O(|E|) time. 

Each vertex of degree 4 in G is an inner vertex in two paths or cycles. Each vertex of degree 3 is 

the end of one path, and the inner vertex in one path or cycle. As a result of the construction 

scheme, there are only the following structures in the decomposition : 

• directed cycles, with two incoming arcs and two outgoing arcs, alternately, 

• directed paths, with two incoming arcs and two outgoing arcs, alternately, 

• undirected cycles, 

• undirected paths. 

Structures occurring in a decomposition are shown in Fig. 6. Boths ends of each path are vertices of 

degree 1 in the returned decomposition, of degree either 1, or 3 in G. 

Figure 6: The structures obtained after the decomposition of the graph: 

left – directed cycle, right – undirected cycles, bottom – paths. 

Theorem 1. For any graph G with Δ(G) ≤ 4 there is IR(1, 1)-coloring using at most 4 colors. For 

any graph G with Δ(G) ≤ 4 there is IIR(1, 1)-coloring using at most 4 colors.  
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Proof. According to Lemma 1, there always exists partial orientation of G. Incidentors of the 

incoming arcs may have only colors 1 or 4 assigned. Incidentors of undirected edges or outgoing 

arcs may assume only colors 2 or 3. Coloring of partial orientation D using 4 colors can be 

constructed using the following scheme: 

1. Construct partial orientation of G. Do not join split vertices yet. Contract undirected paths 

into single vertices. An example of contraction is shown in Fig. 5. 

2. Color undirected cycles using colors 2 and 3, alternately. 

3. Color directed paths using colors 2, 1, 4, 3 (or 3, 4, 1, 2), repeatedly. 

4. Restore contracted paths and color them, then join split vertices, thus obtaining colored 

partial orientation D of original graph G. 

Transform arcs back into edges, while preserving the coloring from D, thus obtaining IR(1,1 ) 

coloring of G. 

Lemma 2. IR(1, 1) coloring of G constructed by algorithm from Theorem 1, is also a feasible 

IIR(1, 1) coloring of G. 

Proof. Let us remind, that in the decomposition only the structures shown in Fig. 6 occur, and that 

each vertex of degree 3 or 4 in G is split into two vertices, one with incoming arcs only, and one 

with outgoing arc or undirected edges only. Thus, for each pair of split vertices, after joining them 

again, a vertex with one or two incoming arcs and exactly two outgoing arcs or undirected edges 

forms. Since incidentors of incoming arcs are always colored with 1 or 4, and incidentors of 

undirected edges and outgoing arcs are always colored with 2 or 3 (and there are always two of 

them) colors of adjacent incidentors always form interval:{1, 2, 3} or {2, 3, 4} if the degree of the 

vertex was equal to 3, and {1, 2, 3, 4} if it was equal to 4. The original structure of G is restored 

after joining again each pair of split vertices and its incidentor coloring is a feasible IIR(1, 1) 4-

coloring of G 

Hence the theorem follows: 

Theorem 2. Schedule of makespan 4 for the problem O|UET,NWI, opj = 2, load ≤ 4|Cmax always 

exists and it can be obtained in linear time. 

4. SUMMARY 

Presented linear time algorithm may be used for construction of schedule of makespan 4 for the 

problem O|UET,NWI, opj = 2, load ≤ 4|Cmax . The problem of no-wait & no-idle open shop 

scheduling with bioperational jobs with at most k operations per machine remains open for k ≥ 5. 

We conjecture, that for k = 5 the problem is polynomial, and for k ≥ 7 is NP-hard. Another open 

problem is O|UET,NWI, opj ≤ 3, load ≤ 4|Cmax. Giaro proved both the sufficient and necessary 

conditions for the existence of schedule with makespan 4, however the problem of existence of 

schedule with makespan Cmax ∊{5,6} remains open. 
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