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Maciej Niedźwiecki and Marcin Ciołek

Faculty of Electronics, Telecommunications and Informatics, Department of Automatic Control,
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Abstract—When local identification of a nonstationary ARX
system is carried out, two important decisions must be taken.
First, one should decide upon the number of estimated pa-
rameters, i.e., on the model order. Second, one should choose
the appropriate estimation bandwidth, related to the (effective)
number of input-output data samples that will be used for iden-
tification/tracking purposes. Failure to make the right decisions
results in the model deterioration, both in the quantitative and
qualitative sense. In this paper, we show that both problems can
be solved using the suitably modified Akaike’s final prediction
error criterion. The proposed solution is next compared with
another one, based on the Rissanen’s predictive least squares
principle.

Keywords—ARX system identification; estimation bandwidth
selection; generalized Akaike’s criterion; model order selection

I. INTRODUCTION

The final prediction error (FPE) criterion was the first of
two tools proposed by Akaike for the purpose of model
order selection [1], [2], [3]. Since the second one, presented
several years later and known as the Akaike’s information
criterion (AIC) [4] has deeper statistical justification and wider
range of applicability than FPE, it is much more frequently
used and referred to. Both criteria were derived for time-
invariant systems/signals operated under stationary conditions,
and whenever both can be applied they asymptotically (for
large data sets) yield the same results.

When characteristics of the analyzed system vary slowly
with time, i.e., when the system may be regarded as locally
stationary [5], its model can be continuously updated using
the local estimation approach. In this case estimation of model
parameters is based entirely, or primarily, on the most recent
data samples.

When local identification techniques are used, two important
decisions must be taken. First, similar to the stationary case,
one should decide upon the model order, i.e., on the number
of estimated parameters (or on the model structure, in a more
general formulation). When the order is underestimated, the
model may fail to describe some important parts of system
dynamics (such as certain existing resonant modes). On the
other hand, when the order is overestimated, i.e., when some
nonexistent or insignificant model parameters are estimated,
the model becomes less accurate (principle of parsimony) and
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less representative, e.g. it can suggest the presence of some
nonexistent resonant modes.

The second decision that must be taken when the identified
system is nonstationary concerns the estimation memory of
the parameter tracking algorithm, i.e., the effective number
of past input/output measurements taken into account during
the estimation process. Short-memory algorithms are ’fast’
(yield small tracking bias) but ’inaccurate’ (yield large tracking
variance) whereas the long-memory algorithms are ’slow’ but
’accurate’. The best results are obtained when the estimation
memory of the tracking algorithm, inversely proportional to
its estimation bandwidth, is selected so as to match the degree
of nonstationarity of the identified system, trading off the bias
and variance error components.

We will show that both problems – selection of the model
order and the most appropriate estimation bandwidth – can be
successfully solved using the suitably modified FPE criterion.
The FPE-based approach will be also compared with another
solution to the problem of joint order and bandwidth selection,
based on the predictive least squares (PLS) principle.

The potential applications of the proposed methods include,
among many others, modeling and equalization of time-
varying communication channels [6], [7].

II. STATIONARY CASE

Consider the time-invariant multivariate system governed by
the ARX (autoregressive with exogenous input) equation

y(t) =

ny∑
i=1

Aiy(t− i) +

nu∑
i=1

Biu(t− i) + e(t)

cov[e(t)] = ρ

(1)

where t = 1, 2, . . . denotes normalized (dimensionless) time,
y(t) = [y1(t), . . . , ymy

(t)]T denotes the my-dimensional
output signal, u(t) = [u1(t), . . . , umu

(t)]T denotes the mu-
dimensional observable input signal, e(t) denotes zero-mean
white input noise, and Ai, Bi are the my×my- and my×mu-
dimensional matrices of autoregressive and input coefficients,
respectively:

Ai =

 α1i

...
αmyi

 , Bi =

 β1i

...
βmyi


i = 1, . . . , ny i = 1, . . . , nu,
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where αli = [al1,i, . . . , almy,i] and βli = [bl1,i, . . . , blmu,i]
for l = 1, . . . ,m.

Denote by θjn = [αj1, . . . ,αjny
,βj1, . . . ,βjnu

]T, where
n = {ny, nu}, the (nymy + numu)-dimensional vector of
parameters characterizing the j-th ’channel’ of the ARX
system, and by ϕn(t) = [yT(t−1), . . . ,yT(t−ny),uT(t−1),
. . . ,uT(t− nu)]T – the corresponding regression vector (the
same for all channels). Using this notation, equation of the
j-th channel can be put down in the form

yj(t) = ϕT
n (t)θjn + ej(t) (2)

and (1) can be written down more compactly as

y(t) = ΨT
n (t)θn + e(t) (3)

where Ψn(t) = I ⊗ ϕn(t) = diag{ϕn(t), . . . ,ϕn(t)} (the
symbol ⊗ denotes Kronecker product of two matrices/vectors),
and θn = [(θ1n)T, . . . , (θ

my
n )T]T is the vector combining all

(nymy + numu)my system parameters.
Estimation of the vector θn and the covariance matrix ρ

can be carried out using the method of least squares (LS)

θ̂n(t) = arg min
θn

t∑
i=1

‖ y(i)−ΨT
n (i)θn ‖2 (4)

ρ̂n(t) =
1

t

t∑
i=1

[y(i)−ΨT
n (i)θ̂n(t)][y(i)−ΨT

n (i)θ̂n(t)]T.

(5)

Both quantities can be computed recursively [8].
Suppose now that the model orders ny and nu are not

known and should be also estimated. Denote by N =
{{n1y, n1u}, . . . , {nNy , nNu }} the set of N structural variants of
the model (1). For example, one can set N = {{i, j} : i =
1, . . . , Ny, j = 1, . . . , Nu}, N = NyNu. According to Akaike
[3] the best fitting structural variant n = {ny, nu} can be
chosen from the set N by means of minimizing the following
multivariate version of the FPE statistic

n̂(t) = {n̂y(t), n̂u(t)} = arg min
n∈N

MFPEn(t) (6)

MFPEn(t) =

[
1 + dn

t

1− dn

t

]my

det[ρ̂n(t)] (7)

where dn = dim[ϕn(t)] = nymy +numu denotes the number
of coefficients estimated within each channel.

III. NONSTATIONARY CASE

Suppose that the identified system slowly varies with time,
namely, that it is governed by the following time-dependent
ARX equation

y(t) =

ny∑
i=1

Ai(t)y(t− i) +

nu∑
i=1

Bi(t)u(t− i) + e(t)

cov[e(t)] = ρ(t)

(8)

or equivalently

y(t) = ΨT
n (t)θn(t) + e(t). (9)

In such a case system parameters can be estimated using a
suitably localized LS algorithm, such as the one based on the
well-known method of exponentially weighted least squares
(EWLS). To achieve the effect of forgetting or discounting
’old’ data, the sum of squares minimized in the method of
least squares is replaced with the exponentially weighted sum
of squares, resulting in the following EWLS estimator

θ̂n|k(t) = arg min
θn

t−1∑
i=0

λik ‖ y(t− i)−ΨT
n (t− i)θn ‖2 (10)

ρ̂n|k(t) =
1

Lk(t)

t−1∑
i=0

λik[y(t− i)−ΨT
n (t− i)θ̂n|k(t)]

× [y(t− i)−ΨT
n (t− i)θ̂n|k(t)]T (11)

where λk, 0 < λk < 1 denotes the so-called forgetting
constant and

Lk(t) =
t−1∑
i=0

λik =
1− λtk
1− λk

(12)

is the effective width of the exponential window, quantifying
estimation memory of the EWLS tracker.

Recursive algorithm for computation of the estimates
θ̂jn|k(t), j = 1, . . . ,my and ρ̂n|k(t) given by (10) - (11) can
be summarized as follows

εjn|k(t) = yj(t)−ϕT
n (t)θ̂jn|k(t− 1)

θ̂jn|k(t) = θ̂jn|k(t− 1) + gn|k(t)εjn|k(t)

j = 1, . . . ,my

gn|k(t) =
Pn|k(t− 1)ϕn(t)

λk +ϕT
n (t)Pn|k(t− 1)ϕn(t)

Pn|k(t) =
1

λk
[I− gn|k(t)ϕT

n (t)]Pn|k(t− 1)

Qn|k(t) = λkQn|k(t− 1)

+ [1− gT
n|k(t)ϕn(t)]εn|k(t)εTn|k(t)

Lk(t) = λkLk(t− 1) + 1

ρ̂n|k(t) =
1

Lk(t)
Qn|k(t)

(13)

where

εn|k(t) = y(t)−ΨT
n (t)θ̂n|k(t− 1)

= [ε1n|k(t), . . . , ε
my

n|k(t)]T

Pn|k(t) =

[
t−1∑
i=0

λikϕn(t− i)ϕT
n (t− i)

]−1
and initial conditions should be set to θ̂jn|k(0) = 0, j =

1, . . . ,my , Qn|k(0) = O, Lk(0) = 0 and Pn|k(0) = cI,
where c > 0 denotes a large constant [8]. Note that the
matrix Pn|k(0) is the same for all system channels, which
is a consequence of the fact that all channels share the same
regression vector ϕn(t).
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IV. SELECTION OF THE ESTIMATION BANDWIDTH

As already mentioned in Section 1, estimation bandwidth
should be chosen in accordance with the degree of nonsta-
tionarity of the identified system, which is usually unknown
and which itself may change over time. Instead of looking for
the optimal value of λk, we will attempt to choose the best
value of the forgetting constant from the set of K predefined
values Λ = {λ1, . . . , λK}.

Assuming that the structure n of the model is fixed, consider
K EWLS algorithms working in parallel and yielding the
estimates θ̂n|k(t), ρ̂n|k(t), k ∈ K = {1, . . . ,K}. Our task
will be to select from K the most appropriate value of k at the
instant t, i.e., the value that minimizes the judiciously chosen
instantaneous measure of fit.

A. Final prediction error based approach

Denote by Ξ(t) = {ξ(1), . . . , ξ(t)}, ξ(i) = {y(i),u(i)},
the data set available at the instant t, and by Ξ̃(t) =
{ξ̃(1), . . . , ξ̃(t)}, ξ̃(i) = {ỹ(i), ũ(i)} – another, independent
realization of Ξ(t) obtained from the analyzed system under
the same experimental conditions. This means that the corre-
sponding excitation signals {ũ(t)} (observable) and {ẽ(t)}
(unobservable) are independent realizations of {u(t)} and
{e(t)}, respectively.

As an instantaneous measure of fit we will adopt the
following quantity

δn|k(t) = E
{

[ỹ(t)− Ψ̃n(t)θ̂n|k(t)][ỹ(t)− Ψ̃n(t)θ̂n|k(t)]T
}

(14)

where the expectation is carried out with respect to Ξ(t)
and Ξ̃(t). According to (14), the quality of the model is
checked on an independent data set, different from that used
for identification purposes.

We will derive a stationary approximation of δn|k(t). Sup-
pose that the analyzed system is stationary, i.e., that it is
governed by (3) and that the sequence of regression vectors
{ϕn(t)} is zero-mean, stationary and ergodic with covariance
matrix cov[ϕn(t)} = Φ0. Since identification is carried out
using exponential forgetting, estimation results practically do
not depend on very ’old’ data samples, namely on samples
collected 2Lk(∞) time instants prior to t, or earlier [15]. This
means that in fact only local stationarity is required.

Assume that the true system order n = {ny, nu} is not
underdetermined (if the adopted values of ny and/or nu
are greater than the true values, the corresponding entries
in θn should be set to zero). Under the (local) stationarity
assumptions made above and some technical assumptions
guaranteeing finite sample invertibility of the exponentially
weighted regression matrix [see e.g. [13]], it can be shown
that

E[θ̂n|k(t)] ∼= θn

cov[θ̂n|k(t)] =
ρ⊗Φ−10

Nk(t)
+ o

(
1

Nk(t)

) (15)

where

Nk(t) =
[
∑t−1

i=0 λ
i
k]2∑t−1

i=0 λ
2i
k

=
(1− λtk)(1 + λk)

(1 + λtk)(1− λk)
(16)

denotes the so-called equivalent width of the exponential
window, quantifying the amount of information extracted from
the input-output data by means of applying the EWLS scheme.

Denote by ∆θ̂n|k(t) = θ̂n|k(t)− θn the parameter estima-
tion error. Observe that

ỹ(t)− Ψ̃n(t)θ̂n|k(t) = ẽ(t)− Ψ̃n(t)∆θ̂n|k(t).

Furthermore, since the quantities ẽ(t) and Ψ̃n(t) are mutually
independent and independent of ∆θ̂n|k(t), it holds that

δn|k(t) =

= E
{

[ẽ(t)− Ψ̃T
n (t)∆θ̂n|k(t)][ẽ(t)− Ψ̃T

n (t)∆θ̂n|k(t)]T
}

= ρ+ E
{

Ψ̃T
n (t)∆θ̂n|k(t)∆θ̂Tn|k(t)Ψ̃n(t)

}
= ρ+ E

{
Ψ̃T

n (t)cov[θ̂n|k(t)]Ψ̃n(t)
}
.

Finally, using (15), one arrives at

δn|k(t) ∼= ρ+
1

Nk(t)
E
{

[I⊗ ϕ̃T(t)][ρ⊗Φ−10 ][I⊗ ϕ̃(t)]
}

= ρ+
1

Nk(t)
E
{
ρ⊗ [ϕ̃T(t)Φ−10 ϕ̃(t)]

}
= ρ+

1

Nk(t)
ρ tr[Φ−10 E{ϕ̃(t)ϕ̃T(t)}]

=

[
1 +

dn
Nk(t)

]
ρ (17)

where the second transition stems from the following identity
(A⊗B)(C⊗D) = (AC)⊗(BD) which holds for Kronecker
products.

In a similar way, one can show that [see [15] in the
univariate case]

E[ρ̂n|k(t)] ∼=
[
1− dn

Nk(t)

]
ρ. (18)

Combining (17) with (18), one arrives at the following estimate
of δn|k(t) based on Ξ(t)

δ̂n|k(t) =
1 + dn

Nk(t)

1− dn

Nk(t)

ρ̂n|k(t) (19)

and leads to the bandwidth selection rule

k̂(t) = arg min
k∈K

MFPEn|k(t) (20)

MFPEn|k(t) = det[δ̂n|k(t)]

=

[
1 + dn

Nk(t)

1− dn

Nk(t)

]my

det[ρ̂n|k(t)] (21)

which is in fact an extension of the rule proposed by Akaike
[note that (21) reduces down to (7) when λk = 1].
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Remark
For sufficiently large values of t, the quantity Nk(t) in (21)

can be replaced with its steady state value Nk(∞) = (1 +
λk)/(1 − λk). Note that for the typical values of λk, which
are close to 1, it holds that Nk(∞) ∼= 2Lk(∞) = 2/(1−λk).

To understand the bandwidth selection mechanism behind
(20) - (21), note that when the identified system is nonstation-
ary, increasing estimation memory of the EWLS algorithm
(picking the value of λk that is closer to 1) will usually
result in increased value of ρ̂n|k(t), which is the consequence
of increasing the bias component of parameter estimation
errors. At the same time, the multiplier in (21) will decrease,
reflecting decrease in the estimation variance. The value of k
selected according to (20) is therefore a result of a trade-off
between estimation bias and estimation variance.

B. Predictive least squares based approach

The predictive least squares (PLS) approach was originally
proposed by Rissanen as a tool for estimation of an order
of a stationary AR process [16], [17]. Later on the local
(sliding window) PLS statistic emerged as a limiting case of
the Bayesian bandwidth estimation procedure [12], [14] based
on prequential analysis [9] - for nonstationary ARX processes.
The corresponding decision rule has the form

k̂(t) = arg min
k∈K

PLSn|k(t) (22)

PLSn|k(t) = det

[
L−1∑
i=0

εn|k(t− i)εTn|k(t− i)

]
(23)

where L ∈ [20, 50] is the width of the local decision window
T (t) = [t−L+ 1, t]. According to (22) - (23), the bandwidth
selected at the instant t corresponds to the model with the best-
recent predictive capabilities, namely the one which minimizes
the prediction error statistic accumulated over the recent past.

V. JOINT ORDER AND BANDWIDTH SELECTION

The bandwidth selection statistic (21) is identical with the
statistic proposed in [11] for the purpose of model order
selection (based on an alternative quality measure). The se-
lection mechanism is similar to the one described above. For
a fixed bandwidth parameter k, increasing the model order
will increase the multiplier in (21), but, at the same time,
will decrease residual errors [along with ρ̂n|k(t)], which is
another manifestation of the bias-variance compromise. Based
on the observations made above, we propose the following
joint order-and-bandwidth selection rule

{n̂(t), k̂(t)} = {n̂y(t), n̂u(t), k̂(t)}
= arg min

n∈N
k∈K

MFPEn|k(t). (24)

As an alternative, one can consider the analogous decision rule
based on the predictive least squares principle

{n̂(t), k̂(t)} = {n̂y(t), n̂u(t), k̂(t)}
= arg min

n∈N
k∈K

PLSn|k(t). (25)

Remark
Suppose that the family of competing models of different

orders is restricted to the case where ny = nu, i.e., where
the number of autoregressive coefficients is the same as the
number of input coefficients. Denote by ϕ̃n(t) = [yT(t− 1),
uT(t−1), . . . ,yT(t−ny),uT(t−ny)]T the rearranged vector
of regression variables, and let Ψ̃n(t) = I⊗ ϕ̃n(t). Similarly,
let θ̃n = [(θ̃1n)T, . . . , (θ̃

my
n )T]T where θ̃jn = [αj1,βj1,

. . . ,αjny
,βjny

]T. The model (9) can be rewritten in the
following equivalent form

y(t) = Ψ̃T
n (t)θ̃n(t) + e(t).

Consider the case where N = {{ny, ny}, ny = 1, . . . , N}.
Then, for a growing order ny , the corresponding regres-
sion vectors form a nested family, namely ϕ{ny,ny}(t) ≺
ϕ{ny+1,ny+1}(t), ny = 1, . . . , N−1, where x ≺ y means that
x is a subvector of y. Using this property, one can easily derive
order-recursive algorithms for evaluation of ̂̃θn|k(t) [which is
a permuted version of θ̂n|k(t)], such as the algorithm proposed
in [10].

VI. COMPUTER SIMULATIONS

Performance of the proposed joint order and bandwidth
selection methods was checked by means of computer simula-
tion. Dynamics of the simulated two-input two-output (my =
mu = 2) ARX system was based on two stable time-invariant
“anchor” models: the second-order model M2 (ny = nu = 2):

∆0
1 =

[
−0.9135 −0.0816
0.0561 −0.9363

]
, ∆0

2 =

[
0.8815 0.0437

−0.0768 0.9564

]
B0

1 =

[
3.0082 0.0289
0.0884 2.8099

]
, B0

2 =

[
−3.7434 −0.0681
−0.1713 −3.2701

]
and the fourth-order model M4 (ny = nu = 4):

∆0
1 =

[
−0.9135 −0.0816
0.0561 −0.9363

]
, ∆0

2 =

[
0.8815 0.0437

−0.0768 0.9564

]
∆0

3 =

[
−0.6134 −0.3783
0.1237 −0.7222

]
, ∆0

4 =

[
0.6854 0.1603

−0.0671 0.7490

]
B0

1 =

[
3.0082 0.0289
0.0884 2.8099

]
, B0

2 =

[
−3.7434 −0.0681
−0.1713 −3.2701

]
B0

3 =

[
2.3177 0.0517
0.1069 1.9134

]
, B0

4 =

[
−0.6278 −0.0136
−0.0210 −0.4893

]
where ∆0

1, . . . ,∆
0
4 denote the so-called matrices of normal-

ized reflection coefficients which uniquely define the autore-
gressive part of the ARX model and can be “translated” to
matrices of autoregressive coefficients appearing in (1). Note
that the matrices ∆0

1, ∆0
2, B0

1 and B0
2 are the same in both

anchor models.
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Fig. 1. Morphing scenario used in simulation tests

The time-varying ARX model was obtained by morphing
anchor model M2 into M4 and vice versa. Transition from the
model M2, valid at the instant t1, to the model M4, valid at
the instant t2, was realized using the folowing transformations

∆i(t) = µ(t)∆0
i , Bi(t) = µ(t)B0

i

i = 3, 4 t ∈ [t1, t2]

where
µ(t) =

t− t1
t2 − t1

.

The remaining parameters were kept constant: ∆i(t) = ∆0
i ,

Bi(t) = B0
i , t ∈ [t1, t2], i = 1, 2. Such a morphing technique

guarantees stability of of the resulting time-variant model at
all times as long as both anchor models are stable (stability is
not guaranteed if morphing is applied directly to the matrices
of autoregressive coefficients). Transition from the model M4,
valid at the instant t3, to the model M2, valid at the instant
t4, was realized in an analogous way, namely

∆i(t) = η(t)∆0
i , Bi(t) = η(t)B0

i

i = 3, 4 t ∈ [t3, t4]

where
η(t) =

t4 − t
t4 − t3

.

The applied morphing scenario is symbolically depicted in
Fig. 1. The identified system, analyzed in the interval [1, Ts],
had 3 periods of time-invariance (M2–M2, M4–M4, M2–M2),
each of length l1, interleaved with 2 periods of nonstationary
behavior (M2–M4, M4–M2), each of length l2 (Ts = 3l1 +
2l2). Data generation was started 1000 instants prior to t =
1 so that, no matter what bandwidth and model order, the
estimation process and evaluation of its results could be started
at the instant t = 1.

To check performance of the compared algorithms under
different rates of nonstationarity, 3 cases were considered
corresponding to: fast parameter changes (Ts = 14000,
l1 = 4000, l2 = 1000), nominal parameter changes (Ts =
28000, l1 = 8000, l2 = 2000) and slow parameter changes
(Ts = 56000, l1 = 16000, l2 = 4000).

The pseudo-random binary type sequence with magnitude
|u1(t)| = |u2(t)| = u0,∀t, u0 = 0.1, and covariance matrix
cov[u(t)] = u20I (the same in all experiments) was used as
an observable input signal. The unobservable noise sequence
{e(t)}, white and independent of {u(t)}, was Gaussian:
e(t) ∼ N (0, σ2

eI), σe = 0.01.

TABLE I. COMPARISON OF ESTIMATION RESULTS OBTAINED FOR 3
FIXED-ORDER (n = 1, . . . , 10) EWLS ALGORITHMS WITH DIFFERENT

FORGETTING CONSTANTS λ1, λ2, λ3 , WITH THE RESULTS YIELDED BY 2
ORDER-AND-BANDWIDTH-ADAPTIVE PARALLEL ESTIMATION SCHEMES

BASED ON THE PLS STATISTIC (L = 30) AND THE MFPE STATISTIC,
RESPECTIVETY.

Fast parameter changes
n/Ny λ1 λ2 λ3 PLS MFPE

1 47.43 47.06 46.85 47.15 47.16
2 23.53 23.30 23.05 23.39 23.27
3 12.63 12.36 12.34 11.97 12.01
4 1.58 1.54 2.18 0.47 0.45
5 4.12 3.53 4.63 1.67 1.58
6 5.32 4.21 4.91 1.88 1.66
7 6.49 4.81 5.27 1.94 1.65
8 7.78 5.42 5.61 2.02 1.67
9 9.51 6.29 6.06 2.08 1.70
10 11.03 7.02 6.42 2.13 1.70

Nominal parameter changes
n/Ny λ1 λ2 λ3 PLS MFPE

1 47.35 47.00 46.83 47.07 47.10
2 23.82 23.63 23.48 23.67 23.56
3 12.63 12.29 12.27 12.03 11.99
4 1.36 0.91 1.20 0.25 0.13
5 3.32 2.54 2.69 0.81 0.58
6 4.51 3.09 2.97 0.95 0.59
7 5.91 3.79 3.42 1.04 0.59
8 7.27 4.45 3.75 1.12 0.60
9 8.79 5.20 4.17 1.20 0.60
10 10.24 5.86 4.52 1.26 0.60

Slow parameter changes
n/Ny λ1 λ2 λ3 PLS MFPE

1 47.36 47.01 46.83 47.10 47.10
2 23.61 23.44 23.33 23.47 23.38
3 12.59 12.20 12.08 11.95 11.92
4 1.33 0.71 0.61 0.22 0.08
5 3.02 1.91 1.88 0.47 0.16
6 4.40 2.60 2.26 0.63 0.17
7 5.91 3.34 2.63 0.75 0.17
8 7.47 4.08 3.03 0.85 0.17
9 8.97 4.77 3.39 0.92 0.17
10 10.43 5.48 3.76 0.98 0.17

As a performance measure, quantifying the tracking capabil-
ities of different estimation algorithms, the squared parameter
estimation error d(t) = ||θ̂(t) − θ(t)||2 was used. Evaluation
was based on comparison of mean scores obtained after com-
bined time and ensemble averaging of d(t) (over t ∈ [1, Ts]
and 20 independent realizations of {e(t)}).

Table 1 shows the mean scores yielded by 3 EWLS algo-
rithms (λ1 = 0.98, λ2 = 0.99, λ3 = 0.995) run for models
of different orders (ny = nu = 1, . . . , 10) and by 2 adaptive
order-and-bandwidth selection schemes (MFPE, PLS).

When the maximum model order Ny = Nu is not under-
fitted, i.e., when Ny ≥ 4, both adaptive schemes outperform
the non-adaptive fixed-order-fixed-bandwidth algorithms. The
reason for this is that both adaptive algorithms detect and
adequately react to system nonstationarity by appropriately
adjusting model order and estimation bandwidth. According
to Fig. 2, which shows the locally time averaged histograms
of the results of bandwidth selection (each time bin covers
500 samples), shorter-memory algorithms are preferred in the
presence of parameter variation, i.e., in the intervals [t1, t2]
and [t3, t4]; they are switched back to the longer-memory
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Fig. 2. Histograms of the results of estimation bandwidth selection, obtained
for 20 process realizations (Ts = 14000).
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Fig. 3. Histograms of model order estimates, obtained for 20 process
realizations (Ts = 14000).

ones when system dynamics becomes time-invariant again.
The results shown in Fig. 2 were obtained for the high
speed of parameter variation. In this case Ts = 14000,
t1 = 4000, t2 = 5000, t3 = 9000 ans t4 = 10000. Fig. 3
summarizes the order selection capabilities of both adaptive
schemes. Both order selection criteria appropriately react to
the temporary change of system order from 2 to 4 which
takes place in the interval [t2, t3]. Although the bandwidth
selection capabilities of the MFPE-based approach seem to
be slightly worse than those of the PLS-based approach, its
order selection capabilities are much better, which results in a
considerably better overall performance for all rates of system
nonstationarity.

VII. CONCLUSION

The problem of adaptive selection of model order and
estimation bandwidth for the purpose of identification of a
nonstationary ARX system was considered. It was shown
that when suitably modified, the Akaike’s final prediction
error (FPE) criterion, originally developed for selection of the
model order only, can be successfully used for joint order and
bandwidth selection. Finally, it was shown that the FPE-based
approach favorably compares with the approach based on the
Rissanen’s predictive least squares principle.
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