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Introduction

In the 1920s H. Hopf discovered the homotopy classification of maps from
n-dimensional closed oriented manifold into the n-sphere. Namely, he proved
that the topological degree of the map determines its homotopy class. More
precisely, there is a bijection from the set of homotopy classes of such maps
to the integers. A broad and comprehensive description of the degree theory
and its applications can be found in [21].

In 1985, to obtain new bifurcation results, Dancer [14] introduced a
new degree-type invariant for S1-equivariant gradient maps, which provides
more information than the usual equivariant degree. Interestingly, 5 years
later Parusiński [26] showed that in the absence of group action such an
extra homotopy invariant for gradient maps does not exist. The idea of the
more subtle invariant in the equivariant gradient case was developed later by
Rybicki and his collaborators. Many applications of this construction can be
found in [20,25,27].

In this paper, we present the Hopf type classification of the set of otopy
classes of equivariant gradient local maps F∇

G [V ] in the case of a real finite-
dimensional orthogonal representation V of a compact Lie group G. More
precisely, first we show a decomposition of F∇

G [V ] into factors indexed by
orbit types appearing in V and then we give a description of each factor as
the direct sum of a countable number of Z. It should be emphasized that

The second author was supported by Polish Research Grant NCN 2011/03/B/ST1/04533.

http://crossmark.crossref.org/dialog/?doi=10.1007/s11784-017-0451-z&domain=pdf


2734 P. Bart�lomiejczyk and P. Nowak-Przygodzki JFPTA

our result explains the phenomenon discovered by Dancer. Namely, in the
decomposition of F∇

G [V ] additional factors appear, which do not occur in the
decomposition of the set of otopy classes of equivariant local maps FG[V ].
Thus we obtain essentially stronger otopy invariant in the gradient case.
Recall that otopy is a generalization of the concept of homotopy introduced
by Becker and Gottlieb [12,13] and independently by Dancer et al. [15].

Our study is the natural continuation of the previous work. Earlier we
investigated the classification of otopy classes in cases of gradient local maps
in R

n [8,9], gradient local fields on manifolds [11] and equivariant local maps
on a representation of a compact Lie group [5,6].

It is worth pointing out that the ideas presented here were inspired by
[1–4,19,22–24]. In particular, our paper develops and clarifies the material
contained in [7,18]. Moreover, we emphasize that the techniques used here are
not new. Namely, the construction of our classifying invariant is analogous
to that presented in [15]. Two key ideas appearing in the proof of our Main
Theorem, i.e. a perturbation of an equivariant gradient map to (H)-normal
one and a splitting of the set of equivariant otopy classes with respect to
orbit types come from [15,17]. However, [15] contains homotopy classification,
whereas our result gives otopy classification. Furthermore, as opposed to [15]
our approach does not require to appeal to the Parusiński method (see [26]),
which allowed us to simplify the presentation of the topic.

The arrangement of the paper is as follows. Section 1 contains some
preliminaries. In Sects. 2 and 3 we present constructions of the functions Φ
and Ψ, which are essential to define the invariant Θ. Section 4 provides the
description of the formula for Θ. In Sects. 5 and 6, we introduce the notions
of (H)-normal and orbit-normal maps. Our two main results are stated in
Sect. 7, where also the proof of the second is presented. In turn, the first
result is proved in Sect. 8. In Sect. 9, we show the Parusiński type theorem,
which establishes the relation between the sets of equivariant and equivariant
gradient otopy classes. Finally, Sect. 10 contains some remarks concerning the
parametrized case.

1. Preliminaries

The notation A � B means that A is a compact subset of B. For a topological
space X, we denote by τ(X) the topology on X. For any topological spaces
X and Y , let M(X,Y ) be the set of all continuous maps f : Df → Y such
that Df is an open subset of X. Let R be a family of subsets of Y . We define

Loc(X,Y,R) := { f ∈ M(X,Y ) | f−1(R) � Df for all R ∈ R}.

We introduce a topology in Loc(X,Y,R) generated by the subbasis consisting
of all sets of the form

• H(C,U) := { f ∈ Loc(X,Y,R) | C ⊂ Df , f(C) ⊂ U } for C � X and
U ∈ τ(Y ),

• M(V,R) := { f ∈ Loc(X,Y,R) | f−1(R) ⊂ V } for V ∈ τ(X) and
R ∈ R.
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Elements of Loc(X,Y,R) are called local maps. The natural base point of
Loc(X,Y,R) is the empty map. Let � denote the union of two disjoint local
maps. Moreover, in the case when R = {{y}} we will write Loc(X,Y, y)
omitting double curly brackets.

Assume that V is a real finite-dimensional orthogonal representation
of a compact Lie group G. Let X be an arbitrary G-space. We say that
f : X → V is equivariant, if f(gx) = gf(x) for all x ∈ X and g ∈ G. We will
denote by FG(X) the space {f ∈ Loc(X,V, 0) | f is equivariant} with the
induced topology. Assume that Ω is an open invariant subset of V . Elements
of FG(Ω) are called equivariant local maps.

Let I = [0, 1]. We assume that the action of G on I is trivial. Any
element of FG(I × Ω) is called an otopy. Each otopy corresponds to a path
in FG(Ω) and vice versa. Given an otopy h : Λ ⊂ I × Ω → V we can define
for each t ∈ I:

• sets Λt = {x ∈ Ω | (t, x) ∈ Λ},
• maps ht : Λt → V with ht(x) = h(t, x).

In this situation we say that h0 and h1 are otopic. Otopy gives an equivalence
relation on FG(Ω). The set of otopy classes will be denoted by FG[Ω].

Let F∇
G (Ω) denote the subspace of FG(Ω) (with the relative topol-

ogy) consisting of those maps f for which there is an invariant C1-function
ϕ : Df → R such that f = ∇ϕ. We call such maps gradient. Similarly, we
write F∇

G (I × Ω) for the subspace of FG(I × Ω) consisting of such otopies
h that ht ∈ F∇

G (Ω) for each t ∈ I. These otopies are called gradient. Let
us denote by F∇

G [Ω] the set of the equivalence classes of the gradient otopy
relation.

If H is a closed subgroup of G then
• (H) stands for the conjugacy class of H,
• NH is the normalizer of H in G,
• WH is the Weyl group of H, i.e. WH = NH/H.

Recall that Gx = {g ∈ G | gx = x}. We define the following subsets of V :

V H = {x ∈ V | H ⊂ Gx},

ΩH = {x ∈ Ω | H = Gx}.

Set Iso(Ω) := {(H) | H is a closed subgroup of G and ΩH �= ∅}. The set
Iso(Ω) is partially ordered. Namely, (H) ≤ (K) if H is conjugate to a sub-
group of K.

We will make use of the following well-known facts:
• WH is a compact Lie group,
• V H is a linear subspace of V and an orthogonal representation of WH,
• ΩH is open in V H ,
• the action of WH on ΩH is free,
• the set Iso(Ω) is finite.

Assume that M is a smooth (i.e. C1) connected manifold without bound-
ary. Let F(M) ⊂ Loc (M,TM, {M}) denote the space of local vector fields
equipped with the induced topology.
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Suppose, in addition, that M is Riemannian. Then a local vector field
v is called gradient if there is a smooth function ϕ : Dv → R such that
v = ∇ϕ. In that case F(M) contains the subspace F∇(M) consisting of
gradient local vector fields. Any element of Map (I,F(M)) is called an otopy
and any element of Map

(
I,F∇(M)

)
is called a gradient otopy. If two local

vector fields are connected by a (gradient) otopy, we call them (gradient)
otopic. Of course, (gradient) otopy gives an equivalence relation on F(M)
(F∇(M)). The sets of the respective equivalence classes will be denoted by
F [M ] and F∇[M ].

2. Definition of Φ

Assume that V is a real finite-dimensional orthogonal representation of a
compact Lie group G and Ω is an open invariant subset of V . The main goal
of this section is to define a function

Φ: F∇
G [Ω] →

∏

(H)

F∇
WH [ΩH ] ,

where the product is taken over Iso(Ω). Before we get into the details, let us
sketch the general idea of the construction on which our definition is based.
Let f ∈ F∇

G (Ω). Natural approach suggests to take as a value of Φ([f ]) classes
of restrictions

fH := f �Df ∩ΩH

for every orbit type (H) in Iso(Ω). Unfortunately, so defined fH may not be
an element of F∇

WH (ΩH), because the set of zeroes of fH does not need to be
compact. However, it is compact if (H) is maximal in Iso(Ω), because in that
case Ω(H) is closed in Ω. Since it is possible to arrange orbit types in Iso(Ω)
so that (Hi) ≤ (Hj) implies j ≤ i we can define Φi([f ]) inductively with
respect to that linear order. Namely, in the first step we set Φ1([f ]) = [fH1 ].
Then, since the set of zeroes of f contained in Ω\Ω(H1) does not need to be
compact, we perturb f to f ′ in such a way that Df ′ ⊂ Df , f ′ is otopic to f
and the set of zeroes of f ′ in Ω\Ω(H1) becomes compact. Note that now (H2)
is maximal in Ω\Ω(H1). Hence we put Φ2([f ]) =

[
f ′

H2

]
and proceed as before

for all subsequent orbit types.
The formal definition of Φ will be divided into four steps.

2.1. Definition of otopy perturbation from f to fU,ε

Assume that (H) is maximal in Iso(Ω). Let f = ∇ϕ ∈ F∇
G (Ω). We will define

a map fU,ε, which is otopic to f and whose zeros contained in Ω\Ω(H) are
compact. To do that we choose an open invariant subset U of Df ∩Ω(H) such
that

f−1(0) ∩ Ω(H) ⊂ U ⊂ cl U � Ω(H).

For ε > 0 we introduce the following notation:

U ε = {x + v | x ∈ U, v ∈ Nx, |v| < ε},

Bε = {x + v | x ∈ bdU, v ∈ Nx, |v| ≤ ε},
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Figure 1. Graphs of μ and ω

where Nx denotes
(
TxΩ(H)

)⊥. Throughout the paper whenever symbols U ε

and Bε appear we assume tacitly that the set cl (U ε) is contained in some
tubular neighbourhood of Ω(H) in V . Observe that this condition is satis-
fied for ε sufficiently small. Moreover, to define fU,ε we will need two more
assumptions:

U ε ⊂ Df and f−1(0) ∩ Bε = ∅, (2.1)
which are also satisfied for ε small enough.

Let us introduce an auxiliary smooth function μ : [0, ε] → R as in Fig. 1.
Now define for each t ∈ [0, 1] the function μt : [0, ε] → R by μt(s) = tμ(s) +
1 − t. Using the family of functions μt we will define for t ∈ [0, 1] a family of
maps rt : U ε → U ε by the formula

rt(x + v) = x + μt(|v|)v,

where x ∈ U, v ∈ Nx, |v| < ε. Observe that r0 = Id and r1(x + v) = x for
|v| ≤ 2ε/3.

We will also need another auxiliary function ω : [0, ε] → R (see Fig. 1)
given by

ω(s) =

⎧
⎪⎨

⎪⎩

1
2s2 − 1

9ε2 for s ∈ [0, ε/3] ,
− 1

2

(
s − 2

3ε
)2 for s ∈ [ε/3, 2ε/3] ,

0 for s ∈ [2ε/3, ε] .

Now we define for t ∈ [0, 1] a family of potentials

ϕt : Df\Bε → R

by the formula

ϕt(z) =

⎧
⎪⎨

⎪⎩

ϕ(r2t(z)) if z ∈ U ε and t ∈ [0, 1/2],
ϕ(r1(z)) + (2t − 1)ω(|v|) if z = x + v ∈ U εand t ∈ [1/2, 1],
ϕ(z) if z ∈ Df\(U ε ∪ Bε) and t ∈ [0, 1].

(2.2)
We are now ready to define fU,ε by the formula (see Fig. 2)

fU,ε = ∇ϕ1.
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Df ⊂ Ω

Df ∩ Ω(H)

f−1(0)

U

U

Df ⊂ Ω

Df ∩ Ω(H)

f−1(0) \ Ω(H)

U

U

Figure 2. Perturbation of f

A

BCD

t = 1
2

t = 1

t = 0
U U

2
3 U

Figure 3. Partition of I × U ε

Proposition 2.1. The homotopy h(t, z) = ∇ϕt(z) is an otopy from f �Df \Bε

to fU,ε.

Proof. It is sufficient to show that the set h−1(0) is compact. Consider the
partition of I × U ε into four subsets (see Fig. 3):

A = [0, 1/2] × U ε,

B = [1/2, 1] ×
(
U ε\U2ε/3

)
,

C = [1/2, 1] ×
(
U2ε/3\U

)
,

D = [1/2, 1] × U.

Since for t ∈ [0, 1/2] and z ∈ U ε we have

∇ϕt(z) = DrT
2t(z) · ∇ϕt (r2t(z))

and for t ∈ [1/2, 1] and z ∈ U ε the summand ω(|v|) occurs in formula (2.2),
we obtain the following description of the set of zeroes of h in I × U ε:

• h(t, z) = 0 iff f (r2t(z)) = 0 in A,
• h(t, z) = 0 iff f (r1(z)) = 0 in B,
• h(t, z) �= 0 in C,
• h(t, z) = f(z) in D.

From this we get our claim. �
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Let us introduce the following notation:

fn = fn
U,ε = fU,ε �Uε/3 ,

fc = fc
U,ε = fU,ε �DfU,ε

\Ω(H)
,

fa = fc �Dfc \ cl(Uε/3) .

Remark 2.2. The following observations will be useful in the study of the
function Φ̂, which will be defined in the next subsection:

• fn is (H)-normal in the sense of Definition 5.1,
• [fc] = [fa] in F∇

G

[
Ω\Ω(H)

]
,

• [f ] = [fU,ε] = [fn � fa] in F∇
G [Ω].

2.2. Definition of Φ̂
Let us define the function

Φ̂ : F∇
G [Ω] → F∇

WH [ΩH ] × F∇
G

[
Ω\Ω(H)

]

by

Φ̂([f ]) = (Φ̂′([f ]), Φ̂′′([f ])) =
(
[fH ] ,

[
fc

U,ε

])
,

where fH = f �Df ∩ΩH
. The fact that Φ̂ is well-defined will be proved in

Sect. 8.

2.3. Definition of Φ̂i

As we have mentioned the orbit types are enumerated (H1), (H2), . . . , (Hm)
according to the reverse partial order in Iso(Ω). Now consider a sequence of
open subsets of Ω

Ω1 ⊃ Ω2 ⊃ · · · ⊃ Ωm,

where Ω1 = Ω and Ωi+1 = Ωi\Ω(Hi). Let

Φ̂i = (Φ̂′
i, Φ̂

′′
i ) : F∇

G [Ωi] → F∇
WHi

[ΩHi
] × F∇

G [Ωi+1]

be defined as Φ̂ in the previous subsection with Ω replaced by Ωi and H by
Hi.

2.4. Definition of Φ
Let us start with the inductive definition of

Ξi : F∇
G [Ω] → F∇

G [Ωi+1].

Set Ξ0 = Id and Ξi = Φ̂′′
i ◦ Ξi−1. Let

Φi : F∇
G [Ω] → F∇

WHi
[ΩHi

]

be defined by Φi = Φ̂′
i ◦ Ξi−1. Finally, let

Φ: F∇
G [Ω] →

m∏

i=1

F∇
WHi

[ΩHi
]

be given by Φ = (Φ1, . . . ,Φm).
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Remark 2.3. It is worth pointing out that the obtained Φ does not depend
on the choice of linear extension of the partial order in Iso(Ω), since Ω(H)

is closed in Ω for every maximal orbit type (H) and therefore the inductive
step can be performed simultaneously on all maximal types (H) in Ω.

Remark 2.4. Alternatively, for given f ∈ F∇
G (Ω) we can define two finite

sequences of maps fi ∈ F∇
G (Ωi) and f ′

i ∈ F∇
WHi

(ΩHi
) given by

f1 = f, fi+1 = (fi)c
Ui,εi

, f ′
i = fi �Dfi

∩ΩHi
.

Observe that Dfi+1 ⊂ Dfi
and Φi([f ]) = [f ′

i ]. In this way we obtain the
equivalent definition of Φ.

3. Definition of Ψ

The main result of our paper (Main Theorem in Sec. 7) describes the proper-
ties of the function Θ: F∇

G [Ω] → ∏m
i=1(

∑
j Z), which provides a degree-type

invariant. In the previous section we have constructed the decomposition
Φ: F∇

G [Ω] → ∏m
i=1 F∇

WHi
[ΩHi

]. The function Θ will be defined as a com-
position of the function Φ and a family of bijections between the factors
F∇

WHi
[ΩHi

] and the direct sum of countably many copies of Z. Below we
present the construction of such a bijection.

In this section, we assume that V is a real finite-dimensional orthogonal
representation of a compact Lie group G (dim V > 0), Ω is an open invariant
subset of V , G acts freely on Ω and M := Ω/G. It is well known that M
is a Riemannian manifold of positive dimension equipped with the so-called
quotient Riemannian metric (see for instance [16, Prop. 2.28]).

If U is an open invariant subset of Ω and ϕ : U → R is an invariant
function, then ϕ̃ stands for the quotient function ϕ̃ : U/G → R. Let the
function Ψ: F∇

G [Ω] → F∇[M ] be given by Ψ([∇ϕ]) = [∇ϕ̃]. The following
result was proved in [11, Cor. 5.2].

Theorem 3.1. Ψ is a well-defined bijection.

Remark 3.2. Let {Mj} denote the set of components of M . In [11] we proved
that the intersection number I establishes a bijection F∇[Mj ] ≈ Z. Conse-
quently, the restrictions of f ∈ F∇(M) to the components of M establish a
natural bijection I : F∇[M ] → ∑

j Z. Note that a direct sum (not product)
appears in the last formula, since for any gradient local vector field f the
preimage of the zero section meets only a finite number of components of M
and, in consequence, almost all restrictions of f are otopic to the empty map.

Corollary 3.3. The composition

I ◦Ψ: F∇
G [Ω] → F∇[Ω/G] →

∑

j

Z,

where the direct sum is taken over the set of connected components of Ω/G,
is a bijection. Moreover, if f, g ∈ F∇

G (Ω) such that Df ∩ Dg = ∅ then

I ◦Ψ ([f � g]) = I ◦Ψ ([f ]) + I ◦Ψ ([g]) .
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4. Definition of Θ

We are now ready to define the invariant Θ. Assume that V is a real finite-
dimensional orthogonal representation of a compact Lie group G and Ω is an
open invariant subset of V . Let Ψi : F∇

WHi
[ΩHi

] → F∇[ΩHi
/WHi] denote the

function Ψ defined in the previous section with G replaced by WHi and Ω
replaced by ΩHi

(WHi acts freely on ΩHi
). Recall that (ΩHi

/WHi)j denotes
the jth component of ΩHi

/WHi. Let

πij : F∇[ΩHi
/WHi] → F∇[(ΩHi

/WHi)j ]

denote the function induced by the restriction of a gradient local vector field
to jth component of ΩHi

/WHi. Finally, set

Θij = I ◦πij ◦ Ψi ◦ Φi

and

Θ = {Θij} : F∇
G [Ω] →

m∏

i=1

(∑

j

Z

)
.

Correctness of the above definition requires that dim ΩHi
/WHi > 0 for i =

1, . . . , m, which is necessary for calculation of the intersection number. This
is the case when dim V H1 > 0. The opposite case, in which 0 ∈ Ω and
dim V G = 0, will be discussed in Remark 7.2 after the proof of Main Result.

5. (H)-normal maps

The maps discussed in this section are essential for the formulation of Theo-
rem 7.1. These maps are important, because in some sense they are “generic”
with respect to Φ. Namely, if f is (Hi)-normal then Φi([f ]) = [fHi

], where
fHi

= f �Df ∩ΩHi
, and Φi([f ]) = [∅] for i �= j. Let U be an open bounded

invariant subset of Ω(H). Recall that U ε = {x + v | x ∈ U, v ∈ Nx, |v| < ε}
and Bε = {x + v | x ∈ bdU, v ∈ Nx, |v| ≤ ε}.

Definition 5.1. A map f ∈ F∇
G (Ω) is called (H)-normal (on U ε) if

• f−1(0) ⊂ U ,
• U ε ⊂ Df ,
• f �Uε= ∇ϕ, where ϕ : U ε → R is an invariant C1-function satisfying

ϕ(x + v) = ϕ(x) + 1
2 |v|2 for x ∈ U , v ∈ NxΩ(H), |v| < ε.

The following result describes a basic property of (H)-normal maps and
their behaviour under perturbation.

Proposition 5.2. Assume that (H) is maximal in Iso(Ω) and f is (H)-normal
on U ε. Then

[
fc

U,ε

]
= [∅] in F∇

G

[
Ω\Ω(H)

]
.

Proof. By definition, f−1(0) ⊂ U ⊂ Ω(H), f = ∇ϕ, where ϕ(x + v) = ϕ(x) +
1
2 |v|2 for x + v ∈ U ε ⊂ Df , and fc

U,ε = ∇ϕ1 �Dϕ1\Ω(H)
, where

ϕ1(z) =

{
ϕ(x) + 1

2μ2(|v|) |v|2 + ω(|v|) if z = x + v ∈ U ε,

ϕ(z) if z ∈ Df\(U ε ∪ Bε).

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


2742 P. Bart�lomiejczyk and P. Nowak-Przygodzki JFPTA

Define the family of potentials ht : Dϕ1\Ω(H) → R

ht(z) =

{
ϕ(x) + 1

2
μ2(|v|) |v|2 + ω(|v|) + tω

(
2
3

|v|) if z = x + v ∈ U ε\U,

ϕ(z) if z ∈ Df\(U ε ∪ Bε ∪ Ω(H)).

Since ∇ht is a path from fc
U,ε to ∇h1 in F∇

G

(
Ω\Ω(H)

)
and (∇h1)

−1 (0) = ∅,
we have

[
fc

U,ε

]
= [∅] in F∇

G

[
Ω\Ω(H)

]
. �

6. Orbit-normal maps

Here we introduce an important subclass of (H)-normal maps, which will
appear in the formulation of Main Theorem as base functions for Θ. Let O
denote a G-orbit in Ω. Assume that Oε := {x+v | x ∈ O, v ∈ (TxO)⊥, |v| < ε}
is contained with its closure in some tubular neighbourhood of O in Ω.

Definition 6.1. A map f ∈ F∇
G (Ω) is called orbit-normal around O if

• f−1(0) = O,
• Oε ⊂ Df ,
• f(x + v) = v for x + v ∈ Oε.

The three following properties of orbit-normal maps will be needed in
the proof of Main Theorem. The first one explains the relation between the
notions of orbit-normal and (H)-normal maps.

Proposition 6.2. If (H) is an orbit type of an orbit O then every orbit-normal
map around O is also (H)-normal.

Proof. Assume that f ∈ F∇
G (Ω) is orbit-normal around O. Let for x ∈ O

(Gx = H)

Nx
1 := (Tx(O))⊥ ∩ TxΩH ,

Nx
2 := (TxΩ(H))⊥.

By definition, Nx
1 ⊥ Nx

2 . We will show that (TxO)⊥ = Nx
1 ⊕ Nx

2 . It is well-
known that

TxΩ(H) = TxO ⊕ ((TxO)⊥ ∩ V H).

Hence

(Tx(O))⊥ ∩ TxΩ(H) = (Tx(O))⊥ ∩ (TxO ⊕ ((TxO)⊥ ∩ V H))

= (TxO)⊥ ∩ V H) = (Tx(O))⊥ ∩ TxΩH = Nx
1

and, in consequence,

(TxO)⊥ = ((TxO)⊥ ∩ TxΩ(H)) ⊕ (TxΩ(H))⊥ = Nx
1 ⊕ Nx

2 .

Set U = {x + v1 | x ∈ O, v1 ∈ Nx
1 , |v1| <

√
2

2 ε}. Since

U
√

2
2 ε = {x+v1+v2 | x ∈ O, v1 ∈ Nx

1 , |v1| <
√

2
2 ε, v2 ∈ Nx

2 , |v2| <
√

2
2 ε} ⊂ Oε,

we have f(x + v1 + v2) = v1 + v2 = f(x + v1) + v2 for x + v1 + v2 ∈ U
√

2
2 ε,

which proves that f is (H)-normal. �
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It turns out that the property of being orbit-normal is inherited by the
restriction to ΩH .

Proposition 6.3. Assume that G-orbit O has orbit type (H). If f ∈ F∇
G (Ω) is

orbit-normal around O then f �Df ∩ΩH
∈ F∇

WH(ΩH) is orbit-normal around
WH-orbit O ∩ ΩH .

Proof. The assertion follows from the observation that

{x + v | x ∈ O ∩ ΩH , v ∈ V H , |v| < ε} = Oε ∩ ΩH

is a tubular neighbourhood of the WH-orbit O ∩ ΩH , in which f(x + v) = v.
�

The next result describes what happens when we divide out the free
action in an orbit-normal map.

Proposition 6.4. If G acts freely on Ω and f = ∇ϕ ∈ F∇
G (Ω) is orbit-normal

around O then O/G ∈ Ω/G is a source for ∇ϕ̃ ∈ F∇(Ω/G).

Proof. Let p = O/G ∈ Ω/G = M . Choose x ∈ O. We can identify some
neighbourhood U of p in M with the set {v ∈ (TxO)⊥ | |v| < ε} and for
v ∈ U the tangent space TvM with (TxO)⊥. Since ∇ϕ(x + v) = v, for v ∈ U
we have ∇ϕ̃(v) = v ∈ TvM . Hence p is a source for ∇ϕ̃. �

7. Main results

We can now formulate main results of our paper. Theorem 7.1 will be proved
in the next section.

Theorem 7.1. The function

Φ: F∇
G [Ω] →

m∏

i=1

F∇
WHi

[ΩHi
] ,

where the product is taken over Iso(Ω), is a bijection. Moreover, if f is (Hj)-
normal then

Φi([f ]) =

{
[∅] if i �= j,

[fHj
] if i = j,

where fHj
= f �Df ∩ΩHj

.

Main Theorem. Assume that 0 �∈ Ω or dim V G > 0. Then the function

Θ: F∇
G [Ω] →

m∏

i=1

(∑

j

Z

)
,

where the product is taken over Iso(Ω) and the respective direct sums are
indexed by either finite or countably infinite sets of connected components of
the quotients ΩHi

/WHi, is a bijection. Moreover
1. Θ([f � g]) = Θ([f ]) + Θ([g]) for f, g ∈ F∇

G (Ω) such that Df ∩ Dg = ∅,
2. Θ([∅]) = 0,
3. if Θ([f ]) �= 0 then there is x ∈ Df such that f(x) = 0,
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4. if f is orbit-normal around O ⊂ Ω(Hk) and pk (O ∩ ΩHk
) ∈ (ΩHk

/WHk)l,
where pk : ΩHk

→ ΩHk
/WHk denotes the quotient map and (ΩHk

/WHk)l

the respective component, then

Θij([f ]) =

{
1 if i = k and j = l,

0 otherwise.

Proof. First we show that Θ is a bijection. Define

Ψ =
m∏

i=1

Ψi :
m∏

i=1

ΨiF∇
WHi

[ΩHi
] →

m∏

i=1

F∇ [ΩHi
/WHi]

and

π =
∑

i,j

πij :
m∏

i=1

F∇ [ΩHi
/WHi] →

m∏

i=1

∑

j

F∇ [(ΩHi
/WHi)j ] ,

where for each i the index j runs over the set of connected components of
ΩHi

/WHi. Observe that Ψ and π are bijections (the first from Theorem 3.1
and the second by definition). Let Iij : F∇ [(ΩHi

/WHi)j ] → Z denote the
intersection number restricted to the respective component. By Remark 3.2,
Iij is a bijection and, in consequence, so is

I =
∑

i,j

Iij :
m∏

i=1

∑

j

F∇ [(ΩHi
/WHi)j ] →

m∏

i=1

∑

j

Z.

Since, by Theorem 7.1, Φ is a bijection, we obtain that the composition
Θ = I ◦π ◦ Ψ ◦ Φ is also a bijection.

Next we prove the additivity property (1). Following the notation from
Remark 2.4 we obtain the sequences fi, gi, (f � g)i ∈ F∇

G (Ωi) and f ′
i , g

′
i, (f �

g)′
i = f ′

i � g′
i ∈ F∇

WHi
(ΩHi

). Since Φi([f � g]) = [f ′
i � g′

i], by Corollary 3.3 we
have

Θij([f � g]) = I ◦πij ◦ Ψi ([f ′
i � g′

i])
= I ◦πij ◦ Ψi ([f ′

i ]) + I ◦πij ◦ Ψi ([g′
i])

= Θij([f ]) + Θij([g]).

The property (2) follows from (1) as well as from the direct construction.
To prove (3) observe that if f−1(0) = ∅ then f is otopic to the empty

map and hence Θij([f ]) = Θij([∅]) = 0.
Finally, we show the normalization property (4). By Proposition 6.2,

f is (Hk)-normal. First consider the case i = k. Note that Φk([f ]) = [fHk
]

and Ψk([fHk
]) = Ψk([∇ϕ]) = [∇ϕ̃k]. By Propositions 6.3 and 6.4, the only

zero of ∇ϕ̃k is a source and, by assumption, it is contained in (ΩHk
/WHk)l.

Consequently,

Θkj([f ]) = I ◦πkj ◦ Ψk ([fHk
]) = I ◦πkj ([∇ϕ̃k]) =

{
1 for k = l,

0 for k �= l.

In turn, for i �= k, Φi([f ]) = [∅] and, in consequence, Θij([f ]) = 0. �
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Remark 7.2. Now consider the case 0 ∈ Ω and dim V G = 0. In that situation
H1 = G, V H1 = ΩH1 = {0}, and WH1 is trivial. Since

Ψ1 ◦ Φ1 : F∇
G [Ω] → F∇ [ΩH1/WH1] = F∇ [{0}] = {∅, 0},

we can express Θ the in following form

Θ: F∇
G [Ω] → {0, 1} ×

m∏

i=2

∑

j

Z,

where Θ11 : F∇
G [Ω] → {0, 1} and

Θ11([f ]) =

{
1 for 0 ∈ Df ,

0 for 0 �∈ Df .

Main Theorem holds as well in the above case. Regarding the additivity
property let us mention that all Z have complete additive structure, but the
addition 1+1 in the set {0, 1} makes no sense. Nevertheless, when Df ∩Dg = ∅
then either Θ11([f ]) or Θ11([g]) is equal to 0 and therefore condition (1) makes
no problem.

8. Proof of Theorem 7.1

This section contains the proof of Theorem 7.1 preceded by a series of lemmas
and notations. Let us assume that (H) is maximal in Iso(Ω). Recall that below
∼ denotes the relation of gradient otopy.

Lemma 8.1. Φ̂ is well-defined.

Proof. Observe that the definition of Φ̂ does not depend on the choice of U
and ε if only they satisfy Condition (2.1). Since for the fixed U the definition
of Φ̂ does not depend on the choice of ε, it remains to check that it does not
depend on the choice of U if ε is fixed. Let ϕ1 and ϕ′

1 be potentials from
the definition of Φ̂ corresponding to U and V . We can assume that U ⊂ V
because otherwise we can pass from U and V through U ∩ V . Our assertion
follows from the observation that

∇ϕ′
1 �Dϕ′

1
\Ω(H)

∼ ∇ϕ′
1 �A∼ ∇ϕ1 �A∼ ∇ϕ1 �Dϕ1\Ω(H)

,

where A = Df\ (
Ω(H) ∪ Bε

U ∪ Bε
V

)
.

Now we will show that if [f ] = [g] in F∇
G [Ω] then

1. Φ̂′([f ]) = [fH ] = [gH ] = Φ̂′([g]) in F∇
WH [ΩH ],

2. Φ̂′′([f ]) = Φ̂′′([g]) in F∇
G

[
Ω\Ω(H)

]
.

By assumption, there is an otopy h : Λ ⊂ I × Ω → V such that f = h0 and
g = h1. The proof of (1) is straightforward. Namely, let A = Λ ∩ (I × ΩH)
and k = h �A. Then k : A ⊂ I × ΩH → V H is an otopy such that k0 = fH

and k1 = gH , and (1) is proved. To show (2) we will perturb the otopy h
treating every section ht(·) = h(t, ·) analogously to the perturbation fU,ε of
the map f . Let W be an open and invariant subset of I × Ω(H) such that

h−1(0) ∩ (
I × Ω(H)

) ⊂ W ⊂ cl W � Λ ∩ (
I × Ω(H)

)
.
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Let B = bdW . For ε > 0 let us define the sets

W ε = {(t, x + v) | (t, x) ∈ W, v ∈ Nx, |v| < ε},

Bε = {(t, x + v) | (t, x) ∈ B, v ∈ Nx, |v| ≤ ε}.

Observe that for ε sufficiently small we have W ε ⊂ Λ, cl(W ε) is contained in
some tubular neighbourhood of I × Ω(H) and h−1(0) ∩ Bε = ∅. Recall that
for X ⊂ I × Ω we denote by Xt the set {x ∈ Ω | (t, x) ∈ A}. Define the map

hW,ε : Λ\Bε → V

by the formula

hW,ε(z) =

{
(ht)Wt,ε

(x) if z = (t, x) ∈ W ε,

h(z) if z ∈ Λ\(W ε ∪ Bε).

In the above formula we use notation of perturbation introduced in Sect. 2.1.
Set

hc
W,ε = hW,ε �Λ\(Bε∪(I×Ω(H))) .

Since hW,ε is an otopy in F∇
G (Ω) and

(
hc

W,ε

)−1 (0) is compact, hc
W,ε is an otopy

in F∇
G

(
Ω\Ω(H)

)
connecting fc

W0,ε �Df \Bε
0

and gc
W1,ε �Dg\Bε

1
. Consequently,

[
fc

W0,ε

]
=

[
fc

W0,ε �Df \Bε
0

]
=

[
gc

W1,ε �Dg\Bε
1

]
=

[
gc

W1,ε

]
in F∇

G

[
Ω\Ω(H)

]
,

which gives Φ̂′′([f ]) = Φ̂′′([g]) and (2) is proved. �

The following two constructions will be needed in the proof of
Lemma 8.4.

Assume k = ∇ϕ ∈ F∇
WH (ΩH). Let ϕG : GDk → R be given by

ϕG(gx) = ϕ(x). Let U be an open bounded invariant subset of GDk such
that k−1(0) ⊂ U . Define the function ϕ̃ : U ε → R by ϕ̃(x+v) = ϕG(x)+ 1

2 |v|2
for x + v ∈ U ε. Set

kU,ε = ∇ϕ̃.

For l ∈ F∇
G

(
Ω\Ω(H)

)
and Y ⊂ Ω closed invariant such that l−1(0) ∩ Y = ∅,

we define

lY = l �Dl\Y .

In the following proposition we use the notation introduced in Sect. 2.1.

Proposition 8.2. The maps kU,ε ∈ F∇
G (Ω) and lY ∈ F∇

G

(
Ω\Ω(H)

)
have the

following properties:
1. kU,ε is (H)-normal,
2. in F∇

G

[
Ω\Ω(H)

]
we have

(a)
[(

kU,ε
)c

U,ε

]
= [∅],

(b)
[(

kU,ε � lcl(U
ε)

)c

U,ε

]
=

[
lcl(U

ε)
]
,

(c)
[
lcl(U

ε)
]

= [l],

3.
(
fc

U,ε

)cl(Uε/3) = fa
U,ε,

4. (fH)U,ε/3 = fU,ε �Uε/3= fn
U,ε.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Vol. 19 (2017) The Hopf type theorem 2747

Proof. Property (2a) follows from (1) and Proposition 5.2. All other proper-
ties are obvious. �

Let us define the function

Φ̃ : F∇
WH [ΩH ] × F∇

G

[
Ω\Ω(H)

] → F∇
G [Ω]

by the formula

Φ̃ ([k], [l]) =
[
kU,ε � lcl(U

ε)
]
.

It will turn out that Φ̃ is inverse to Φ̂, which will imply that Φ̂ is a
bijection.

Lemma 8.3. Φ̃ is well-defined.

Proof. It is easy to see that the definition of Φ̃ does not depend on the
choice of U and ε. We show that Φ̃ is also independent of the choice of the
representative in the otopy class. Let k : Dk ⊂ I × ΩH → V H and l : Dl ⊂
I ×(

Ω\Ω(H)

) → V be otopies. Let W ⊂ I ×Ω(H) be an open invariant subset
such that

k−1(0) ⊂ W ⊂ cl W � GDk.

Choose ε > 0 such that l−1(0) ∩ cl (W ε) = ∅. Recall that for X ⊂ I × Ω we
denote by Xt the set {x ∈ Ω | (t, x) ∈ X}. Since

ht := (kt)
Wt,ε � (lt)

(cl(W ε))t

is an otopy and

(ki)
Wi,ε � (li)

cl(W ε
i ) ∼ (ki)

Wi,ε � (li)
(cl(W ε))i for i = 0, 1

we obtain Φ̃ ([k0], [l0]) = Φ̃ ([k1], [l1]), which is the desired conclusion. �

Lemma 8.4. Φ̃ is inverse to Φ̂ and therefore Φ̂ is a bijection.

Proof. The calculations below are based on Proposition 8.2. Observe that

Φ̂ ◦ Φ̃ ([k], [l]) = Φ̂
([

kU,ε � lcl(U
ε)

])

=
(

[k �U ] ,
[(

kU,ε � lcl(U
ε)

)c

U,ε

])

=
(
[k],

[
lcl(U

ε)
])

= ([k], [l]) .

In turn, if in Φ̃ we take ε/3 instead of ε we obtain

Φ̃ ◦ Φ̂ ([f ]) = Φ̃
(
[fH ] ,

[
fc

U,ε

])
=

[
(fH)U,ε/3 � (

fc
U,ε

)cl(Uε/3)
]

=
[
fn

U,ε � fa
U,ε

]
= [f ],

which completes the proof. �

The next lemma follows directly from the construction of Φ̂ and the
definition of the sequence fi (Remark 2.4).
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Lemma 8.5. Let f ∈ F∇
G (Ω). For each i the bijection Φ̂i has the following

properties:

1. Φ̂i([∅]) = ([∅], [∅]),
2. Φ̂′′

i ([fi]) = [fi+1],
3. Φ̂′

i([fi]) = Φi([f ]).

Now we can move on to the final purpose of this section.

Proof of Theorem 7.1. First we show that (Φ1,Φ2, . . . ,Φm) is a bijection.
Since

1. (Φ1,Ξ1) = Φ̂1 is a bijection,
2. the bijectivity of (Φ1, . . . ,Φi,Ξi) and Φ̂i+1 imply the bijectivity of

(Φ1, . . . ,Φi,Φi+1,Ξi+1) = (Φ1, . . . ,Φi, Φ̂i+1 ◦ Ξi),

3. the set of values of Ξm is equal to the singleton F∇
G [∅],

by induction on i we obtain that (Φ1,Φ2, . . . ,Φm) is a bijection.
Now we will prove the second part of our statement. Assume that f

is (Hj)-normal. Note that f−1(0) ⊂ Ω(Hj). First observe that since fi =
f �Df ∩Ωi

for i ≤ j we have

Φi([f ]) = [f �Df ∩ΩHi
] =

{
[∅] if i < j,

[fHj
] if i = j.

Note that (Hj) is maximal in Iso(Ωj). By definition, fj = f �Df ∩Ωj
and

fj+1 = (fj)c
U,ε. Hence, by Proposition 5.2, [fj+1] = [∅] in F∇

G [Ωj+1]. By
Lemma 8.5, [fi] = [∅] in F∇

G [Ωi] for i > j, and, in consequence,

Φi([f ]) = Φ̂′
i([fi]) = [∅] for i > j.

�

9. The Parusiński type theorem for equivariant local maps

The aim of this section is to compare the sets of equivariant and equivariant
gradient otopy classes. Note that the inclusion F∇

G (Ω) ↪→ FG(Ω) induces
the well-defined function J : F∇

G [Ω] → FG[Ω]. In [8] we proved that in the
absence of group action the function J is a bijection. It turns out that in
the equivariant case the following Parusiński type theorem (see [26]) holds.
Define Iso0(Ω) := {(H) ∈ Iso(Ω) | dim WH = 0}.

Theorem 9.1. J is a bijection if and only if Iso0(Ω) = Iso(Ω).

The remainder of this section will be devoted to the proof of this result.
Recall that in [5] we showed the existence of the bijection Υ: FG[Ω] →∏m

i=1 FWHi
[ΩHi

] and in the present paper the existence of the bijection
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Φ: F∇
G [Ω] → ∏m

i=1 F∇
WHi

[ΩHi
]. It is natural to consider the following dia-

gram

F∇
G [Ω] Φ−−−−→ ∏m

i=1 F∇
WHi

[ΩHi
]

J
⏐
⏐
�

⏐
⏐
�

∏ Ji

FG[Ω] Υ−−−−→ ∏m
i=1 FWHi

[ΩHi
] ,

(9.1)

where Ji : F∇
WHi

[ΩHi
] → FWHi

[ΩHi
] are also induced by the inclusions. The

commutativity of diagram (9.1) follows from the inductive definitions of Φ
and Υ and the following result.

Lemma 9.2. Assume that (H) is maximal in Iso(Ω). Let J ′ : F∇
WH [ΩH ] →

FWH [ΩH ] and J ′′ : F∇
G

[
Ω\Ω(H)

] → FG

[
Ω\Ω(H)

]
be induced by the respec-

tive inclusions. Then the diagram

F∇
G [Ω] Φ̂−−−−→ F∇

WH [ΩH ] × F∇
G

[
Ω\Ω(H)

]

J
⏐
⏐
�

⏐
⏐
�J ′×J ′′

FG[Ω] Υ̂−−−−→ FWH [ΩH ] × FG

[
Ω\Ω(H)

]

(9.2)

commutes.

Proof. Let f = ∇ϕ ∈ F∇
G (Ω). Recall that Φ̂([f ]) = ([fH ] , [k]), where

k(z) =

{
∇ (ϕ ◦ r1) (z) + ∇ω(|v|) if z = x + v ∈ U ε\Ω(H),

∇ϕ(z) if z ∈ Df\ (
U ε ∪ Bε ∪ Ω(H)

)
,

and Υ̂([f ]) =
(
[fH ] ,

[
k̃
])

, where

k̃(z) =

{
∇ϕ (r1(z)) + ∇ω(|v|) if z = x + v ∈ U ε\Ω(H),

∇ϕ(z) if z ∈ Df\ (
U ε ∪ Bε ∪ Ω(H)

)
.

First observe that J ′ ◦ Φ̂′([f ]) = [fH ] = Υ̂′ ◦J ([f ]). To prove that J ′′ ◦ Φ̂′′ =
Υ̂′′ ◦J it is enough to show that the straight-line homotopy ht = (1− t)k+ tk̃
is an otopy in FG

(
Ω\Ω(H)

)
. To see that, note that

k(z) = ∇ (ϕ ◦ r1) (z) + ∇ω(|v|) = (Dr1(z))T · ∇ϕ(r1(z)) + ∇ω(|v|) on Uε\Ω(H).

Using orthogonal coordinates x being principal directions corresponding to
the principal curvatures of Ω(H) and orthogonal coordinates v, we get that
the matrix (Dr1(z))T = (D(x + μ(|v|)v))T has the following form

(
A 0
0 B

)
,

where A is diagonal with positive entries on the diagonal and B = D(μ(|v|)v)
is nonsingular iff 2ε/3 < |v| < ε. Therefore,

ht(z) = 0 ≡ k(z) = 0 ≡ k̃(z) = 0

for all t ∈ I and, in consequence, h is an otopy. �

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


2750 P. Bart�lomiejczyk and P. Nowak-Przygodzki JFPTA

Since from Diagram (9.1) J is a bijection if and only if all Ji are bijec-
tions and the action of WHi on ΩHi

is free, it remains to study the function
J : F∇

G [Ω] → FG[Ω] assuming G acts freely on Ω. We will consider two cases.
If dim G > 0 then FG[Ω] is trivial (see [5, Thm 3.1])) and F∇

G [Ω] is non-
trivial by Corollary 3.3, and so J is not a bijection. Now consider the case
dim G = 0. Recall that M = Ω/G, E = (Ω × V )/G and Γ[M,E] denotes the
set of otopy classes of local cross sections of the bundle E → M . The fol-
lowing commutative diagram (9.3) relates the sets of different otopy classes.
Since a, b, c, d are bijections by Theorem 3.1, [5, Thm 3.4], [11, Thm 5.1]
and the natural identification of vector bundles E and TM , so is J .

F∇
G [Ω]

J

��
�
�
�
�
�
�
�

a �� F∇[M ]

c

��

F [M ]

FG[Ω] b �� Γ[M,E]
��

d

��
(9.3)

The commutativity of Diagram (9.1) and the above considerations con-
cerning the single function Ji : F∇

WHi
[ΩHi

] → FWHi
[ΩHi

] complete the proof
of Theorem 9.1.

Remark 9.3. It may be worth noting the relation of our constructions with
the additive subgroups U(V ) and A(V ) of the Euler ring U(G) and the Burn-
side ring A(G), taking into account only their additive structure. Namely,
denoting by ΘU the function Θ from Main Theorem, by ΘA its nongradient
version from [5], by πU and πA the summing on j and by U the forgetful
functor, we obtain the following commutative diagram:

F∇
G [Ω] ΘU−−−−→

∏

Iso(Ω)

(∑

j

Z

)
πU−−−−→ U(V ) =

∏

Iso(Ω)

Z

J
⏐
⏐
�

⏐
⏐
�U

⏐
⏐
�U

FG[Ω] ΘA−−−−→
∏

Iso0(Ω)

(∑

j

Z

)
πA−−−−→ A(V ) =

∏

Iso0(Ω)

Z.

(9.4)

Moreover, observe that πU ◦ ΘU = deg∇
G and πA ◦ ΘA = degG using the

notation of the respective degrees from [7].

10. Parametrized equivariant gradient local maps

We close the paper with some remarks concerning the parametrized case.
Recall that Rk denotes a trivial representation of G. Let Ω be an open invari-
ant subset of Rk ⊕ V . Define FG(Ω) = LocG(Ω, V, 0). Let (y, x) denote the
coordinates Rk ⊕V . A map f ∈ FG(Ω) is called gradient if there is a function
(not necessarily continuous) ϕ : Df → R such that ϕ is C1 with respect to
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x and f(x, y) = ∇xϕ(x, y). Define F∇
G (Ω) = {f ∈ FG(Ω) | f is gradient }.

Similarly as in the nonparametrized case, we define gradient otopies and the
set of gradient otopy classes F∇

G [Ω].
It is easily seen that Theorem 7.1 also holds in that case, because both

the construction of the function Φ: F∇
G [Ω] → ∏m

i=1 F∇
WHi

[ΩHi
] and the proof

of Theorem 7.1 are essentially the same.
Now let us describe the single factor of the above decomposition. Assume

that G acts freely on Ω ⊂ R
k ⊕ V . Set M = Ω/G. Define π : M → R by

π([y, x]) = y. Observe that My = π−1(y) is a submanifold of M (possibly
empty) for every y ∈ R

k. Let us consider a subbundle E ⊂ TM defined by
Ep = TpMπ(p) for p ∈ M . The set of all local continuous sections of the
bundle E will be denoted by Γ(M,E). A local section s : Ds ⊂ M → E is
called gradient if there is a function ϕ : Ds → R (not necessarily continuous)
such that ϕ is C1 on every Ds ∩ My and

s(p) := ∇πϕ(p) = ∇ (
ϕ �Ds∩Mπ(p)

)
(p).

Write F∇
π (M) := {s ∈ Γ(M,E) | s is gradient }. Recall that if ϕ : U → R

is an invariant function then ϕ̃ stands for the quotient function ϕ̃ : U/G →
R. Finally, let Ψ: F∇

G (Ω) → F∇
π (M) be defined by Ψ (∇xϕ) = ∇πϕ̃. The

following result, which is an analogue of Theorem 3.1, allows us to replace
single factors of our decomposition Φ by the sets of gradient otopy classes of
parametrized maps on quotient manifolds (the free G-action has been divided
out).

Proposition 10.1. Ψ is a bijection and induces a bijection between the sets of
gradient otopy classes F∇

G [Ω] and F∇
π [M ].

Remark 10.2. It is worth pointing out that for now we do not have a sat-
isfactory classification of the set F∇

π [M ] even in the simplest case of trivial
action, where M = Ω = R

k ⊕ R
n (see Question 1 in [10]).
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[20] Go�lębiewska, A., Rybicki, S.: Equivariant Conley index versus degree for equi-
variant gradient maps. Discrete Contin. Dyn. Syst. Ser. S 6, 985–997 (2013)

[21] Granas, A., Dugundji, J.: Fixed Point Theory. Springer, New York (2003)

[22] Marzantowicz, W., Prieto, C.: The unstable equivariant fixed point index and
the equivariant degree. J. Lond. Math. Soc. 69, 214–230 (2003)

[23] Marzantowicz, W., Prieto, C.: Computation of the equivariant 1-stem. Nonlin-
ear Anal. 63, 513–524 (2005)

[24] Marzantowicz, W., Prieto, C.: A decomposition formula for equivariant stable
homotopy classes. Topol. Methods Nonlinear Anal. 33, 285–292 (2009)

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Vol. 19 (2017) The Hopf type theorem 2753

[25] Muchewicz, K., Rybicki, S.: Existence and continuation of solutions for a non-
linear Neumann problem. Nonlinear Anal. 69, 3423–3449 (2008)
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