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This article presents a new approach to determine the model order (number of principal
components) in the modified Prony method applied to swath acoustic mapping. Determination
of the number of principal components is a crucial step in the modified Prony method. In the
proposed approach the model order is chosen based on the underlying physical model of the
underwater acoustic environment, and utilised signal processing operations. This data-driven
approach, attempts to make use of all available information to assess the number of signals
arriving at the receiver using pipeline processing in lieu of iterative processing.
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1. Introduction
Application of the Prony method to Direction-of-Arrival (DOA) estimation is an interest-

ing alternative for conventional beamforming and basic interferometry in underwater acoustics
for depth determination [8,10,13,20]. It is capable of simultaneously determining multiple an-
gles of arrival (similarly to beamforming) while utilizing a reduced number of hydrophones in
the receiving array (as in interferometry) [3]. Although other sub-space (model-based) meth-
ods exist, such as variants of ESPRIT and MUSIC, they are highly computationally intensive
and their performance abruptly deteriorates below a certain SNR level (known as ”threshold ef-
fect”) [13–15, 18]. On the other hand, interferometry is capable of determining only one DOA
at a given instant, which limits its performance and object detection capabilities in complex
geometry environments [9].

The heart of the modified Prony (MP) method is the usage of a reduced rank approxi-
mation of the correlation matrix and solution of a set of linear equations. When choosing this
low-rank approximation of the correlation matrix it is necessary to determine the model order
to separate signal eigenvalues from noise eigenvalues [17]. While general methods exist for
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determination of the model order (also referred to as the number of principal components-PCs
or principal eigenvectors-PEs) such as Aike Information Criterion and Minimum Description
Length [1, 2, 19], they are not suitable for acoustic mapping applications due to the inherent
non-stationariness of the processed signal (i.e. constant change of the spatial frequency) [8].
An alternative solution is to use an iterative model order determination algorithm to solve the
linear set of equations in a Least Squares sense, which stops after a pre-set number of steps, or
after reaching the convergence criterion [8]. A different, new approach is proposed in this article
(see Section 3), which takes into account the underlying physical model of the signal propaga-
tion environment and signal processing operations applied in the processing chain. Based on
the assumption that signal eigenvalues are greater than noise eigenvalues, the proposed method
dynamically determines the threshold below which eigenvalues are removed from the sample
covariance matrix to obtain its low-rank approximation.

2. Basic concepts of Prony method
The method proposed in this article is an extension to Computed Angle-of-Arrival Tran-

sient Imaging (CAATI) under the following assumptions [8]:

1. A linear N -element equispaced array is used to measure backscatter arrivals propagating
in the same plane as the array.

2. At each instant in time exactly M independent, coplanar plane waves are incident on the
receiving array.

3. The acoustic backscatter is narrowband.

4. The receiving array output signals are in steady state across the entire array (received
amplitude is only affected by exponential damping between receive elements and noise).

Let there be a set of N equispaced (d = λ/2) identical receivers impinged by M signals
perturbed by the noise (Fig. 1). The received signals, s(n) at individual hydrophones can be
written as:

s(n) =
M∑
i=1

ai e
(αi+j ui) d (n−1) + w(n)

ai = Ai e
jΘi , ui = k sin θi , n = 1, 2, 3, · · · , N

(1)

where um is the acoustic wavenumber, k = 2π/λ, λ is the wavelength at the central fre-
quency, α is the exponential damping factor and w(n) is additive noise at each array element.
Eq.(1) is equivalent to the statement that each hydrophone, at the same time, receives a phase
delayed and exponentially attenuated copy of the signal received by the reference element. In
eq. (1) time dependency is suppressed and ai is complex amplitude of the backscatter signal at
the reference receiver (n = 1).

Noticing the analogies between this model and linear prediction-error filter ( [16,17]), we
might find DOAs of the backscatter signals by finding complex roots of the polynomial:

H(z) = 1 +
L∑
l=1

gl z
−l = 0 (2)
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Fig. 1. Multiple signals arriving at the receiver array.

where L is the filter order and z = eσ+jω. If L satisfies the inequality:

M 6 L 6 (N −M/2) (3)

complex coefficients gl may be obtained by solving a set of linear complex forward–backward
equations [17]:

s(L) s(L− 1) · · · s(1)
s(L+ 1) s(L) · · · s(2)

... ... ...
s(N − 1) s(N − 2) · · · s(N − L)

s∗(2) s∗(3) · · · s∗(L+ 1)
s∗(3) s∗(4) · · · s∗(L+ 2)

... ... ...
s∗(N − L+ 1) s∗(N − L+ 2) · · · s∗(N)




g1

g2
...
gL

 = −



s(L+ 1)
s(L+ 2)

...
s(N)

s∗(1)
s∗(2)

...
s∗(N − L)


(4a)

or shortly:
Ag = −h (4b)

where ∗ denotes a complex conjugate. In the noiseless case, out ofL roots of the eq.(2) M closest
to the unit circle on the complex plane are equal to e(αi+j ui) d components in eq. (1). Additional
L−M roots lying further away from the unit circle are rejected. The unknowns αi and ui might
be obtained from:

αi =
ln |zi|
d

(m−1), ui =
arg(zi)

d
(m−1) (5)

Volume 20 HYDROACOUSTICS

65

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Finally, DOA relative to main response axis (MRA) of each plane wave is obtained from:

θi = arcsin(
ui
k

) (rad) (6)

Complex amplitudes might be calculated by solving the second set of linear equations:

s = Fa ,where :

s =
[
s(1) s(2) · · · s(N − 1)

]T
a =

[
a1 a2 · · · aM

]T
F =


1 1 · · · 1

e−ju1 e−ju2 e−juM
... . . . ...

e−j(N−1)u1 e−j(N−1)u2 · · · e−j(N−1)uM

 .

(7)

If there are M distinct solutions, we may calculate:

a = F+s (8)

where + denotes Moore-Penrose pseudoinverse. Amplitudes and phases of the backscattered
signals can be then calculated from:

A1 = |ai|, Θi = arg(ai) (9)

Equation (4a) may be solved using various methods [14,15]. In the modified Prony (MP)
method proposed by Tufts and Kumaresan [17], we first calculate correlation matrix and the
correlation vector:

R = A∗A (10)

r = −A∗h (11)

where ∗ denotes conjugate transpose. We may then rewrite eq.(4a) as:

g = R+r (12)

where + denotes the Moore–Penrose pseudoinverse. Eigenvalue/eigenvector decomposi-
tion of R is performed as:

R = UΛU∗ (13)

where γ1 ≥ γ2 ≥ · · · ≥ γM and γM+1 ≥ γM+2 ≥ · · · ≥ γL = 0 are the eigenvalues of R
sorted in descending order, situated on the main diagonal of Λ. The columns of U are orthonor-
mal eigenvectors of R. Using this decomposition we may rewrite g as a linear combination of
correlation vector, eigenvectors and eigenvalues of R:

g = ĝ =
M∑
i=1

u∗i r ui
γi

(14)
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where ui is the eigenvector of U associated with i−th eigenvalue. In the presence of noise the
smallest eigenvalues are not equal to each other and their values are different than zero. By
selecting M greatest eigenvalues, and setting other eigenvalues to zero, we obtain the low-rank
approximation R̂ of the correlation matrix R (see section 3 for further details). We are free
to choose any value of L in the interval (3) to construct matrix A and vector h. If we use
a much larger number of receivers than the number of backscattered signals (N � M ) we
might significantly improve the performance of the Prony method. The optimal value of L, in
terms of accuracy of DOAs, in case of two equal amplitude signals, is equal to approximately
3
4
N [17]. Additionally, as suggested in [8], we may use several snapshots of data to obtain better

approximations of correlation matrix and correlation vector:

At,K =


A1

A2

A3

· · ·
AK

, ht,K =


h1

h2

h3

· · ·
hK

 (15)

where K is the number of snapshots associated with a given instant t. The number of snapshots
is limited, however, by spatial and temporal decorrelation of the signal, and the available number
of degrees of freedom [8].

3. New method for determination of the model order

The key step of the MP method is estimation of the order of the model M̂ i.e the number
of signals impinging the array. There are three possible situations [17]:

M̂ =


= M, properly modelled,
> M, overmodelled order,
< M, undermodelled order.

In the first case, the model order is resolved properly and solutions are only slightly per-
turbed. For the majority of SNR scenarios R̂ is a better estimator of R than the least-squares
solution which includes all L eigenvalues [17]. In the second case, the model order is overesti-
mated and noise is resolved as a valid signal giving false detection, and perturbing ĝ vector. In
the last case, one or more signals are not resolved at all, resulting in a depleted solution (vector
ĝ does not contain all PCs). It is evident that proper determination of M̂ is crucial for the perfor-
mance of this method. The solution proposed in this paper is aimed at adjusting the model order
determination scheme to take advantage of knowledge of the wave propagation environment,
and applied signal processing methods.

Noise present in a digital signal processing (DSP) unit might be divided into two cate-
gories, depending of its origin:

1. Additive noise - noise independent of signal (present when the signal is absent).

2. Multiplicative noise - signal–dependent noise (present only when signal is present).

Noise independent of signal consists mainly of thermal noise present in the water envi-
ronment and the noise of the electrical circuit affecting the signal between receiver elements
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Fig. 2. Basic geometric relations for calculation of baseline decorrelation
and shifting footprint equivalent noise calculations– flat seafloor assumption.

and DSP unit (for simplicity electrical noise is not included in further calculations). For high–
frequencies (above 200 kHz) thermal noise might be modelled as isotropic Additive White Gaus-
sian Noise. We might determine model order by calculating the numerical rank of An,K [6]:

M̂1 = rank(At,K , tol1) (16)

tol1 = σ2(t)

√
2 · (N − L) · L ·K

(L−M)
(17)

where the term in the nominator is equal to the number of terms in An,K and σ2(t) is the
standard deviation of noise due to thermal. The term (L−M) in the denominator results from
the fact that noise energy is spread betweenL−M eigenvalues. The time dependence in eq. (17)
indicates that thermal noise level at the DSP unit is dependant on the time–varied gain (TVG)
applied to the acquired signal. This method of determining model order would give accurate
predictions if the signal was stationary (constant noise variance, constant DOAs and complex
signal envelope).

The other category of noise is proportional to the signal level, and is a result of coherence
loss between signals received by adjacent array elements. This might be attributed primarily to
the baseline decorrelation noise and the shifting (sliding) footprint effect ( [7, 12]). In essence,
it is the part of backscattered signal that is not common to all receivers and acts as random
noise (Fig. 2). This noise is related to input (external) SNR at the receiver and to the receiver,
bottom and signal parameters. For flat sea-floor baseline decorrelation equivalent SNR might
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be calculated from the following equations [7, 12]:

dbd = (
ν

1− ν
)

ν =
sin η

η

η =
kdL+1

H

cτ

4
sin γ tan γ cos(γ − ψ)

(18)

where T is the acoustic pulse length, ψ is the depression angle, γ is the grazing angle, and
dL+1 is the mean distance between (L+ 1) elements.
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Fig. 3. Eigenvalues and calculated thresholds.
a) K = 1, H = 10, ψ = 25◦, b) K = 5, H = 10, ψ = 25◦

dashed line (red) – (a = 0, b = 0); solid line (black) – (a, b) adjusted for signal variability.
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Fig. 4. Histogram of the amplitude of complex roots.
a) K = 5, H = 5, ψ = 25◦, b) K = 5, H = 20, ψ = 25◦

Shifting footprint equivalent signal to noise ratio, for the same bottom and receiver con-
figuration, might be calculated as [12]:

dsf ≈
(

cτ

2dL+1 |sin(γ − ψ))|
− 1

)
(19)

Equivalent SNR from the combined effect of the two above factors is calculated as:

dd =
1

1
dbd

+ 1
dsf

(20)

Total equivalent SNR is equal to:

deq =
1

1
ddd

+ 1
dex

=
s2
eq

σ2
eq

(21)
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Fig. 5. Polar plot of resolved DOAs, complex roots amplitudes and selection gate.

We might also calculate the external noise gain factor:

dNG =
dex + dd + 1

(dd + 1)
=

σ2
eq

σ2(t)
(22)

This value might be used to obtain the final version of eq.(17) by replacing σ2
tn(t) by σeq :

tol2 = a · σ(t)

√
2 · dNG · (N − L) · L ·K

L−M
+ b (23)

Factors a and b might be used to account for modelling errors and signal fluctuations
(Fig. 3). Finally, model order is determined as:

M̂2 = rank(At,K , tol2) (24)

Any eigenvalue lower than the tolerance threshold in eq.(23) is rejected. In case no signal
is present (before the backscattered signal reaches array or in the regions of acoustic shadow ),
M̂2 is equal to zero and invalid solutions are stopped in the processing chain. This also implies
that in the case of multiple signals arriving at the receiver, if any signal eigenvalue is lower
than this threshold, it will be rejected and the model order will be under-modelled

(
M̂2 < M

)
introducing errors in the solution. This situation might occur when there is a secondary, weak
target or two comparable energy targets with low angular separation. As a result, this algorithm
properly estimates PCs only if all signal eigenvalues exceed this threshold. In other words, when
the received signal eigenvalues fall below this threshold, noise eigenvalues might intertwine with
signal eigenvalues so that PCs cannot be easily extracted [5, 11].
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Fig. 3 depicts plots of the calculated eigenvalues of simulated signals for two different
number of snapshots. The values calculated directly by eq. (23) capture the mean behaviour of
eigenvalues (red, dashed line). In order to exclude all noise eigenvalues from low-rank matrix
approximation values a, b are introduced and adjusted to obtain final limits (black, solid line). It
can be noticed that an increase in the number of snapshots provides better separation between
the signal and noise eigenvalues.

Tab. 1. Simulation parameters

Parameter Value(s)
Altitude (H) 5, 10, 20 m
Depression Angle (ψ) 25◦

Frequency 200 kHz
Pulse Length τ 100 µs
Horizontal Beamwidth (θ3dB) 1.5◦

Receive Elements (N) 12
Filter Order (L) 9
Number of snapshots (K) 1, 5
Baseband Complex Envelope Sample Rate 25 kHz
SL+OCV+TS (Equivalent of 74,2 dB initial SNR for H=10 m) 0 dB
Noise Floor (NL+OCV) 1 µVrms
Scatterers Density (SD) - uniformly distributed 200 m−1

Sound Speed (c) 1486 m/s
Sound Absorption (α) 0.05 dB/m

4. Selection of valid solutions

Having estimated the model order M̂2, L roots of eq.(2) can be calculated and valid M
solutions ought to be extracted. In different papers [8,20], the limit for the amplitude of complex
roots is suggested to be 1 ± (0.1 − 0.15). The values obtained during simulations (Tab. 1) for
the MP method conform to those reported in earlier publications. It should be noted, however,
this limit is SNR and range dependent (Fig. 4).

The last step is to limit the resulting DOAs by taking into consideration transmit and re-
ceive elements beampatterns or directions of interest. In principle solutions, due to noise, prop-
agation and modelling errors, might lie anywhere within the ±90◦ interval in relation to MRA.
The limits for amplitude of complex roots together with acceptable DOAs form a selection gate
(Fig. 5).

5. Conclusions
This article presented a new approach for determination of the model order (number of

PCs/PEs) in the modified Prony method applied to the underwater DOA estimation. Low-rank
approximation of correlation matrix is possible owing to utilization of a much greater num-
ber of receivers than the number of expected backscattered signals. The proposed method re-
solves model order by dynamically determining the noise eigenvalue threshold. Although, there

Volume 20 HYDROACOUSTICS

72

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


are number of simplifying assumptions which might limit the validity of this method, the pre-
liminary simulation results show good performance for simple, generic scenarios. Additional
sources of coherence loss, such as volume reverberation and multipath, might also be included in
calculation of equivalent SNR. Moreover, parameters required as input for calculations might be
determined adaptively on-line or during post-processing. The proposed method of model order
determination is closely tied to the underlying physical problem, and utilises as much as possible
the information about the signal propagation environment. Single step model order determina-
tion might perform better than the iterative approach, and might be easier to implement due to
lower algorithm complexity. This method will be further tested for its accuracy, resolution, per-
formance and detection capabilities in more complicated acoustical environment scenarios; and
compared with other methods utilized for the same problem formulation (partial results have
already been published this year [4]). The next step of validation of this new approach will be
carried out on signals recorded during sea surveys, and compared against results of different
approaches applied to the same input signal.
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