
Abstract—In this letter, a design of experiments technique that 
permits uniform sampling in constrained domains is proposed. The 
discussed method is applied to generate training data for construction 
of fast replacement models (surrogates) of antenna input 
characteristics. The modeling process is design-oriented with the 
surrogate domain spanned by a set of reference designs optimized 
with respect to the performance figures and/or operating conditions 
that are of interest. The reference designs are triangulated and the 
resulting simplexes are extended in orthogonal directions. Our 
methodology is demonstrated using two examples: a dual-band dipole 
and an ultra-wideband monopole. The results indicate that the 
proposed sampling technique leads to considerable improvement of 
the surrogate model predictive power as compared to random 
sampling. Numerical results are supported by application studies 
(antenna optimization) and experimental validation. 
 Index Terms—Antenna design, surrogate modeling,performance-driven modeling, approximation models, uniformsampling, simulation-driven design, constrained domain. 

I. INTRODUCTION
IGH fidelity computational models are necessary tools of 
contemporary antenna design. Their advantages include 
versatility and reliability. A principal disadvantage of full-

wave EM simulation tools is high evaluation cost. Although this 
is not a problem for design verification, it may become a 
bottleneck in case of design tasks that require numerous analyses 
of the structure at hand, such as parametric optimization (both 
local [1] and global [2]), statistical analysis [3], yield-driven 
design [4], or tolerance-aware design [5]. In these situations, fast 
replacement models (or surrogates) are indispensable.  
 Surrogate models can be categorized into two major classes: 
data-driven models, where the surrogate is constructed by 
approximating sampled simulation data [6], and physics-based 
ones with the model obtained by appropriate correction of an 
underlying low-fidelity representation (e.g., an equivalent 
network [7]). The most popular data-driven techniques include 
polynomial regression [8], kriging [9], radial-basis function [10], 
neural networks [11], Gaussian process regression [12], and 
support-vector regression [13]. The most popular method of the 
other class is space mapping [7]; other techniques are primarily 
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various kinds of response correction methods (e.g., [14], [15]). 
 In case of antennas, physics-based surrogates are of limited 
use due to unavailability of fast low-fidelity models. On the 
other hand, construction of data-driven models is difficult 
because of highly-nonlinear responses of antennas and typically 
large number of geometry/material parameters of modern 
structures. Due to curse of dimensionality, conventional 
modeling techniques are limited to low-dimensional spaces (up 
to 4-6 parameters), and, more importantly, relatively narrow 
parameter ranges. The latter is a particularly limiting factor: in 
order to be practically useful, the model needs to cover 
sufficiently wide range of operating conditions and/or material 
parameters, which normally implies wide parameter ranges. 
 In [16], a constrained modeling technique has been 
introduced with the aim of reducing the surrogate model 
training data set size. This was achieved by restricting the 
model domain to a region that contains potentially useful 
designs, and realized by defining the domain as a vicinity of a 
manifold spanned by several reference designs optimized with 
respect to a selected figure of interest (e.g., operating 
frequency). Extension of this technique presented in [17] 
permits handling two independent figures of interest. A 
drawback of [17] is that a particular number and allocation of 
the reference design is necessary. Furthermore, both [16] and 
[17], although superior over conventional modeling methods, 
use a simple design of experiments approach, which does not 
allow for uniform sample allocation.  
 In this work, a procedure for uniform data allocation in 
constrained domain is proposed, which allows for improving 
the predictive power of the surrogate over constrained domain 
without increasing the number of data samples. Furthermore, a 
generalization of the surrogate model definition of [17] is 
introduced that can handle any number of figures of interest and 
allows arbitrary allocation of the reference designs. This is 
especially important if certain number of (optimized) designs 
are already available and can be re-used. Two antenna examples 
are provided. It is demonstrated that our technique is superior 
over both conventional modeling methods and constrained 
approach with rudimentary sampling. 
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II. DESIGN-ORIENTED CONSTRAINED SURROGATE MODELING
In this section, we briefly describe the concept of generalized

design-oriented constrained modeling. The proposed uniform 
sampling technique is described in Section III. 
A. Performance Figures and Reference Designs

Conventional data-driven modeling construct the surrogate 
in a hypercube defined by lower and upper bounds of the 
antenna parameters. Clearly, vast majority of the model domain 
defined this way is of no interest because it does not contain 
designs that are “good” from the point of view of the considered 
figures of interest, operating conditions or material parameters 
(e.g., operating frequency, bandwidth, substrate parameters, 
etc.). Consequently, constructing the model in the entire space 
is a waste of resources or even infeasible because of excessive 
computational expense. 

We denote by Fk, k = 1, …, N, the performance figures of 
interest considered for a given structure (e.g., operating 
frequencies). Constrained modeling attempts to restrict the model 
domain so as to limit it only to the most promising regions [16]. 
Necessary information is obtained from a set of reference designs 
x(j), j = 1, …, p, obtained by optimizing the antenna for selected 
values F(j) = [F1(j) … FN(j)]. Here, a generalized version of 
constrained modeling is presented which, as opposed to [17], 
allows any number and allocation of the reference designs, as 
well as permits handling any number of figures of interest. 

Given x(j), Delaunay triangulation [18] is used to create 
simplexes S(k) = {x(k.1),…, x(k.N+1)}, k = 1, …, NS, where x(k.j)  
{x(1), …, x(N)}, j = 1, …, N + 1, are vertices. Example two-
dimensional objective space along with triangulated reference 
designs has been shown in Fig. 1. 
 B. Surrogate Model Definition

We define a manifold M as a union of the convex hulls h(S(k))
of the simplexes S(k) 

1 1( . )
1 1{ :0 1, 1}N Nk j

j j jj jk
M    

       y x            (1)
Given an arbitrary point z, we consider its projection Pk(z) 

onto the hyper-plane Hk containing the convex hull h(S(k)). Let 
x(0) = x(k.1) (simplex “anchor”) and v(j) = x(k.j+1) – x(0), j = 1, …, 
N (simplex spanning vectors). The projection Pk(z) corresponds 
to expansion coefficients (j) obtained by solving 

(1) ( )

2(0) ( ) ( )
1[ ,..., ]arg min N

N j j
j     z x v  (2) 

Furthermore, we have  
(1) ( ) 1 (0)... ( ) ( )TN T T       V V V z x    (3) 

The location of Pk(z) can be identified based on the 
expansion coefficients (5). In particular, Pk(z)  h(S(k)) if and 
only if (j)  0 for j = 1, …, N, and (1) + … + (N)  1. We 
define xmax = max{x(k), k = 1, …, p} and xmin = min{x(k), k = 1, 
…, p}. The vector dx = xmax – xmin determines the range of 
variation of the antenna parameters within the manifold M. 
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 Fig. 1. Conceptual illustration of reference designs and their triangulation in 
two-dimensional space of figures of interest.  

The surrogate model domain XS is defined as orthogonal 
extension of M, the „thickness” of which is determined by a 
user-selected parameter dmax. A point y  XS if and only if  

1. Set K(y) = {k  {1, …, NS} : Pk(y)  S(k)}  ;
2. min{||y – Pk(y)||/||dx|| : k  K(y)}  dmax.The first condition states that the point y has to be “within”

the manifold M in the “tangential” sense; the second condition 
requires that y is sufficiently close to M in the “orthogonal” 
sense (measured in relation to dx).  

Clearly, the fundamental benefit of setting up the surrogate 
model in XS rather than in the interval [xmin, xmax] is that the 
volume of XS is significantly smaller than the volume of [xmin, xmax]. At the same time, the designs of interest (i.e., optimal 
w.r.t. the selected figures of interest) will be either in XS or close
to it. The surrogate itself is constructed here using kriging
interpolation [10]. 

III. UNIFORM SAMPLING IN CONSTRAINED DOMAIN
Design of experiments, i.e., training data allocation in the 

domain XS is challenging due to complex geometry of this set. 
Conceptually, the simplest sampling method (utilized in [17]) 
is pure random sampling in the interval [xmin, xmax], and 
accepting those samples that are within XS. The process is 
continued until the required number of samples, say, K, has 
been found. A principal drawback of this method is poor 
uniformity of the obtained data set, which is particularly due to 
the fact that the domain XS is “thin” (i.e., with large dimensions 
along the manifold M and small in orthogonal directions). 

In this work, an improved design of experiments technique 
is proposed that aims at obtaining a sample set of improved 
uniformity, and, consequently, improved predictive power of 
the surrogate. The procedure works as follows: 

1. Calculate the volumes Vk of simplexes S(k);
2. Set Kk = KVk/jVj (here,   is a ceiling function);
3. For each k = 1, …, NS: Allocate mKk LHS [10] samples in a unit hypercube [0,1]N

and choose samples lying in the unit N-simplex; 
 Map the samples selected in the previous step onto convex

hull of simplex S(k) as follows: x  x(0) + jxjv(j), where
x(0) and v(j) are defined under (1), and x = [x1 … xn]T;

 Perturb the mapped samples by adding vectors xd = r 
Pk(r), where r is a random vector in the interval [d, d], d
= dxdmax, and Pk(r) is a projection of r onto the convex 
hull of S(k) (cf. Section II).
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The first two steps aim at assigning, to each simplex, the 
numbers of samples that are proportional to the simplex 
volumes. In the third step, the first operation is uniform 
allocation of the prescribed number of samples within unit 
simplexes (m is the volume ratio of the unit hypercube and the 
simplex of appropriate dimension). Subsequently, an affine 
transformation is applied to obtain uniform distributions within 
the simplexes. Finally, the samples are perturbed in orthogonal 
directions (with respect to the simplex spanning hyperplanes 
Hk) in order to fill in the domain XS. Note that due to using the 
ceiling function in Step 2 as well as quasi-uniform distribution 
obtained by LHS, the actual (total) number of samples will be 
slightly different from the required number K but this can be 
easily corrected by adding/removing individual samples where 
necessary. Figure 2 shows an example distribution obtained 
using the reference and the proposed sampling techniques.  

IV. VERIFICATION EXAMPLES
A. Dual-Band Uniplanar Dipole Antenna

As a first example, consider a dual-band uniplanar dipole
antenna shown in Fig. 3 [19]. The structure is implemented on 
Taconic RF-35 (εr = 3.5, h = 0.762 mm). The structure consists 
of two ground plane slits interconnected through a thick slot. It is 
fed by a 50 Ohm CPW. The variables are: x = [l1 l2 l3 w1 w2 w3]T, 
whereas l0 = 30, w0 = 3, s0 = 0.15 and o = 5 are fixed (all 
dimensions in mm). The EM antenna model is simulated in CST. 

The objective is to construct the surrogate model of the 
antenna which covers the following ranges of operating 
frequencies: 2.0 GHz ≤ f1 ≤ 4.0 GHz (lower band), and 4.5 GHz 
≤ f2 ≤ 6.5 GHz (upper band). There are twelve reference designs 
selected and optimized for the pair of operating frequencies 
{f1,f2} [GHz]: {2.0,4.6}, {2.1,5.9}, {2.2,6.2}, {2.4,5.0}, 
{2.8,4.6}, {2.8,5.4}, {3.0,6.0}, {3.1,6.5}, {3.4,4.8}, {3.8,5.4}, 
{3.9,5.8}, {4.0,6.4}. The lower and upper bounds for design 
variables were set using the reference designs as l = [25.0 6.0 
14.0 0.2 1.6 0.5]T, and u = [35.0 15.0 21.0 0.55 4.0 2.0]T.  

The surrogate model has been constructed using 100, 200, and 
500 training samples, using constrained surrogate of Section II 
with random sampling and uniform sampling of Section III. 
Unconstrained sampling in the interval [xmin, xmax] has also been 
carried out for comparison. Table I gathers the modeling errors 
(average RMS error estimated using 30-fold cross-validation), 
see also Fig. 4. Note that utilization of the proposed sampling 
results in significant accuracy improvement.  

The surrogate model has been used to design the antenna for 
two pairs of operating frequencies, f1 = 2.5 GHz and f2 = 4.7 
GHz, as well as f1 = 3.6 GHz and f2 = 6.4 GHz. Figure 5 shows 
the responses of the optimized constrained surrogate model 
with uniform sampling as well as the responses of the EM 
simulation model. The first of the two designs has been 
fabricated and measured (cf. Fig. 6). The agreement between 
simulated and measured responses is very good (slight 
frequency shifts are due to the fact that the SMA connector is 
not incorporated in the EM antenna model). 

                               (a)                                                          (b) Fig. 2. Sampling on constrained domain spanned by a set of reference designs: (a) random sampling, (b) proposed uniform sampling. For clarity, only one simplex is shown. 
 

Fig. 3. Geometry of a dual-band uniplanar dipole antenna [7]. 

 Fig. 4. Responses of the antenna of Fig. 3 at the selected test designs for N = 500: high-fidelity EM model (—), constrained surrogate with uniform sampling (o). 
 TABLE I  SURROGATE MODEL ACCURACY 

Number of training samples 
Average RMS Error 

Unconstrained Surrogate Constrained Surrogate (random sampling) Constrained Surrogate(Uniform sampling) 
100 15.6 % 7.7 % 4.8 % 200 11.7 % 4.6 % 3.7 % 500 7.8 % 3.2 % 2.5 % 

 Fig. 5. Surrogate (o) and EM model (—) responses at the two verification designs corresponding to (a) f1 = 2.5 GHz and f2 = 4.7 GHz, and (b) f1 = 3.6 GHz and f2 = 6.4 GHz. Vertical lines indicate the required operating frequencies. 

  Fig. 6. Photograph of the fabricated design for f1 = 2.5 GHz and f2 = 4.7 GHzas well as simulated (- - -) and measured (—) reflection characteristics. 
B. UWB Monopole

The second example is a UWB monopole shown in Fig. 7(a).
The structure consists of a rectangular radiator with elliptical 
corner cuts as well as stepped-impedance feed line. The antenna is 
implemented on a 0.76-mm-thick substrate. The design parameters 
are x = [Lg L1 L2 W1 Lp Wp a b]T (dimensions in mm). The feeding 
line width W0 is adjusted for a given substrate permittivity to ensure 
50 ohm input impedance. The EM antenna model R is 
implemented in CST (~900,000 mesh cells, simulation time 2 
minutes). The model includes the SMA connector. 
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We aim at constructing a surrogate model of the antenna 
input characteristic assuming various dielectric permittivities r of the substrate. The reference designs are optimized for 
minimum in-band reflection at r = 1.8, 3.0, 4.5, and 6.0. We 
have x(1) = [9.86 4.17 6.46 2.08 21.1 29.7 0.52 0.44]T, x(2) = 
[9.45 4.02 6.33 1.41 19.9 26.7 0.57 0.41]T, x(3) = [9.17 3.54 6.55 
1.26 19.6 26.8 0.58 0.39]T, and x(4) = [9.91 5.04 5.91 1.05 18.5 
24.9 0.62 0.38]T. Based on these designs, the lower and upper 
bounds for design variables are established as l = [8.5 3.0 5.5 
1.0 18.0 24.0 0.5 0.35]T, and u = [10.0 5.5 7.0 2.5 22.0 30.0 0.65 
0.45]T. The triangulation of the reference design yields three 
simplexes (intervals): {x(1),x(2)}, {x(2),x(3)}, and {x(3),x(4)}. 

Similarly, as for the first example, the surrogate model has 
been constructed using 100, 200, and 500 training samples. The 
modeling errors are provided in Table II (see also Fig. 7(b)). It 
can be noted that uniform sampling results in reduction of the 
modeling error although not as significant as for the previous 
case which is because the simplexes S(k) in this case are just one 
dimensional. For the sake of verification, the antenna has been 
optimized for r = 2.2 and 3.5 (cf. Fig. 8). The latter design has 
been fabricated and measured as shown in Fig. 9. 
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  (a)                                                            (b) 
Fig. 7. Planar UWB antenna: (a) geometry (ground plane marked with ligh-gray 
shade), (b) responses at the selected test designs for N = 500: EM model (—), 
constrained surrogate model with uniform sampling (o). 

 

 Fig. 8. Surrogate (o) and EM model (—) responses at the two verification 
designs corresponding to (a) r = 2.2, and (b) r = 3.5. Horizontal line indicates matching requirements (–10 dB for 3.1 GHz to 10.6 GHz). 
 

  Fig. 9. Photographs of the fabricated verification design (r = 3.5) as well as simulated (- - -) and measured (—) reflection characteristics. Horizontal line indicates matching requirements (–10 dB for 3.1 GHz to 10.6 GHz). 
 TABLE II   UWB MONOPOLE: SURROGATE MODEL ACCURACY 

Number oftraining samples 
Average RMS Error 

Unconstrained Surrogate Constrained Surrogate (random sampling) Constrained Surrogate(uniform sampling) 
100 68.3 % 15.3 % 14.4 % 200 68.9 % 11.9 % 10.3 % 500 68.4 % 9.6 % 8.8 % 

V. CONCLUSION
In the letter, a novel technique for uniform sampling in 

constrained domains has been proposed for reliable surrogate 
modeling of antenna input characteristics. Our methodology 
has been demonstrated using two antenna structures, an ultra-
wideband monopole and a dual-band dipole. The results 
indicate superiority over rudimentary random sampling. 
Application case studies and experimental validation confirm 
usefulness of the approach for antenna design purposes. 
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