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On autoregressive spectrum estimation using the model
averaging technique
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Abstract— The problem of estimating spectral density of a
nonstationary process satisfying local stationarity conditions
is considered. The propoesed solution is a two step procedure
based on local autoregressive (AR) modeling. In the first step
Bayesian-like averaging of AR models, differing in order, is
performed. The main contribution of the paper is development
of a new final-prediction-error-like statistic, which can be used
to select optimal estimation bandwidth in the second step of
the procedure. Simulation experiments demonstrate that the
combined cooperative-competitive approach outperforms the
previously introduced fully competitive scheme.

I. INTRODUCTION

Spectral estimation of stationary processes can be per-
formed using multitude of methods, among which autore-
gressive (AR) modeling takes an important place. This is
due to its ease of use, accuracy, high resolution and direct
links with the Burg’s maximum entropy analysis [1].

Recent advances in statistics show that AR modeling is
an effective tool which can be used in spectral estimation of
nonstationary processes [2]. Under such circumstances, the
ever-changing spectral content of a nonstationary signal re-
quires one to use local estimation techniques. This however,
requires solution of two problems. First, the structure of the
AR model should be parsimonious, yet offer enough capacity
to accommodate the local spectral content. Second, the
estimation bandwidth (related to the estimation memory of
the parameter tracking algorithm) should be locally adjusted
so as to match the rate of nonstationarity of the process.

In a recent paper [3] it was shown that the two problems
mentioned above can be solved jointly using a competitive
estimation scheme. The method is based on parallel estima-
tion of multiple AR models, differing in order and bandwidth
settings. At each time instant the best model is selected using
the generalized Akaike’s final prediction error criterion.

In this study we present a different solution, which com-
bines the competitive approach with the cooperative one. Co-
operation is achieved using the model averaging technique,
introduced by Akaike [4]. Since model averaging using the
Akaike’s framework can be performed in a meaningful way
only for models estimated using the same bandwidth settings,
the optimal estimation bandwidth selection must be carried
out separately. To this end we extend the final prediction

error statistic to averaged AR models, which is the main
contribution of this work.

The paper is organized as follows. Section II states the
problem of interest and summarizes the proposed solution.
The core part of the paper is Section III, where the final
prediction error statistic is developed for averaged models.
Section IV presents results of computer simulations and
Section V concludes.

II. PROBLEM STATEMENT AND THE MAIN RESULT

Consider the problem of estimation of a spectral density
function of a nonstationary autoregressive (AR) signal {y(t)}
governed by

y(t) = ) ai(t)y(t — i) + en(t), varlen(t)] = ma(t) (1)
i=1

where t = ..., —1,0,1,... denotes normalized (dimension-
less) time, a;(t),i = 1,...,n denote time-varying autore-
gressive coefficients, and ¢,,(t) denotes white noise with
variance p,(t). Note that (1) can be rewritten in a more
compact form

y(t) = op () (t) + a(t)

where e, (t) = [ai(t),...,a,(t)]T denotes the vector of
AR coefficients, and @, (t) = [y(t = 1),...,y(t — n)]T is
the regression vector.

According to Dahlhaus [2], when {y(t)} obeys local sta-
tionarity assumptions (i.e., when the AR model is uniformly
stable and parameter trajectories are of bounded variation),
its time-varying spectral density function given by

S pn(t) . @

1- 0, ait)eiwi|?

where w € (—m, 7| denotes normalized angular frequency
and j = V-1, is a well and uniquely defined characteristic
in the rescaled time domain (in this framework a fixed-length
time interval is sampled over a finer and finer grid of points
as the sample size increases).

When parameters of the AR model (1) are not known, one
can replace them in the formula (2) with local estimates, e.g.
with the estimates obtained using the weighted least squares
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(WLS) approach
au|k(t) = [al,u“«:(t)' Blo o 1au,n|k(t)]T
k

= argmin Z we(D [yt +1) — ot (t + Na,,)?
[ 2

n

==k
f = .
Puir(t) = - > we@)[y(t+ 1) — @ (8 + D) @tgi(t))?
l==k
3)
where wi () = g(l/k), | = —k,...,k, g : [-1,1] —

[0,1],9(0) = 1, denotes a symmetric bell-shaped window
of effective width

k

Lk = Z u'k(l).

I=—k

Such a two-sided (noncausal) estimation allows one to sig-
nificantly reduce bias errors caused by the effect known
as estimation delay [S] (in causal estimation schemes the
expected trajectory of parameter estimates can be regarded,
to a certain extent, as a delayed version of the true trajectory).

A. Competitive estimation

The value of k should be chosen in accordance with
the rate of parameter variation, and the value of n — in
accordance with the spectral richness (resonant structure)
of the analyzed signal. When the most appropriate values
of k and n are not known, one can simultaneously run
several WLS algorithms with different window width and
order settings, and select at each time instant ¢ the best
configuration.

Denote by K = {kj,...,kx} the set of competing
window widths, and by N = {1,...,N} — the set of
considered model orders. As shown in [3], the local estimates
of k£ and n can be obtained using the suitably modified
Akaike’s final prediction error (FPE) criterion, namely

{k(t),A(t)} = arg min FPE,, (t) (4)
keX
nenN
where
T+ 9
FPE,x(t) = i % Pk (t) (5)
M
and

(T un)’
S wi(0)

is the so-called equivalent window width.
Based on (4), the instantaneous spectrum estimate can be
expressed in the form

M =

Py Rey (1)

e — . (6)
1 =i a:,ﬁ(z)[E(a)(t)e_Jm

Sayrw W t) =

B. Cooperative estimation

In the competitive approach one looks for the best-local
values of k£ and n, ignoring the uncertainty embedded in
the underlying decision process — the point estimates E(t)
and 7i(t) are in some sense the most likely the best, but
not certainly the best, choices of & and n, respectively. The
uncertainty factor can be accounted for when estimation is
carried out within the Bayesian framework. In this framework
the estimated quantities, such as model parameters, are
regarded as realizations of random variables with assigned
prior distributions. Consider, for example, the problem of
one-step-ahead prediction of a stationary AR signal based
on its available observation history Y(t) = {y(s),s < t}.
The optimal, in thc Bayesian sense, predictor of y(t + 1)
takes the form [6]

N
GE+11) =D pa®)Fnlt + 12) )
=)l

where
Gu(t + 1]t) = @p(t + 1)@nlt)

denotes predictor based on the AR model of order n, and
it (t) is the posterior probability of 7. given Y(t). Since
posterior probabilities are nonnegative and sum up to |

N
pa(t) > 0nEN, D p(t) =1 (®)
n=1
the obtained solution is a convex combination of predictors
obtained for different hypothetical values of n. Note that the
formula (7) can be rewritten in the fqllowing equivalent form

Pt + 1[t) = pn(t + 1)an(t) )

where &y (t) denotes the vector of averaged parameters

N
an(t) = D un(t)an(t) (10)

and &% (t) =[G () 0% _,]T denotes the vector of parame-
ters corresponding to the AR model of order n, extended with

N — n zeros. In a similar way, one can cbtain the Bayesian
estimate of the driving noise variance

N
PN(L) = pa(t)Ba(t). an
n=1
The estimates @ (t) and gy (t) correspond to the “averaged”
signal model (of order N) — introduced by Akaike [4].
As shown in [4], under uniform, i.e., noninformative prior
distribution of 7, the posterior probabilities of 7, referred to
by Akaike as model likelihoods, can be obtained from

() o axp {—%AICn(t)} (12)

where
AIC,(t) = tlogp,(t) + 2n (13)

denotes the Akaike’s information statistic [7].
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In [8) the concept of model averaging was extended to

WLS estimators. For a fixed value of k, parameters of the
averaged model are given in the form analogous to (10)-(11)

ayi(t) = [y Npk(), ..., an ()T
N
=D ik ()85 (1)
n=1
N
PNI(t) = Y sk ()P (8) (14)
n=1
where
1§
ﬂn|k(t) X eXp {— aAICnlk(t)} (15)
and
2nlL
ATC, i (t) = Lilog pape(t) + =% (16)

M,

denotes the generalized AIC statistic.
Our interest in the model averaging technique stems from
the fact that spectral estimates based on (14)

Ank(t)
N _ — G
’1 — Yis1 @i vp(t)e i

are usually more accurate than the “point” estimates

g,\"]k(wy t) ~

s Un

8 Brn(r)lk (t)
S, t) = ,ﬁ(t)ik .
‘1 = 2‘1:1 aiﬁk(z)|k(t)c—1'w

obtained when the model order n is fixed at its “most likely”
value 7% (t) [8]

= (18)

nk(t) = arg rrlrélg AIC,(t) = arg 71121{1, FPE,(t) (19)
Remark: Note that when n < M}, it holds that
log FPEn|k(t)
= log pn)k(t) + log(1 + n/My) - log(1 — n/My)
2n 1
= log Prk(t) + = —AIC, (¢
08 Pk (t) W in ik ()
which means, that selection of the model order based on
minimization of the ATC statistic yields approximately the
same results as that based on minimizing the FPE statistic.

The spectral estimate (17) corresponds to a particular
(fixed) value of k. In the next section we will show how the
model averaging technique can be used in the case where,
due to signal nonstationarity, the most appropriate value of
k is not known and possibly time-dependent. The proposed
spectrum estimation formula, which constitutes the main
contribution of the paper, has the form

= F_’Nﬁ;(t)(t)
SN|7:-(t)(w’t) = i — (20)
SPLE @, NIk (e) (t]e_JUI'
where
k(t) = argmin FPE}, (¢ 2
() arg min Nik(t) @n

and
FPEN.(t) =
N N .
1+ T/]l_,: Zm:l Zn.:l ﬂmlk(i)unlk(t) mln(m1 n) ~
— — Pak(t)
L My

(22)
denotes the FPE-like statistic.

II1. DERIVATION OF THE MODIFIED FINAL PREDICTION
ERROR STATISTIC

In our quest for the locally the best value of & we will use
the Akaike’s concept of the final prediction error. Denote by
Vi(t) = (Gt —k—n),..., 50+ k)} another realization
of the analyzed data sequence, independent of the sequence
Yi(t) ={y(t—k—n)....,y(t+k)} used for identification
purposes. and let @y (t) = [g(t —1)....,7(t — N)]T. Final
prediction error for the model (14) is defined as

& (t) = E{[3(t) - x B ani(t))?}

where expectation is carried out with respect to to jk(t) and
Vi (1), ie, it is the mean squared prediction error observed
when the model is verified using an independent data set.
Our approximation of (1) will take advantage of some
well-known properties of the AIC/FPE based order selection.
Tt is known that AIC shows some tendency to overestimate
the true model order ng (under stationary conditions the
probability of selecting the order n > ng does not tend to
zero when the number of observations tends to infinity) but
it is efficient in eliminating underestimated models (under
stationary conditions the probability of selecting n < 7y
quickly decays to zero for growing sample size) [7]. This
means that in the case considered one can assume that

(Ay)

(23)

Pak(t) =0, Vn < ng.
The second assumption concerns local signal stationarity

(Az) The signal {y(¢)} can be regarded as
stationary in the interval [t — k — N, t + k]
with “true” parameters «,,, and p,,,.

T

ny
Denote by aj = [azu, 0}:,_n0 the vector fx,,u(t)
extended with N —ngq zeros to length N, and define afllk(t)
in an analogous way. Then the following result holds true
Lemma 1: For ng < n < N and ng < m < N it holds
that

Elag ()] = o,

=20 20 ~ pno
E{Aan“c(t)!Aa (t)]T} = 7Pluiu(m._u.)

24
m|k A[k ( )

where .
=0 PO ] - (73
Aanlk(") ¥ an|lc(t) Oy,
denotes estimation error and

P = Rﬁl Onx(Non)
4 ON-nyxn O(N-n)x(N-n)

Rn - E[‘Pu(t)‘PI(t)] 3
Proof: See Appendix 1.
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The next lemma is a straightforward consequence of the
former one.

Lemma 2: The averaged parameter estimator (14) is unbi-
ased with covariance matrix of estimation errors given by

E{Aag ), (OAan ()]}

N A
~ p"o
= A/_[k Z Z “‘//l“c(t):“‘u“\.(t)P!uin(wL,n) . (25)

m=1n=1

Proof: The proof is elementary. Since i (t) = 0 for n <
ng, and each estimator a‘,’zlk(t) is unbiased for ng < n < N,
so is their convex combination dj‘llk(t). Substituting (24) into
(14) one gets, after some elementary manipulations, (25).

We are now ready to state the following proposition
regarding predictive properties of the averaged estimate.

Proposition 1: Final prediction error of the averaged
estimate (14) can be expressed in the form

y NN
0r(t) = |:1 + A Z z Fom ik (t) tn i (1) min(m, n)] fass

" m=1n=1
(26)
Proof: See Appendix II.

Tt is well known that for n > ng it holds that [5], 3],

E[pnr(t)] = (1 3 AZ) Prg -

i.e., Ppyi(t) is a biased estimator of the true variance py,.
Replacing py, in (26) with the debiased variant of b, (¢)(x (t)
yields the estimate which can be immediately recognized as
our modified prediction error statistic (22).

TV. COMPUTER SIMULATIONS

As shown in [3], the WLS estimator equipped with the
window wy(1) yields approximately the same results as
the Yule- Walker (YW) estimator equipped with data taper
(1) = \J/wi(t). The YW estimates can be obtained by
solving the set of YW equations, after replacing the true
autocorrelation coefficients r,, with their estimates

k

~ 1
Faielt) = - ST owt it +i—nlt) @7

i=n—k

n=0,...,N

where y. (t+i|t) = v (2)y(t+1),i = —k, ..., k is the tapered
data sequence.

In our simulation experiments we used YW estimators in
lieu of WLS estimators for two important reasons. First, the
YW estimates Gk (t), pppic(t)s n=1,..., N can be evalu-
ated using the well-known order-recursive Levinson-Durbin
algorithm, which is computationally attractive and guarantees
that the resulting AR models of different orders are at all
times stable. Model stability is an important property (which
may not hold if the original WLS scheme is used) since it is a
prerequisite for well-posed parametric spectrum estimation.

Imagirary Pan

-1

3
Real Part

Fig. 2: Trajectories of zeros of the characteristic polynomial.

Second, when the Hann (raised cosine) window wi (i) =
(1 + cos(mi/(k + 1))]/2 = [cos(wi/(2(k + 1)))]? is used,
i.e,, when vy (i) = cos(mi/(2(k+1))), the estimates (27) are
recursively computable [3], [9], which further reduces the
computational load.

To show advantages of the proposed method, a nonstatio-
nary AR process was generated, defined in terms of 4 time-
invariant “anchor” AR models M;, of orders 2¢, 1 = 1. .... 4.
The forming filter 1/4;(z".t) corresponding to model M;
had 7 resonant modes, determined by # pairs of complex-
conjugate zeros of its characteristic polynomial A, (27! t):
25 = BB E"/S, k= 1; 2 4.

The analyzed signal {y(t).t =1...,Tp}, Tp = 5500,
consisted of segments generated by time-invariant models
Mi, ..., My and segments govemed by time-varying models
obtained by means of applying the “morphing” technique —
see Fig. I. A smooth transition from model M;_; to M, was
realized by relocating progressively the i-th pair of zeros
from their initial positions at the origin to terminal positions
close to the unit circle. The corresponding zero trajectories
are depicted in Fig. 2. The breakpoints shown in Fig. 1 had
the following coordinates: ¢; = 1000, to = 1500, t3 = 2500,
t4 = 3000, ts = 4000 and ¢tz = 4500.

The parallel estimation scheme was made up of 5 Yule-
Walker estimators equipped with cosinusoidal windows of
widths k; = 100, k&, = 150, k3 = 225, ky = 337 and
ks = 500. Data generation was started 500 instants prior to
t = 1 and was continued for 500 instants after Ty = 5500.
Such an approach allows one to start the estimation process
at the instant 1 and end it at the instant Tj for all bandwidths
considered.

The mean Ttakura-Saito spectral distortion measure [10]


http://mostwiedzy.pl

/\/\\ MOST WIEDZY Downloaded from mostwiedzy.pl

J——

TABLE I: Comparison of estimation results obtained for
5 fixed-order (n = 1,...,20) Yule-Walker algorithms
with different bandwidths k1, ka. k4, k4, k5, with the results
yielded by 2 order-and-bandwidth-adaptive parallel estima-
tion schemes based on the FPE statistic and the FPE*
statistic, respectivety.

wiN [ Kk k., [ [ ke, FPE FPE*
1 | 36122 35804 35575 35425 33342 35606  3,5606
2 2,1265  2,0874 2,0649 20588 2,0713 2,0928  2,0923
3 2,0251 1,9815 19556  1,9480 11,9608 1,9980 11,9979
4 LIGAS 11247 1023 10997 1,1210 11446 11443
3 11769 1,1276  1.0997 10943 11,1154 1.1582 11568
6 05484 05105 04922 04944 0,5260 05218  0,5209
7 0,5483  0,5024 04789 04773  0,5039 05196  0,5170
R 0760 D462 00331 00332 0512 00291 00278
9 00835 00515 00365 00348 0.0493 00304 00290
10 00919 00569 0,0401 0,0369 0,0493 0,0314  0,0299
11 0,0998 00621 00434 00587 0,0492 0,0322  0,0507
12 || 01082 00676 00469 00407 VU499 00329 00315
13 00162 00729 00503 00426 00505 00335 00321
14 || 01245 00781 00534 00442 00505 00337 00324
15 || 0,1329 0,0835 00569 00463 00513 00340 10,0323
16 01413 0,0890 00605 00485 00524 00342 0.0331
17 01499 00946 (LU640 00507 00537 001343 0.0333
18 0,1601 0,1009 0.0677 0,0528 0,0349 0.0345  0,0336
9 0,1687 0,1065 00712 00549 00560 | 00347 0,337
20 01778 0,123 00749 00572 0US73 0,0347 0,033y

was used to evaluate spectral estimation results
dis(t)

1 c n\W, !t
— E . / M_ — log M- S da)
21 Jox | Supr(w, t) Sk (w, 1)

Table | presents the mean IS scores, obtained for 100
independent realizations of {y(t)} and averaged over time
(t € [1,Ty]). The first five columns show results yielded
by the Yule-Walker estimators corresponding to different
choices of estimation bandwidth (k) and model order (n).
The next two columns present results yielded by the parallel
estimation scheme with FPE based and FPE* based joint
bandwidth and order selection, for different values of the
maximum model order N. The results presented in Table |
clearly demonstrate the advantage of the FPE* based scheme
over the FPE based one. Note also that both adaptive order-
and-bandwidth selection schemes provide better results than
the best fixed-order fixed-bandwidth ones.

The locally time averaged histogram (obtained for 100 in-
dependent realizations of {y(#)}) of the results of bandwidth
selection is depicted in Fig. 3. Each time bin incorporates 250
consecutive time instants. Note that during transition phases,
when AR parameters change, the smaller bandwidths are
selected more frequently than the larger ones. On the other
hand, during time-invariant phases (constant AR parameters)
the larger bandwidths are preferred.

Fig. 4 shows the locally time and ensemble averaged
histogram of the likelihood coefficients un@m(t), evaluated
according to (15) and (21). Note good order adaptivity of
the proposed order scheduling method.

V. CONCLUSIONS

We considered the problem of local autoregressive model-
ing of nonstationary random processes. The proposed solu-
tion combines the “soft” Bayesian-like model averaging with
“hard” selection of optimal estimation bandwidth, carried out

bandwicth

Fig. 3: Locally time averaged histogram of the results of
bandwidth selection. i

0.8

2250

tne order

Fig. 4: Locally time averaged histogram of the likelihood
coefficients.

using the newly developed extension of the Akaike’s final
prediction error criterion. Simulation experiments show im-
proved performance of the new adaptive estimation method.
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APPENDIX [
PROOF OF LEMMA |
We will first show that @z, (1) is an unbiased estimate
of ay:". Recall (from e.g. [5]) that the WLS estimator (3)

admits the following closed form solution

Qi () = Qp (V) e (t) - (28)
where
k
Quik() = D wn(Dpa(t + pn(t+1)
I=—k
k.
Ak (t) = wi (D pn(t+ Dyt +1).
I=—k
Also note that, for n > ng, it holds that
y(t) = o (B)amy’ + Eng(t) » (29)
where
a:{g". iz [an 07’1; nO}T = Xno—)nano
and
xno—+n e [Ino Onl,x(n—n“)}T
denotes the expansion matrix.
Substituting (29) into (28) leads to
Gk (1) = T + Qi ()Pl (1) (30)
where
k
Puk(t) = D wi(l)n(t + Deng (t+1) .
==k

Using the generalized law of large numbers for weighted
sums of random variables [11], one arrives at the following
approximation

where
k
Vaak = E[Qui(t) Z wi(DE[pn(t + D)y (¢ +1)]
.
=R, ) ()
leading to
Ady,,x (1) = V,:|lkp1l.|k (1)

and E[Aa"“, )] = V;&E[pn‘k(t)] = On, 1,65 E[a,llk(t)] =
ay” . Taking into account the fact that ano = X,,_,Naf;o"’
and an[k(t) = X"_,Na,,“( ), one immediately completes
the first part of the proof.

To evaluate crosscorrelation of estimation errors assume,
without loss of generality, that m < n. Note that

E[A, i ( )Aam|k( ]gE[V;ﬁcpnlk(t)PrE;k(t)v;ﬂlkJ
and N
B[P (8)Pmyic ()] = R mpng Y wi(1)
I=—k

where R, ., = E[pn(t)pL (¢)]. Since for m < n it holds
that

m(t) = (I On- m)n(t) = XII—)nSO7l(t) :
one can express R, ,, in terms of R,,
Roum = RaXonn.
Combining all earlier results, one arrives at
E[AG, (1) Adey, (1))
Sic-k wi ()

= pna ﬁR; 1:R—'nX11L—)n.]R';,,1
[Zl——k wi(1)
_ Png i
Xm nR
356 T i i

Employing the fact that aﬁ|k(t) = X, 50,k (t) and m <
n, one obtains

E{Aag . (t J[aag, (1))

= XnonE[Ady, (A& m\k (O Xmon = Z;OP
Using similar arguments for n < mi, one gets
= Su ~ p
E{Aanlk(t)[Aamlk(t)]T} = ﬁPn
M.
which finally leads to (24). a

APPENDIX II
PROOF OF PROPOSITION 1

Let
e(t) = (1) — ep(t)an(t) .
Using () = @y (t)es, + £, (1) and ayp(t) = o, +
A (t), one arrives at
E(t) = Eny (t) = @ () Adnk(t) -
Since Aé .y, (t) is, by definition, independent of &,,(t) and

pn(t), one obtains

5k(t) = pny + E[FR(1) 3

(t)Cren (1)),

where 1
Cr = E[Aayi(t) Ao, (t)] -

According to Lemma 2 it holds that

p"“ Z Z/mﬂc Yt (2)

m=1n=1

E[gy ()Cr@n(t

x t"{Pmin(m,n)E[sON N ()]} . (32)

Note that E[gn(t) (pN( )] = Ry and

tr [Pmin(m,n)RN]

e
= tr { [ Rmin(m,n) o ] Ii Rmin(m n) * } }
(0} (0] * *

e Imin(m:n) w3 —
—iih] { [ o o ] } = min(m,n) .

where the symbol * is used to denote matrices that have no
effect on the final result. Combining this formula with (31)
and (32) leads to (26) and completes the proof. (m]
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