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Broadly understood decoherence processes in quantum electrodynamics, induced by neglecting either the
radiation [L. Landau, Z. Phys. 45, 430 (1927)] or the charged matter [N. Bohr and L. Rosenfeld, K. Danske
Vidensk. Selsk, Math.-Fys. Medd. XII, 8 (1933)], have been studied from the dawn of the theory. However, what
happens in between, when a part of the radiation may be observed, as is the case in many real-life situations, has
not been analyzed yet. We present such an analysis for a nonrelativistic, pointlike charge and thermal radiation.
In the dipole approximation, we solve the dynamics and show that there is a regime where, despite the noise, the
observed field carries away almost perfect and hugely redundant information about the charge momentum. We
analyze a partial charge-field state and show that it approaches a so-called spectrum broadcast structure.
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I. INTRODUCTION

The quantum information theory approach to open quantum
systems has been the subject of active research recently,
with the advent of such new and exciting research areas as
thermodynamics of meso- and nanoscale systems [1–3] and
quantum Darwinism [4–6], to name just two. Here we con-
sider quantum electrodynamics (QED) from an open system’s
perspective (see [7–12] and the references therein), treating
the electromagnetic field as the environment for the charge. We
use quantum information concepts to study information gained
by portions of the (initially thermal) field about the charge
during the evolution. Consequently, we have to go beyond
the usual approach to open systems, where the environment
is assumed to pass unobserved and hence is traced out, and
only the reduced state of the system is explicitly studied
(see, e.g., [5,9]). This leads, under appropriate conditions, to
the well-known phenomenon of decoherence, i.e., the loss
of coherence in some preferred basis of the system, called
the pointer basis. This phenomenon has been experimentally
observed in a variety of systems [13]. In QED, decoherence due
to various effects has been extensively studied (see, e.g., [10]
for a review), including decoherence due to the dressing (e.g.,
in [12]), nonzero temperature [12], bremsstrahlung [9,11], and
the charge monitoring the field [10].

Here instead, we assume that a part of the field is monitored
and thus cannot be traced out. This line of thinking was intro-
duced in the quantum Darwinism program [4–6] and further
developed in the so-called spectrum broadcast structure ap-
proach to objectivity [14–17] (see also [18]). In the spirit of the
latter, we study a partially traced state, containing a part of the
radiation modes. We show that, under appropriate conditions
and a certain coarse graining, almost perfect information about
the charge momentum is encoded during the decoherence into
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the thermal field with a huge redundancy. It can be in principle
extracted via projective measurements on the field modes with
negligible disturbance to the partial charge-field state. This
result is achieved via showing that the partially traced state
approaches the so-called spectrum broadcast structure (SBS)
[14–17]—a state structure describing broadcasting of the same
classical information into multiple quantum systems. Some
preliminary results along these lines were obtained in [12],
where a buildup of correlations between momentum compo-
nents of the charge and the dressing cloud was shown during the
vacuum-induced decoherence. But neither the structure of the
partially traced state has been considered nor the redundancy of
information shown. Also, we show the redundant information
transfer for the thermal, rather than for the vacuum field,
which is more realistic and surprising due to the inherent
noise.

We consider the nonrelativistic regime of QED and neglect
any possible inner degrees of freedom of the charge, treating
it as a free, pointlike particle of mass m0 and charge q,
interacting with an initially thermal field. The charge-field sys-
tem is then described by the minimally coupled Hamiltonian
with a necessary cutoff frequency �̄ to avoid the ultraviolet
divergences,

Ĥ = 1

2m0
[p̂ − qÂ(r̂)]2 +

∑
k,j

h̄ωkâ
†
k,j âk,j , (1)

where the potential A(r) is chosen in the Coulomb gauge:

Â(r̂) =
∑
k,j

εk,j

√
h̄

2ε0ωkV
(â†

k,j e
−ik·r̂ + âk,j e

k·r̂). (2)

Here εk,j is the polarization vector of the mode k, ωk is
its frequency, the field is quantized in a box of volume V

with the sum restricted to ωk � �̄, and âk,j and â
†
k,j are

the creation and annihilation operators obeying [âk,j ,â
†
k′,j ′ ] =

δk,k′δj,j ′ . We consider the charge initially described by a wave
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packet localized at δr0, small with respect to the shortest
relevant wavelength of the field, and the cutoff is assumed
to reflect this. The spreading limits the use in such cases of
the usual dipole approximation (see, e.g., [19]) to times not
much larger than �̄−1. To somewhat improve the situation,
we use the so-called moving dipole approximation, introduced
in [12] and giving longer times. One follows with the dipole
approximation the average packet position, assumed to travel
along the free trajectory r(t) = r0 + v0t , with v0 the initial
average particle velocity. The approximation breaks down
when the packet width becomes comparable with c/�̄, which
happens for

t � τdip ≡ m0c

�̄δp0
, (3)

obtained assuming a minimal initial packet and free (i.e., non-
interacting) spreading. The consistency of this approximation
has been proven in [12]. Due to Eq. (3), the information
accumulation effects require, as we will see, very strong
coupling but, nevertheless, are in principle possible. Since
we are interested in moderate field intensities we neglect the
Â(r(t))2 term, which leads to [19]

Ĥ ≈ p̂2

2m0
+
∑
k,j

h̄ωkâ
†
k,j âk,j − q

m0
p̂ · Â(r(t)). (4)

II. CALCULATION OF THE PARTIALLY TRACED STATE

Our main object of the study is a partially traced state, with
a part of the field included in the description:

�S:Fobs (t) ≡ trFunob [US:F (t)�0US:F (t)†], (5)

where S is the charge, and Fobs and Funob denote the observed
and unobserved modes, respectively, and US:F (t) is the evolu-
tion operator corresponding to Eq. (4). The latter can be found
exactly (cf. Eqs. (8) and (A12) in [12]; a similar derivation can
be found also in [16]) and is given in the interaction picture by

Û I
S:F (t) =

∫
d3p|p〉〈p| ⊗ Û I

F (t ; p), (6)

which is a controlled-unitary type of evolution [14] (see also
[20–22]) with

Û I
F (t ; p) ≡ ei

∑
k,j Ckp·εk,j ξk(t)D̂

⎛
⎝∑

k,j

Ckp · εk,j αk(t)

⎞
⎠. (7)

where D̂(
∑

k,j βk,j ) ≡ exp[
∑

k,j (βk,j â
†
k,j − β∗

k,j âk,j )]
is the multimode displacement operator, Ck ≡
−(q/m0)

√
h̄/(2ε0ωkV ) is a coupling coefficient,

αk(t) ≡ e−ik·r0
1 − ei(ωk−k·v0)t

h̄(ωk − k · v0)
, (8)

and ξk(t) ≡ [t − sin(k · v0t)/(k · v0)]/(ωk − k · v0) is a dy-
namical phase, which turns out to be irrelevant for our con-
siderations. Note also that, since p̂ commutes with Eq. (4), the
momentum of the charge is conserved during the evolution in
the dipole approximation, so that in particular the momentum
spread is constant in time.

Following the standard approach, the charge-field system is
assumed to be initially in a product state [12,19]:

�0 = |ψ0S〉〈ψ0S | ⊗ �0F , (9)

where |ψ0S〉 is a charge initial wave packet and the
field is in a thermal state, �0F = exp(−βĤF )/Z(β), ĤF ≡∑

k,j h̄ωkâ
†
k,j âk,j , and β ≡ h̄/kBT . This (to some extent

artificially) decoupled state leads at the very short time scale
t ∼ �̄−1 to the well-known effects of dressing and charge
energy renormalization [12,19]. To separate those transient
effects from the thermal influence, in what follows we assume
the low thermal energy regime [12]:

kBT � h̄�̄. (10)

The spreads of the initial wave packet |ψ0S〉 are assumed to
satisfy δr0 � c/�̄ and obviously δp0 � m0c, which warrants
the moving dipole approximation for times [Eq. (3)] τdip �
�̄−1. However, as made clear later, δp0 cannot be chosen too
small either.

Under the above conditions, one can find the partially traced
state (5) using Eqs. (B6) and (7). Although Eq. (B6) is formally
written with the integral and the sharp momentum eigenstates,
one should keep in mind that by the spectral theorem it is in fact
a limit over finite divisions {�} of the momentum space R3, of
sums with |p〉〈p| approximated by the spectral projectors 
̂�.
We thus obtain that in the interaction picture:

�I
S:Fobs

(t) =
∑
�


̂��I
0S
̂� ⊗ �I

Fobs
(t ; p�) +

∑
� 
=�′

Dp�,p�′

×
̂��I
0S
̂�′ ⊗ Û I

Fobs
(t ; p�)�I

0Fobs
Û I

Fobs
(t ; p�′)†,

(11)

where p� is some point from �, �0Fobs ≡ trunob�0F ,
ÛFobs (t ; p) ≡ trunobÛF (t ; p) [cf. Eq. (7)], and

�I
Fobs

(t ; p) ≡ Û I
Fobs

(t ; p)�0FobsÛ
I
Fobs

(t ; p)†, (12)

Dp,p′(t) ≡ tr[ÛFunob (t ; p)�0FunobÛFunob (t ; p′)†] (13)

≡ exp[−�p,p′(t) + i�p,p′(t)], (14)

the latter being the decoherence factor due to the unobserved
field modes (the same in the interaction and the Schrödinger
pictures). The real part �p,p′(t) leads to the damping of
coherences in the momentum basis and singles it out as the
pointer basis. The resulting suppression of the charge-field
entanglement is a necessary condition for the appearance of
objectivity [14,15].

III. DECOHERENCE PROCESSES

The decoherence process in this model was extensively
studied in [12] with the whole of the radiation traced out. The
results can be easily generalized to our situation where only
a portion Funob of the modes is neglected. We assume it is
macroscopic, i.e., contains a large enough number of modes
to pass to the continuum limit

∑
k → V

∫
Funob

d3k/(2π )3,
where Funob is described by an angle �unob of the unobserved
directions (see Fig. 1), containing all the relevant frequencies
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FIG. 1. The considered physical model. A nonrelativistic charged
particle interacts with an electromagnetic field, treated as the environ-
ment. The particle is described by a wave packet, narrow compared
to the shortest relevant radiation wavelength, and moves with initial
velocity v0, chosen along the z axis. The sphere represents the
“celestial sphere” of the mode directions k/k. A part of this sphere,
given by a solid angle �unob, is not monitored and the corresponding
modes are traced out. The rest is divided into small portions (only one
portion shown) ��0, centered each around some average direction
k0/k0, which represent, e.g., detection regions of approximately
pointlike detectors.

and polarizations. Using kBT � h̄�̄ and v0/c � 1 we obtain

π

α
�p,p′(t) =

[
F0(�p) + v0

c
F1(�p)

]

× ln

[√
1 + �̄2t2

sinh (t/τF )

t/τF

]

− v0

2c
F1(�p)

[
t

τF

coth
t

τF

− 1

1 + �̄2t2

]

+O

(
v2

0

c2

)
, (15)

where α ≡ q2/(4πε0h̄c) is proportional to the fine structure
constant, τF ≡ h̄/(πkBT ) is the characteristic thermal time,
�p ≡ p − p′, and

F0(�p) ≡ 1

(m0c)2

∫
�unob

d�k

4π
�p2

⊥k, (16)

F1(�p) ≡ 2

(m0c)2

∫
�unob

d�k

4π
cos θk�p2

⊥k. (17)

Here F0(�p) and F1(�p) are the average and the “first
moment” of the squared norm of the transversal part of �p,
�p2

⊥k ≡ ∑
ij �pi�pj (δij − kikj /k2), over the unobserved

directions �unob and rescaled to (m0c)2. A comment is in
order. The quantities (16) and (17) are formally second order
in 1/c. This is, however, not a mismatch in the relativistic
expansion as it may first appear due to the nonrelativistic
Hamiltonian used. This is rather a result of the continuum limit
and the wave nature of light as we illustrate in more detail in
Appendix B.

Since generically F1(�p) 
= 0, there is in general a nonva-
nishing first-order contribution to the decoherence factor from
the Doppler shift [cf. Eq. (8)]. If, however, all of the field is
neglected, F1(�p) = 0 [12] and in the first order Eq. (15)
is the same as for a static wave packet (v0 = 0). One easily
sees from Eq. (15) that the decoherence factor depends on
the time via �̄t and t/τF . This defines three time-dependence
regimes, with the following approximate behavior in each of
them [12]:

π

α
�p,p′(t) ≈

⎧⎪⎪⎨
⎪⎪⎩

F0
�̄2t2

2 , t � �̄−1(
F0 + v0

c
F1
)

ln �̄t − v0
2c

F1, �̄−1 � t � τF(
F0 + v0

2c
F1
)

t
τF

+ (
F0 + v0

c
F1
)

ln �̄τF , t � τF .

(18)

The initial “vacuum decoherence” for t � τF , accompanying
the dressing and the mass renormalization [12], is a conse-
quence of the artificially decoupled initial state (9). Past this
transient period, for t ∼ τF the thermally driven decoherence
begins, giving the exponential decay of coherences with time.
Since τdip/τF = (m0c/δp0)(kBT /h̄�), one can achieve τF <

τdip in the studied regime so that it can be in principle
observed within the dipole approximation. However, while
the fundamental time limit (3), imposed by the wave packet
spread, grows linearly with m0c/δp0, the decoherence factor
decays only as |Dp,p′ | ∼ exp[−α(m0c/δp0)−2], since from
Eqs. (16) and (17), F0(�p),F1(�p) ∼ (m0c/δp0)−2. Thus,
what is required is a not-so-small momentum spread and a
very strong coupling, α � 1, corresponding to macroscopic
charges. A sample plot of such a situation is shown in
Fig. 2.

IV. INFORMATION CONTENT OF THE RADIATION FIELD

We now move to the most interesting part—the information
content of the observed radiation modes [Eq. (12)], which has
not been studied explicitly in this model. Let us first look at
an individual mode εk,j . From Eqs. (7) and (11) its state is a
mixture of displaced initial thermal states:

�I
k,j (t ; p) ≡ D̂p·εk,j

(t)�0k,j D̂p·εk,j
(t)†, (19)

where D̂p·εk,j
(t) stands for each of the displacements in Eq. (7).

These displacements depend on the component of the charge
momentum along the mode polarization and we can ask how
distinguishable are two such states for different p · εk,j . As
the appropriate measure, we choose the mixed-state fidelity
(also known as generalized overlap) B(�,σ ) ≡ tr

√√
�σ

√
�

[14,23], satisfying B(�,σ ) = 0 if and only if � and σ have
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FIG. 2. A sample plot of the decoherence damping factor �p,p′ (t)
(upper trace) and the state fidelity − ln Bmac

p,p′ (t) (lower trace) as a
function of time, measured in the inverse cutoff units �̄−1 and plotted
on a logarithmic scale. The parameters for the plot are the following:
�̄ = 1015 s−1, α = 105, δp0/(m0c) = 5 × 10−2, h̄�̄/(kBT ) = 4 ×
102, the unobserved portion �unob is given by 0 � θ � π/4, and
the observed macrofraction size is ��0/(4π ) = 0.05. This gives
τdip = 20 �̄−1 and τF ≈ 7.95 �̄−1.

orthogonal supports and hence are perfectly distinguishable.
B[�k,j (t ; p),�k,j (t ; p′)] ≡ B

(k,j )
p,p′ (t) can be calculated using,

e.g., the techniques of [16] and reads [24]

ln B
(k,j )
p,p′ (t) = −απh̄2c(εk,j · �p)2

m2
0ωkV

|αk(t)|2 tanh

(
βωk

2

)
.

(20)

If εk,j · �p 
= 0, Eq. (8) implies that it oscillates with a
Doppler-shifted frequency ωk[1 − k · v0/(kc)]. However, in
the infrared limit V → ∞, B

(k,j )
p,p′ (t) → 1, indicating that the

states (19) become identical for all p. Thus, at the microscopic
level each field mode carries vanishingly small information
about the charge (cf. [14]).

Let us now introduce and study so-called macrofractions of
the field [14,25–28]. We divide the monitored directions �obs

into patches �mac, each containing a large enough number
of modes to justify the continuum limit. The collection of
all modes within �mac with a fixed polarization defines a
macrofraction with a given polarization. Such a coarse graining
of the observed portion of the field may correspond, e.g., to
an array of (polarization-sensitive, wideband) detectors; see
Fig. 1. In the box quantization, a state of a macrofraction can
be formally written as

�(j )
mac(t ; p) ≡

⊗
k/k∈�mac

⊗
ωk��̄

�k,j (t ; p). (21)

We are interested in the mixed-state fidelity
B[�(j )

mac(t ; p),�(j )
mac(t ; p′)] ≡ Bmac

p,p′,j (t) for a fixed polarization
j . Since B(�⊗n,σ⊗n) factorizes with respect to the tensor
product, Bmac

p,p′,j (t) is a product taken over the macrofraction of
the terms (20). Passing to the continuum limit and imposing
the cutoff, we obtain

ln Bmac
p,p′,j (t)

= − α

π (m0c)2

∫
dω

ω
e− ω

�̄ tanh

(
βω

2

)
∫

�mac

d�k

4π

(
εk,j · �p

)2 1 − cos[(ω − k · v0)t]

[1 − k · v0/(kc)]2
. (22)

We are particularly interested in the information content of
small macrofractions, described by a small angle ��0 centered
around some k0 (see Fig. 1). It corresponds to an almost
pointlike (from the macroscopic point of view) detector [29].
We may then approximate

∫
��0

d�kf (k) ≈ f (k0)��0 and
the remaining frequency integral can be calculated for kBT �
h̄�̄, yielding

ln Bmac
p,p′,j (t) = −α��0(εk0,j · �p)2

4π2(m0c)2

1

ν2
ln

[√
1 + ν2�̄2t2

tanh (νt/τF )

νt/τF

]
,

(23)

where

ν ≡ [1 − k0 · v0/(k0c)] (24)

is the Doppler factor along the direction of k0. Let us compare
the behavior of Eq. (23) with that of the decoherence factor.
Performing the same approximations as in Eq. (18) yields

−
[
α��0

(
εk0,j · �p

)2

4π2(m0c)2

]−1

ln Bmac
p,p′ (t)

≈
⎧⎨
⎩

�̄2t2

2 , t � �̄−1

1
ν2 ln(ν�̄t), �̄−1 � t � τF
1
ν2 ln

(
�̄τF

)
, t � τF .

(25)

We see that modulo the geometric factor (controlled by the
solid angle of the directions), the behavior of distinguishability,
as measured by the above state fidelity, and decoherence is
the same up to t ∼ τF ; i.e., during the dressing the field
acquires information about the momentum at a similar rate as
it decoheres the charge. Past this time, the decoherence factor
keeps decreasing [Eq. (18)], but the state distinguishability
stabilizes at

Bmac
∞ ∼ [�̄τF ]−α( �p

m0c
)2

. (26)

The reason is that the cutoff limits the energy available for
the displacement (7) of the initial thermal state during the
evolution. Since this displacement encodes the momentum
data into the field, the cutoff puts a fundamental limit on the
accuracy with which the information about the momentum
can be imprinted in and extracted from the thermal field
[30]. It is worth stressing that in our setup this is a thermal
effect—for the field initially in the vacuum state, Bmac decays
without a limit, as follows from Eq. (23) with T = 0. The
accuracy is determined by Eq. (26) and depends, among other
things, on the ratio of the cutoff and the thermal energies as
�̄τF = h̄�̄/(kBT ). The latter is small in the low-energy regime
considered here; however, looking at the exponent in Eq. (26)
a similar remark as after Eq. (18) applies: the momentum
difference to be discriminated cannot be arbitrarily small and
a very strong coupling, α � 1, is required for state fidelity
to be small. This can be achieved, along with a vanishing
decoherence factor, as shown in Fig. 2.

For convenience, let us summarize the different time be-
haviors from Eqs. (18) and (25) in the following table, where

f (�p) ≡ α��0(εk0 ,j ·�p)2

4π2(m0c)2 , ν is the Doppler factor given by
Eq. (24), and F0(�p), F1(�p) by Eqs. (16) and (17):
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Time scale Log of the modulus of decoherence factor Log of the state fidelity

t � �̄−1 F0(�p) �̄2 t2

2 f (�p) �̄2 t2

2
(time-dependent dressing)
�̄−1 � t � τF ln(�̄t)[F0(�p) + v0

c
F1(�p)] − v0

2c
F1(�p) f (�p)

ν2 ln(ν�̄t)
(vacuum decoherence)
t � τF

t

τF
[F0(�p) + v0

2c
F1(�p)] + [F0(�p) + v0

c
F1(�p)] ln(�̄τF ) f (�p)

ν2 ln (�̄τF )
(thermal decoherence)

It implies that in the discussed parameter regime, the
partially traced state (5) approaches the so-called spectrum
broadcast structure [14,15] and by the results of [15] provides
a form of objectivization of the charge momentum. Let us
elaborate on that. SBS is defined as the following maximally
correlated, classical-classical [31,32] state (cf. [20,33,34]):

� =
∑

i

pi |i〉〈i| ⊗ �
(1)
i ⊗ · · · ⊗ �

(M)
i , (27)

where |i〉 is some basis (called a pointer basis) in the system
space, pi are probabilities and states �

(m)
i , m = 1, . . . ,M , have

vanishing state fidelity for different i’s, and B[�(m)
i ,�

(m)
i ′ 
=i] = 0

for all m. It has an important property wherein measuring
the supports of �

(m)
i all the observers m = 1, . . . ,M obtain

the same index i with the same probabilities pi in perfect
correlation with the state of the system |i〉 and without
disturbing (after forgetting the results) the whole state �S:Fobs .
In this sense the information about the state of the system is
redundantly encoded in the environment and can be extracted
without perturbation. This, in turn, is at the core of what
we perceive as objectivity [4,15]. Returning to the studied
situation, vanishing of the decoherence factor and the state
fidelities implies [14] that past τF the state (5) is approximately
of the form (somewhat abusing the notation and using the
continuous distribution for p)

�S:Fobs (t) ≈
∫

d3p|〈p|ψ0S〉|2|p〉〈p|
⊗

j

[
�(j )

mack0
(t ; p) ⊗ �(j )

mack1
(t ; p) ⊗ · · · ], (28)

where directions k0,k1, . . . define the macrofractions into
which the observed radiation is divided and their states
�

(j )
mack (t ; p) have small state fidelities (26) for different mo-

menta. Thus, although various types of quantum correlations,
including entanglement, are produced during the evolution,
the ones that survive after a sufficiently long time, the partial
loss of the field, and the coarse graining are only of the SBS
type. However, although formally resembling an SBS, there is
a key difference between Eqs. (28) and (27) and the structures
encountered so far [14,16,17] [apart from the limit on the
accuracy, Eq. (26)]. By Eqs. (7), (19), and (21) what is in
fact encoded in each �

(j )
mack (t ; p) is the momentum component

εk,j · p along the average macrofraction polarization vector
corresponding to polarization j . Thus, each macrofraction
carries in general different information about the same quantity
p. This situation resembles seeing different pieces of the
same object. However, picking two different macrofractions,

centered around k0,k1 which are not antipodal, it is possible
to choose three linearly independent polarizations ε1,ε2,ε3.
Then, p can be reconstructed from εi · p using the Gramm
matrix Grs ≡ εr · εs : p = ∑

G−1
rs (εs · p)εs . In other words,

any triple of polarization macrofractions in Eq. (28) with lin-
early independent polarization vectors encodes almost perfect
information about the charge momentum p. If we now imagine
that the observed “celestial sphere” �obs can be divided into
a very large number of infinitesimal macrofractions ��, then
it is clear that the information about p is encoded with a huge
redundancy in the field. Moreover, it is available to multiple
observers without disturbing the state of the system (modulo
the finite accuracy discussed above [35]). In this sense, the field
in the studied regime provides an objectivization of the charge
momentum.

V. CONCLUDING REMARKS

Our studies may be viewed as a step towards a more
fundamental rederivation, on the level of QED, of the results on
objectivity [14,27] in the celebrated phenomenological model
of decoherence due to environmental scattering [36]. However,
due to the used dipole approximation what becomes objective
here is the momentum rather than the position. In the context of
a free charge, this approximation is the biggest limitation and a
natural direction would be to go beyond it. Another perspective
would be systems with internal degrees of freedom, e.g., qubit
models within QED [37].

Finally, since we are explicitly including a part of the envi-
ronment in the description, it may seem that we are dealing with
a non-Markovian evolution, where the role of the environment
cannot be simplified to the usual Markovian generator. This is is
not necessarily so; the reason for including the environment in
the present description is to study the information content of the
environment and not because its presence cannot be described
in simple terms. The relation between spectrum broadcast
structures and properly defined non-Markovianity was studied
in [38] (cf. [39]). There seems to be no obvious connection
between the two, at least in the context of the spin-boson
model.
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APPENDIX A: DERIVATION OF THE
DECOHERENCE FACTOR

Here we present the derivation leading to Eq. (15) in the
main text. It is a generalization of the derivation presented in
[12] taking into account that in the present case only a portion
Funob of the field modes is unobserved. From Eqs. (14) and (7),
we have

−�p,p′(t) = ln |Dp,p′(t)|
= ln |tr[ÛFunob (t ; p)�0FunobÛFunob (t ; p′)†]|

= ln

∣∣∣∣∣∣tr
⎡
⎣D̂

⎛
⎝ ∑

kunob,j

Ck�p · εk,j αk(t)

⎞
⎠�0Funob

⎤
⎦
∣∣∣∣∣∣.

(A1)

If the environment is initially in a thermal state �0F =
exp(−βĤF )/Z(β) one finds [9,12,16]

−�p,p′(t)

= 1

2

∑
kunob,j

|Ckαk(t)x|2∣∣�p · εk,j

∣∣2 coth

(
βωk

2

)
, (A2)

with

|Ckαk(t)|2 = 2πq2

h̄ω3
km

2
0V

1 − cos{ωkt[1 − k · v0/(kc)]}
[1 − k · v0/(kc)]2

.

Subsequently, we assume that the number of field modes in the
unobserved fraction is large enough to pass to the continuum
limit; i.e., the sum over modes is replaced by an integral∑

k

→ V

∫
Funob

d3k

(2π )3
= V

2π2

∫ ∞

0
k2dk

∫
�unob

d�k

4π

= V

2π2c3

∫ ∞

0
ω2dω

∫
�unob

d�k

4π
.

(A3)

In the above expression, the unobserved field modes k ∈ Funob

are expressed in terms of spherical coordinates: the wave vector
length k = ω/c and an angle�unob of the unobserved directions
(see Fig. 1 in the main text). Please note that the appearance
of the speed of light c here is a result of the dispersion relation
ω = kc. Equation (A2) takes the form

−�p,p′(t) = α/π

(m0c)2

∫ ∞

0

dω

ω

∫
�unob

d�k

4π
e− ω

�̄ coth

(
βω

2

)
,

(A4)

1 − cos{ωt[1 − k · v0/(kc)]}
[1 − k · v0/(kc)]2

∑
j

|�p · εk,j |2, (A5)

where additionally the cutoff was introduced. The next step is
to expand the fraction under the integral in a series with respect
to k/k·v0

c
≡ v0

c
cos θk:

1 − cos{ωt[1 − (v0/c) cos θk]}
[1 − (v0/c) cos θk]2

≈ (1 − cos(ωt))

(
1 + 2

v0

c
cos θk + 3

(
v0

c
cos θk

)2)

−ωt sin(ωt)
v0

c
cos θk

(
1 + 2

v0

c
cos θk

)

+ (ωt)2 cos(ωt)
(v0

c
cos θk

)2
+ O

(
v3

0

c3

)
. (A6)

Using the identity for polarization vectors∑
j

εn
k,jε

m
k,j = δmn − knkm/k2, (A7)

one easily establishes that

|�p · εk,j |2 =
∑
ij

�pi�pj (δij − kikj /k2) ≡ �p2
⊥k. (A8)

Inserting Eqs. (A6) and (A8) into Eq. (A4) leads to
π

α
�p,p′ (t) =

[
F0(�p) + v0

c
F1(�p)

]

×
∫ ∞

0

dω

ω
e− ω

�̄ coth

(
βω

2

)
(1 − cos(ωt))

− v0

2c
F1(�p)t

∫ ∞

0
dωe− ω

�̄ coth

(
βω

2

)
sin(ωt)

+O

(
v2

0

c2

)
, (A9)

where

F0(�p) ≡ 1

(m0c)2

∫
�unob

d�k

4π
�p2

⊥k, (A10)

F1(�p) ≡ 2

(m0c)2

∫
�unob

d�k

4π
cos θk�p2

⊥k. (A11)

The frequency integrals are split into vacuum and thermal
contributions:∫ ∞

0

dω

ω
e− ω

�̄ coth

(
βω

2

)
(1 − cos(ωt)) = �vac

1 + �th
1 ,

�vac
1 ≡

∫ ∞

0

dω

ω
e− ω

�̄ (1 − cos(ωt)),

�th
1 ≡

∫ ∞

0

dω

ω
e− ω

�̄

[
coth

(
βω

2

)
− 1

]
(1 − cos(ωt)),

(A12)∫ ∞

0
dωe− ω

�̄ coth

(
βω

2

)
sin(ωt) = �vac

2 + �th
2 ,

�vac
2 ≡

∫ ∞

0
dωe− ω

�̄ sin(ωt),

�th
2 ≡

∫ ∞

0
dωe− ω

�̄

[
coth

(
βω

2

)
− 1

]
sin(ωt). (A13)

Evaluation of vacuum contributions is straightforward:

�vac
1 = 1

2 ln[1 + (�̄t)2], (A14)

�vac
2 = (�̄t)2

1 + (�̄t)2
. (A15)

To arrive at close formulas for thermal contribution, in both
cases we need to assume that the energy scale set by cutoff is
much larger than the thermal energy, i.e., kBT � h̄�. Under
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this assumption one finds

�th
1 = ln

[
sinh (t/τF )

t/τF

]
(A16)

�th
2 = − 1

1 + �̄2t2
. (A17)

Combining the above expressions with Eq. (A9) allows one to
arrive at Eq. (15) of the main text.

Let us now briefly discuss the fidelity calculation. To arrive
at Eq. (20), we used the derivation presented in [16]. Subse-
quently we approximate the angular integral

∫
��0

d�kf (k) ≈
f (k0)��0 and split the frequency integral as

1

ν2

∫
dω

ω
e− ω

�̄ tanh

(
βω

2

)
(1 − cos(νt)) = 1

ν2
(Bvac + B th),

(A18)

where ν ≡ [1 − k0 · v0/(k0c)]. The vacuum part is the same as
for the decoherence factor [Eqs. (A14) and (A15)],

Bvac = �vac
1 , (A19)

whereas the thermal integral reads

B th = ln

[
tanh(νt/τF )

νt/τF

]
. (A20)

APPENDIX B: INCLUSION OF HIGHER-ORDER
RELATIVISTIC TERMS

Here we show that decoherence and fidelity are always two
orders of magnitude higher than the Hamiltonian in a formal
1/c expansion. This, however, is not a result of the relativistic
effects per se, but rather of the continuum limit and the
dispersion relation for light. We show it by taking into account
the first relativistic correction to the Hamiltonian (4). We start
with the relativistic Hamiltonian

Ĥ = m0c
2

√
1 + π̂2

m2
0c

2
− m0c

2 +
∑
k,j

h̄ωkâ
†
k,j âk,j , (B1)

with canonical momentum

π̂ = p̂ − q

c
Â(r̂). (B2)

Expanding the square root up to 1/c2 we get

Ĥ = p̂2

2m0
− p̂4

8m3
0c

2
+
∑
k,j

h̄ωkâ
†
k,j âk,j − q

m0c
p̂ · Â(r̂)

+ q

4m3
0c

3
(p̂2p̂ · Â(r̂) + p̂ · Â(r̂)p̂2) + O(Â

2
(r̂)). (B3)

Subsequently we neglect terms proportional to Â(r̂(t))2 and
use moving dipole approximation so that

Ĥ ≈ p̂2

2m0
− p̂4

8m3
0c

2
+
∑
k,j

h̄ωkâ
†
k,j âk,j

− q

m0c
p̂ · Â(r(t)) + q

2m3
0c

3
p̂2p̂ · Â(r(t)). (B4)

The interaction Hamiltonian in the interaction picture is

Ĥ I =
∫

dp|p〉〈p| ⊗
(

− q

m0c
+ q

2m3
0c

3
p2

)
p · Â(r(t)). (B5)

Therefore, the evolution operator can be written as

Û I
S:F (t) =

∫
d3p|p〉〈p| ⊗ Û I

F (t ; p), (B6)

where

Û I
F (t ; p) ≡ e

i
∑

k,j Ck

(
−1+ 1

2m2
0c2 p2

)
p·εk,j ξk(t)

× D̂

⎛
⎝( − 1 + 1

2m2
0c

2
p2

)∑
k,j

Ckp · εk,j αk(t)

⎞
⎠.

(B7)

Repeating calculations of the previous section we find

−�
(2)
p,p′(t)

= 1

2

∑
kunob,j

|Ckαk(t)|2
∣∣∣∣
[
�p + p2p − p′2p′

2m2
0c

2

]
· εk,j

∣∣∣∣
2

× coth

(
βωk

2

)
. (B8)

Proceeding as previously one arrives at

−�
(2)
p,p′(t) = −�

(1)
p,p′(t) + α/π

(m0c)4

(
I vac

1 + I th
1

)
×

∫
�unob

d�k

4π

∑
j

(�p · εk,j )[(p2p − p′2p′) · εk,j ]

+ v2
0

c2

α/π

(m0c)2

[
2
(
I vac

1 + I th
1

) − 2t
(
I vac

2 + I th
2

)
+ t2

(
I vac

3 + I th
3

)] ∫
�unob

d�k

4π
cos2 θk�p2

⊥k, (B9)

where ∫ ∞

0
dωe− ω

�̄ coth

(
βω

2

)
ω cos(ωt) = I vac

3 + I th
3 ,

I vac
3 ≡

∫ ∞

0
dωe− ω

�̄ ω cos(ωt),

I th
3 ≡

∫ ∞

0
dωe− ω

�̄

[
coth

(
βω

2

)
− 1

]
ω cos(ωt). (B10)

The only change in calculation concerning fidelity will be that,
starting from Eq. (B8) hyperbolic cotangent will be replaced by
hyperbolic tangent. This will result in different frequency inte-
grals but will not change the conclusion regarding relativistic
terms obtained in Eq. (B9).

Hence we see that the logarithm of the decoherence factor
and fidelity is formally of fourth order in 1/c and is thus two
orders higher than the Hamiltonian (B4). This is a general
characteristic of this calculation: The effect will be formally
two orders higher than the Hamiltonian. The root of this lies
simply in the passage to the continuum limit and the use of the
dispersion relation.
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