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Abstract: The aim of this paper it to review various scale approaches to the blood flow
modelling. Blood motion may be described by three types of mathematical models according to
the observed scales or resolutions, namely microscopic, mesoscopic and macroscopic descriptions.
The above approaches are discussed together with their advantages and disadvantages. Several
results of mesoscopic simulations are presented with particular attention paid to mesoscale
semi-continuum models suitable for real-time blood flow visualisation.
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Notation
𝐴 area

𝑨𝑖 Rivlin-Ericksen tensor
𝑪𝑡 left Cauchy-Green tensor
𝑫 strain rate tensor
𝐸 energy
𝑓 function, probability distribution function

𝒇, 𝑭 force
𝒈, 𝑮 gravitational acceleration

𝑘 constant, spring constant
𝐿 length
𝑚 mass
𝒓 distance, position
𝒏̂ normal unit vector
𝑁 number of particles
𝑝 pressure
𝑆 surface area
𝑡 time

𝒖 velocity vector
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𝒗 particle velocity
𝑉 potential, volume
𝒘̂ unit vector
𝑥𝑖 coordinates

𝛽 damping constant
𝛾 shear rate, bending constant
𝜹 Kronecker delta
𝜀 depth of the potential well
𝜃 angle
𝜅 non-linearity function

𝜆1 relaxation time
𝜆2 retardation time
𝜇 dynamic viscosity
𝜌 density
𝜎 finite distance
𝝈 stress tensor
𝜏 time
𝝉 viscous part of the stress tensor
Ω collision operator

|⋅| cardinality of a set
∇ gradient
∇⋅ divergence

d
dt substantial derivative

1. Introduction
Blood is a suspension of blood cells in the plasma. The presence of red

blood cells is responsible for the non-Newtonian blood nature. A proper approach
allowing complete or nearly complete modelling of the blood flow behaviour should
take into consideration the presence, flexibility and aggregation of red blood cells.
Furthermore, the influence of temperature on the viscosity, the membrane thermal
fluctuations and the yield stress are also important.

Blood motion may be described by three types of mathematical models
according to the observed scales. The typical methods associated with specific
scales are the following:

• Macroscopic description (continuum)
– Classical fluid mechanics

• Mesoscopic description
– Lattice Boltzmann method
– Dissipative particle dynamics
– Brownian dynamics
– Smoothed particle hydrodynamics

• Microscopic description
– Molecular dynamics
– Monte Carlo method
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Typically, the macroscale approach cannot satisfy all the attributes of blood.
However, this method is useful in order to simulate the blood flow for large space
(arteries), see Figure 1. A continuum method is suitable for vessels larger than
100 μm. One has to keep in mind that non-Newtonian constitutive equations are
required in the range 0.1 to 1 mm.

Figure 1. Length scales

When it comes to capillaries, i.e. diameters are smaller than 100 μm,
explicit modelling of red blood cells is required. This is because the prediction
of continuum models breaks down entirely. An average diameter of red blood cells
is about 8 μm. This means that at least mesoscopic modelling is necessary, see
Figure 1, involving lattice Boltzmann [1, 2], dissipative [3] and smoothed particle
dynamics [4] methods.

Methods involving modelling of the motion of red blood cells can be divided
into rigid and flexible. The latter, being the most interesting and advanced, can
be further classified into spring-damper like models [5], the spectrin network
model [6, 7] and the elastic immersed boundary model [5]. Generally speaking,
various methods of blood flow modelling can be classified as follows:

• Single-phase flow
– Newtonian fluid
– Non-Newtonian fluids

• Two-phase flow
– Passive transport

– Rigid RBC
– Flexible RBC

– Active transport (fluid-structure interaction)
– Rigid RBC
– Flexible RBC
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Another classification of methods of blood flow modelling with deformable
red blood cells can be divided into:

• fully continuum, i.e. continuum fluid and RBC solid,
• semi-continuum, i.e. continuum fluid and discrete RBC solid,
• particle, i.e. discrete fluid and RBC solid.

For instance, Figure 2 presents example simulation results of passive trans-
port of rigid red blood cells in the Hagen-Poiseuille flow. This can also be classified
as a semi-continuum approach with a continuum fluid and discrete red blood cells.

Figure 2. Passive transport of rigid RBCs

2. Macroscale approach
Although blood is a suspension of blood cells in the plasma [8], the blood

flow in large vessels is regarded as a single-component and single-phase fluid.
The non-Newtonian phenomena, such as shear thinning, yield stress and constant
viscosity values at high shear rates are modelled by means of a proper constitutive
equation.

The closed system of equations for laminar, incompressible, both Newtonian
and non-Newtonian fluids consists of the continuity equation

∇⋅𝒖 = 0 (1)

and the linear momentum conservation equation

𝜌d𝒖
dt

= 𝜌𝒈+∇⋅𝝈 (2)

In the above, 𝒖 denotes the velocity vector, 𝒈 stands for the gravitational
acceleration (the mass force only is considered here), 𝑝 indicates pressure, 𝜌 density
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and the viscous part of the stress tensor is denoted as 𝝉. Typically, 𝝈 = −𝑝𝜹+𝝉.
This provides the second form of the conservation of linear momentum

𝜌d𝒖
dt

= 𝜌𝒈−∇𝑝+∇⋅𝝉 (3)

Another, so-called rheological constitutive equation is needed in order to close the
above system. We can divide rheological constitutive equations into categories of
Newtonian-, generalised Newtonian-, differential-, integral- and rate type fluids [9].
The Newtonian hypothesis is given by

𝝉 = 2𝜇𝑫 (4)

Generalised Newtonian fluids satisfy the following rheological equation

𝝉 = 2𝜇(𝛾)𝑫 (5)

The second invariant of the strain rate tensor 𝑫 is given by 𝛾2 = 2𝑫2. For
differential type fluids the viscous part of the stress tensor 𝝉 is expressed explicitly
as a function of other kinematic tensors and their derivatives

𝝉 = 𝑓(𝑨1,𝑨2,…) (6)

where
𝑨𝑖+1 = d𝑨i

dt
+𝑨𝑖 ⋅ (∇𝒖)T +∇𝒖⋅𝑨𝑖, 𝑖 = 1,2,… (7)

For the rate type fluids this equation is not explicit ̇𝝉 = 𝑓(𝝉,𝑫,𝑫̇). The dot
represents the frame-invariant derivative. For instance we have

𝝉 +𝜆1 ̇𝝉 = 2𝜇(𝑫+𝜆2𝑫̇) (8)

Finally, for the integral type fluids the viscous part of the stress tensor is expressed
explicitly as a function of one or more integrals of other kinematic tensors

𝝉 =
𝑡

∫
−∞

𝑓(𝑡−𝜏)(𝜹−𝑪𝑡(𝜏)) d𝜏 (9)

The generalised Newtonian fluids are the simplest and easiest to implement
into the existing CFD codes [10]. More advanced models such as differential- and
rate type fluids are able to better approximate blood features but they cannot be
directly implemented into the existing CFD codes. What is more, even the most
advanced constitutive equations cannot satisfy all the attributes of blood. Apart
from the non-Newtonian properties of blood, other challenging difficulties [11] are
the complex and variable geometry and the flexible and non-linear properties of
blood vessels as well as the transient nature of the blood flow.

Furthermore, the macroscale approach based on the momentum conserva-
tion equation is not particularly suitable for the real-time visualisation of the
blood flow. Although, the macroscopic approach is able to simulate the blood flow
for large space and time scales (large arteries) [12, 13], it breaks down entirely in
capillaries. This is because non-Newtonian properties of blood are important in
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vessels with a diameter smaller than 1 mm. Explicit modelling of red blood cells
is required for arteries of diameters smaller than about 100-200 μm.

3. Microscale approach
Molecular dynamics takes advantage of classical mechanics equations in

order to model molecular systems in the context of the N-body simulation. The
motion of molecules is determined by solving Newton’s equation of motion

𝑚𝑖
d2𝒓i
dt2 = 𝑮𝑖 +

𝑁
∑

𝑗=1≠𝑖
𝒇𝑖𝑗 (10)

The force exerted on a molecule consists of an external force such as gravity
𝑮𝑖 and the intermolecular force 𝒇𝑖𝑗 = −∇𝑉, generally described by means of the
Lennard-Jones potential

𝑉 = 4𝜖((𝜎
𝑟

)
12

−(𝜎
𝑟

)
6
) (11)

Molecular dynamics is able to simulate the blood behaviour to the finest detail,
however, the length and time scales are limited to small atomistic scales. What is
more, the molecular dynamics approach requires an extremely high computational
cost. In order to overcome these difficulties, the so-called coarse-grained models are
necessary. These are classified as mesoscopic models and are still able to capture
certain molecular phenomena.

4. Mesoscale approach
The individual vertex 𝑖 of the red blood cell membrane surface moves

according to

𝑚d2𝒓i
dt2 = 𝑮𝑖 +𝑭𝑖 (12)

The force exerted on a vertex consists of an external force (gravity) 𝑮𝑖 and an
additional force 𝑭𝑖 according to specific models.

4.1. Dissipative particle dynamics
The DPD [14] method simulates a reduced number of degrees of freedom

(coarse-grained models) only. All the red blood cells (the membrane and its
interior) and the blood plasma are modelled by means of DPD, see Figure 3.
The motion of plasma and internal membrane liquid particles is determined by
solving Newton’s equation of motion

𝑚d2𝒓i
dt2 =

𝑁
∑

𝑗=1≠𝑖
(𝒇𝐶

𝑖𝑗 +𝒇𝐷
𝑖𝑗 +𝒇𝑅

𝑖𝑗 ) (13)

where the interaction forces are the sum of conservative 𝒇𝐶
𝑖𝑗 or repulsion forces,

dissipative forces 𝒇𝐷
𝑖𝑗 and random force 𝒇𝑅

𝑖𝑗 .
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Figure 3. DPD particles inside RBC

For the membrane particles we have equation (12) with 𝑭𝑖 [3]

𝑭𝑖 = 𝒇𝑀
𝑖 +𝒇𝑃𝑃

𝑖 +
𝑁

∑
𝑗=1≠𝑖

(𝒇𝐶
𝑖𝑗 +𝒇𝐷

𝑖𝑗 +𝒇𝑅
𝑖𝑗 ) (14)

where 𝒇𝑀
𝑖 is the membrane force, which is discussed further below and 𝒇𝑃𝑃

𝑖 is the
inter-cellular force responsible for the cell to cell interaction. The inter-cellular
force can be modelled, for instance, by means of the Morse potential [3].

4.2. Lattice Boltzmann method
The lattice Boltzmann [15] method is suitable only for blood plasma flow

modelling. The Chapman-Enskog expansion makes it possible to recover the
incompressible Navier-Stokes equations for low Reynolds numbers. This is suitable
for blood plasma simulation. The continuous Boltzmann equation

𝜕𝑓
𝜕𝑡

+𝒗⋅∇𝑓 = Ω(𝑓) (15)

with proper collision operator Ω is taken into consideration. The BGK (Bhatna-
gar-Gross-Krook) approximation Ω(𝑓) = 𝜏−1(𝑓𝑒𝑞 − 𝑓) is the most popular sim-
plification of the collision operator. The velocity space 𝒗 is then discretised into
a finite set of {𝒗𝑛}, resulting in the discrete Boltzmann equation. Finally, the
lattice Boltzmann equation can be formulated

𝑓𝑛(𝒓+𝒗𝑛Δ𝑡,𝑡+Δ𝑡)−𝑓𝑛(𝒓,𝑡) = 1
̂𝜏
(𝑓0

𝑛(𝒓,𝑡)−𝑓𝑛(𝒓,𝑡)) (16)

where ̂𝜏 is the dimensionless relaxation time. Eventually, after performing colli-
sions and streaming steps over a discrete lattice, it is possible to find the discrete
probability distribution function 𝑓𝑛. Macroscopic variables, such as velocity, can
be recovered from the distribution function. Furthermore, coupling the red blood
cell membranes with a fluid domain resolved by the lattice-Boltzmann method,
allows active transport and cells deformation. This can be achieved by means of
the spectrin network model or the elastic immersed boundary model, which are
discussed further below.

4.3. Spring-damper model
For spring-damper like models (Figure 4) we have equation (12) with

𝑭𝑖 = 𝒇𝑖𝑠 +𝒇𝑖𝑑 +𝒇𝑖𝑏 (17)
where 𝒇𝑖𝑠 are spring forces, 𝒇𝑖𝑑 – damper forces and 𝒇𝑖𝑏 – bending forces. Also,
local and global conservative forces can be applied if the spring-damper network
represents a closed surface.
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Figure 4. Spring-damper model

The spring forces
𝒇𝑖𝑠 = −𝑘 ∑

𝑗∈𝑁𝑏

Δ𝒓𝑖𝑗 (18)

are proportional to the instantaneous (stretched or compressed) length 𝑟𝑖𝑗(𝑡)
relative to the spontaneous length 𝑟𝑖𝑗(𝑡0), that is to say

Δ𝒓𝑖𝑗 = (𝑟𝑖𝑗(𝑡)−𝑟𝑖𝑗(𝑡0)) ̂𝒓𝑖𝑗(𝑡) (19)
The spring constant is denoted as 𝑘 and ̂𝒓𝑖𝑗(𝑡) is the unit vector pointing from
the centre of two particles. Finally, 𝑁𝑏 stands for all the neighbours of a selected
particle. Equation (18) expresses Hooke’s law. Springs are always associated with
dampers in order to suppress oscillations. The damper forces are proportional to
particle velocity 𝒗𝑖 and are necessary in order to smooth out the motion between
particles

𝒇𝑖𝑑 = −2𝛽𝒗𝑖 −2𝛽∗ ∑
𝑗∈𝑁𝑏

Δ ̂𝒓𝑖𝑗 (Δ𝒗𝑖𝑗 ⋅Δ ̂𝒓𝑖𝑗) (20)

The damping constant is is denoted as 𝛽. Additional damping constant 𝛽∗ is useful
when one wants to suppress only oscillations, rather than the total motion.

Finally, bending forces are necessary to preserve the spontaneous shape of
red blood cells. The simplest equation has the following form

𝒇𝑖𝑏 = 𝛾
|𝑁𝑏|

∑
𝑗∈𝑁𝑏

(𝒓𝑖 −𝒓𝑗) (21)

where 𝛾 is the bending constant. One has to make sure that the total force acting
on a particle is zero. In order to satisfy this condition, the opposite forces are
necessary for all |𝑁𝑏| neighbouring particles

𝒇𝑗𝑏 = −𝒇𝑖𝑏
|𝑁𝑏|

(22)
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Figure 5. Simulation of a single RBC by means of the spring-damper model

Figure 5 presents example simulation results of a single flexible red blood
cell in the Hagen-Poiseuille flow. This again can be classified as a semi-continuum
approach with a continuum fluid and discrete red blood cells.

4.4. Spectrin network model
The spectrin network method considers the red blood cell membrane as

a network of triangles and vertices (Figure 6). The force exerted on a vertex
consists of

𝑭𝑖 = 𝒇𝐹𝑆
𝑖 +𝒇𝑃𝑃

𝑖 +𝒇𝑀
𝑖 (23)

The external forces due to the fluid-structure interaction on a vertex are denoted
as 𝒇𝐹𝑆

𝑖 , where 𝒇𝑃𝑃
𝑖 represents forces due to particle-particle interaction. The forces

due to the Helmholtz free energy contribution are calculated as

𝒇𝑀
𝑖 = − 𝜕𝐸

𝜕𝒙𝑖
(24)

where the Helmholtz free energy of the network is [6, 7, 16, 17]

𝐸 = 𝐸𝑖−𝑝 +𝐸𝑏 +𝐸𝑎 +𝐸𝑣 (25)

Consequently, it consists of the in-plane energy 𝐸𝑖−𝑝 (elastic + dissipative forces),
the bending energy 𝐸𝑏 defined as

𝐸𝑏 = ∑
𝑖

𝑘𝑏 (1−cos(𝜃𝑖 −𝜃0)) (26)

the area conservation forces (global + local) 𝐸𝑎 given by

𝐸𝑎 = 𝑘𝑎
(𝐴−𝐴0)2

2𝐴0
+∑

𝑖
𝑘𝑎𝑖

(𝐴𝑖 −𝐴0𝑖)2

2𝐴0𝑖
(27)

and the volume conservation forces 𝐸𝑣

𝐸𝑣 = 𝑘𝑣
(𝑉 −𝑉0)2

2𝑉0
(28)

where 𝑘𝑏 is the bending constant, 𝑘𝑎, 𝑘𝑎𝑖 are the global and local area constraint
constants and 𝑘𝑣 is the volume constraint constant. The spontaneous angle
between two adjacent triangles is denoted as 𝜃 and the instantaneous angle is

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


14 K. Kaczorowska and K. Tesch

Figure 6. Spectrin network

𝜃0. The total area and volume of red blood cells are 𝐴, 𝑉, respectively, and the
spontaneous area and volumes are 𝐴0, 𝑉0. Finally, 𝐴0𝑖 and 𝐴𝑖 represent the local
spontaneous and instantaneous areas, respectively.

4.5. Elastic immersed boundary model
Red blood cells consist of triangular meshes. Geometrical components of

these meshes, such as edges, angles, surfaces and volume are utilised in order to
simulate elastic properties of red blood cells. These include, inter alia, stretching
and bending. The difference between the instantaneous and spontaneous shape of
red blood cells is proportional to the magnitude of forces. Equation (23) describes
the force exerted on a vertex. The elastic properties of red blood cells are modelled
by 𝒇𝑀

𝑖 which consist of [5]
𝒇𝑀

𝑖 = 𝒇𝑠 +𝒇𝑏 +𝒇𝑎 +𝒇𝐴 +𝒇𝑉 (29)
Similarly to other models, the individual mesh vertex of the red blood cell
membrane moves according to equation (12).

Stretching forces express an inclination to preserve the spontaneous RBC
shape and are given by the following formula

𝒇𝑠 = 𝑘𝑠𝜅Δ𝐿
𝐿0

𝒏̂ (30)

where 𝑘𝑠 is the stretching coefficient. The non-linearity of these forces is repre-
sented by

𝜅 = (𝐿/𝐿0) 1
2 +(𝐿/𝐿0)− 5

2

𝐿/𝐿0 +(𝐿/𝐿0)−3 (31)

The spontaneous edge length is denoted here as 𝐿0, whereas the instantaneous
length by 𝐿, the difference between these two being Δ𝐿. Finally, 𝒏̂ stands for the
unit vector along the edge.

Bending forces are related to two adjacent triangles. They preserve the
spontaneous angles between them. The force is expressed as

𝒇𝑏 = 𝑘𝑏
Δ𝜃
𝜃0

𝒏̂ (32)

This time 𝒏̂ represents the unit vector to a triangle. The bending coefficient
is denoted as 𝑘𝑏, 𝜃0 and 𝜃 represent the spontaneous and instantaneous angles,
respectively. Finally, Δ𝜃 is the deviation between them.
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In order to preserve the spontaneous area of triangles, local area conserva-
tion forces have to be introduced

𝒇𝑎 = 𝑘𝑎
Δ𝑆𝑎
𝑆𝑎0

𝒘̂ (33)

By 𝒘̂ one understands the unit vector from the centre of a triangle to the
individual vertex. This means that there are three forces associated with the
three vertices of a triangle. The local area coefficient is 𝑘𝑎, 𝑆𝑎0 is the spontaneous
area of a triangle and Δ𝑆𝑎 is the deviation from the spontaneous state. Similarly,
global area conservation forces are given by

𝒇𝐴 = 𝑘𝐴
Δ𝑆
𝑆0

𝒘̂ (34)

Finally, volume conservation forces are expressed as

𝒇𝑉 = 𝑘𝑉
Δ𝑉
𝑉0

𝑆𝑎𝒏̂ (35)

where 𝑘𝑉 is the volume coefficient, 𝑆𝑎 – the area of an individual triangle, 𝑉0 –
the spontaneous volume and Δ𝑉 – the deviation from it. 𝒏̂ stands for the unit
normal vector to a triangle. Additionally, coupling of the red blood cell membranes
with blood plasma is necessary, resulting in the fluid-structure interaction forces
𝒇𝐹𝑆

𝑖 . This can be achieved by means of the lattice Boltzmann method, which is
described earlier.

Figure 7. Simulation of several RBCs by means of the elastic immersed boundary model

Figure 7 displays example simulation results of several flexible red blood
cells in the Hagen-Poiseuille flow. As previously, this can be classified as
a semi-continuum model with a continuum fluid and discrete red blood cells.

5. Conclusions
Several approaches to blood flow modelling have been presented with

particular attention paid to mesoscale semi-continuum models. The presented
results can be also classified as passive transport of discrete and flexible red blood
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cells in the Hagen-Poiseuille flow. Mesoscale models and explicit modelling of RBCs
are required for capillaries when diameters are below 100 μm. The spring-damper
model is the simplest and least accurate. What is more, it is difficult to control and
maintain the shape of red blood cells. Furthermore, the spectrin network model
is far more accurate and at the same time much more complicated and computer
resource demanding. Finally, the elastic immersed boundary model appears to
be a trade-off between accuracy and speed. This means that this approach is
particularly suitable for real-time visualisation of the blood flow.
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