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Abstract

This paper deals with certain aspects related to the dynamic behaviour of isotropic shell-like structures
analysed by the use of a higher order transversely deformable shell-type spectral finite element newly formu-
lated and the approach known as the Time-domain Spectral Finite Element Method (TD-SFEM). Although
recently this spectral approach is reported in the literature as a very powerful numerical tool used to solve
various wave propagation problems, its properties make it also very well suited to solve static and dynamic
modal problems. The robustness and effectiveness of the current spectral approach has been successfully
demonstrated by the authors in the case of thin-walled spherical shell structures through a series of numeri-
cal tests comprising the analysis of natural frequencies and modes of vibration of an isotropic spherical shell
as well as the wave propagation analysis in the case of the same spherical shell and a half-pipe shell-like
structure.

Keywords: higher order shell theory; transverse deformation; spectral finite element method; modal
analysis; elastic wave propagation

1. Introduction

Investigation, modelling and analysis of wave propagation in shell-like structures have been the subject
of scientific interest for many years [1–3]. As a result, during that time various continuous [4–8] and discrete
models [9–11] were developed and tested by many authors.

However, the main problem related to continuous models is that they are usually restricted to structures
of simple geometries and boundary conditions, as well as homogeneous material properties. In contrast,
discrete models can be easily employed to investigate structures of complex geometries and boundary con-
ditions or material properties. Nevertheless, discrete models, in the case of wave propagation problems,
need proper spatial discretisation. Among many discrete methods, which are often applied for wave prop-
agation modelling and analysis, the Spectral Finite Element Method (SFEM) appears as an effective and
powerful tool [12]. However, it should be remembered that two different spectral approaches exist in the
literature. The first is called the Frequency-domain Spectral Finite Element Method (FD-SFEM) and was
originally proposed by Doyle [13, 14] and later developed by Gopalakrishnan [15, 16]. The second approach,
proposed by Patera [17], is called the Time-domain Spectral Element Method (TD-SFEM). In the case of
two-dimensional (2-D) or three-dimensional problems (3-D) the time-domain formulation of SFEM is much
more effective than the frequency-domain formulation of the method.

In fact TD-SFEM is very similar to the well-known Finite Element Method (FEM). The main difference
between them comes from the fact that TD-SFEM employs elemental shape functions based on Lobatto or
Chebyshev approximation polynomials with elemental nodes located at points, which are the roots of these
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polynomials. As a consequence the nodes are not equidistant. Additionally, thanks to the orthogonality of
the approximation polynomials elemental inertia matrices are diagonal in the case of Lobatto polynomials,
or almost diagonal in the case of Chebyshev polynomials. Such forms of elemental inertia matrices allow
for the application of more effective and accurate as well as less time consuming techniques to integrate the
equations of motion.

In this paper a new multi-mode formulation of a higher order transversely deformable shell-type spectral
finite element (SFE) for dynamic analysis of isotropic structures is presented and analysed. The accuracy
of the formulation proposed is assessed by comparison of dispersion curves obtained for the current model
with dispersion curves obtained for exact solutions of the problem as well as comparison with shell theories
well-known from the literature.

Finally, in order to demonstrate the effectiveness of the current formulation of a higher order transversely
deformable shell-type SFE a series of numerical tests were performed. These comprised the analysis of natural
frequencies and modes of vibration of an isotropic spherical shell as well as the wave propagation analysis
in the case of the same spherical shell and a half-pipe shell-like structure. Thanks to this, appropriate
conclusions were formulated as a general guidance for the application of the current element and solution
techniques in the case of various dynamic problems.

2. Shell element formulation

2.1. Displacement field

In comparison to classical shell theories the current formulation of a higher order transversely deformable
shell-type SFE takes advantage of an extended form of the displacement field. According to this formulation
the element has six degrees of freedom and takes into account the transverse deformation of the element.
This feature of the element becomes very important, when high frequency dynamic responses are to be
studied [11]. The shell element under investigation is presented in Fig. 1.

Figure 1: A shell SFE in the local xyz and global XY Z coordinate systems.

Additional displacement terms of the element displacement field represent higher-order terms of the field
expansion into the Maclaurin series. They can be evaluated thanks to the application of the zero-traction
boundary conditions for τyz, τzx as well as σzz stress components on the lower and upper surfaces of the
element [1–3], in a similar manner as shown in [18]. Following the same approach as used in [19, 20] the
displacement field of the current shell element may be represented, in the local coordinate system of the
element xyz, as:

u = φ0 + aζφ1 + (1− ζ2)φ2 + aζ(1− ζ2)φ3
v = ψ0 + aζψ1 + (1− ζ2)ψ2 + aζ(1− ζ2)ψ3

w = θ0 + aζθ1 + (1− ζ2)θ2 + aζ(1− ζ2)θ3

(1)
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where symbols ζ and a are defined by relations z = aζ and h = 2a, while h is the thickness of the element.
It should be noted that the displacement components φi(i = 0, . . . , 3), ψi(i = 0, . . . , 3) and θi(i =

0, . . . , 3), remain certain unknown functions of the spatial coordinates x and y defined at the mid-plane of the
element. They can be associated with either symmetric (membrane) or anti-symmetric (bending) behaviour
of the element. In the case of the symmetric (membrane) behaviour these are the in-plane displacement
functions φi(i = 0, 2) and ψi(i = 0, 2) as well as the transverse displacement functions θi(i = 1, 3). On the
other hand the anti-symmetric (bending) behaviour is associated with the remaining in-plane displacement
functions φi(i = 1, 3) and ψi(i = 1, 3) as well as the transverse displacement functions θi(i = 0, 2).

As mentioned earlier the application of the zero-traction boundary conditions for τyz, τzx as well as σzz
stress components on the upper and lower surfaces of the element enables one to reduce the total number
of unknown functions (element degrees of freedom) from eight to six. This leads to certain relations for the
higher-order terms φi(i = 2, 3), ψi(i = 2, 3) and θi(i = 2, 3), which can be expressed as dependent on the
remaining lower order terms φi(i = 0, 1), ψi(i = 0, 1) and θi(i = 0, 1) for the symmetric and anti-symmetric
displacement components:

• for symmetric (membrane) behaviour:

2φ2 = a2∂xθ1
2ψ2 = a2∂yθ1
2θ3 = θ1 + λ

λ+2µ (∂xφ0 + ∂yψ0)
(2)

• for anti-symmetric (bending) behaviour:

2φ3 = φ1 + ∂xθ0
2ψ3 = ψ1 + ∂yθ0
2θ2 = a2 λ

λ+2µ (∂xφ1 + ∂yψ1)
(3)

where λ and µ are the Lamé constants.
Taking into account the relations given by Eqs. (2) and Eqs. (3) the strain field associated with the

current definition of the displacement field can be easily defined. Based on that definition the characteristic
elemental inertia [M ] and stiffness [K] matrices can be evaluated after assuming a certain polynomial order
m as well as an approximation method (Lobatto of Chebyshev) for the unknown functions φi(i = 0, 1),
ψi(i = 0, 1) and θi(i = 0, 1). This common and standard procedure for the classical FEM approach as well
as TD-SFEM is well described and presented in [21–23].

However, due to the fact that the higher order terms, given by Eqs. (2) and Eqs. (3), involve local
derivatives of the unknown functions φi(i = 0, 1), ψi(i = 0, 1) and θi(i = 0, 1), the evaluation process of the
characteristic elemental inertia [M ] and stiffness [K] matrices is presented with more details in the following
Section 2.4 of this paper.

2.2. Dispersion curves

Dispersion relations or dispersion curves provide very important information about the dependence of the
phase and group velocities cp and cg on the frequency f , or the wave number k, for elastic waves propagating
within structures of interest. They also help to estimate signal propagation times or distances, which on
the other hand is very important in all damage detection strategies that are based on the propagation of
guided elastic waves [24–27]. Dispersion relations for thin isotropic plates were extensively studied in the
past by many researchers, with the results of the fundamental analytical research on that subject presented
in [28, 29]. Against these analytical relations all new theories developed should be assessed and verified in
order to define their applicability range. This procedure was also used by the authors of this work.

Following the methodology described in [11] the dispersion curves for the phase cp and group velocities
cg, related with the displacement field given by Eqs. (1), can be obtained in a relatively straightforward
manner by the use of Hamilton’s principle [14]. Under assumption of small strains and displacements, the
virtual work W associated with the deformation and motion of the shell element under investigation, may be
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expressed in terms of its strain energy U, kinetic energy T, as well as the work of external forces F. Bearing
in mind the relations given by Eqs. (2) and Eqs. (3) a set of coupled equations of motion can be obtained
for the unknown functions φi(i = 0, 1), ψi(i = 0, 1) and θi(i = 0, 1) that can be presented in the following
form:

• for symmetric (membrane) behaviour:

L1s1 − (c2l − c2s)∂xys2 − (c2l − 2c2s)∂xθ1 = 0
L2s2 − (c2l − c2s)∂xys1 − (c2l − 2c2s)∂yθ1 = 0
L3s3 + (c2l − c2s)(∂xs1 + ∂ys2)− c2s(∂xφ0 + ∂yψ0) + c2l θ1 = 0
s1 = φ0 + 2

3φ2
s2 = ψ0 + 2

3ψ2

s3 = 1
3a

2(θ1 + 2
5θ3)

(4)

• for anti-symmetric (bending) behaviour:

L1s4 − (c2l − c2s)∂xys5 − 2
3 (c2l − 2c2s)∂xθ2 − c2sφ1 = 0

L2s5 − (c2l − c2s)∂xys4 − 2
3 (c2l − 2c2s)∂yθ2 − c2sψ1 = 0

L3s6 − c2s(∂xφ1 + ∂yψ1) = 0
s4 = 1

3a
2(φ1 + 2

5φ3)
s5 = 1

3a
2(ψ1 + 2

5ψ3)
s6 = θ0 + 2

3θ2

(5)

where Li(i = 1, . . . , 3) are defined as follows:

L1 ≡ ∂tt − c2l ∂xx − c2s∂yy
L2 ≡ ∂tt − c2l ∂yy − c2s∂xx
L3 ≡ ∂tt − c2s(∂xx + ∂yy)

(6)

and where c2l = (λ+2µ)/ρ and c2s = µ/ρ denote the squares of velocities of the longitudinal and shear waves
[14], respectively.
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Figure 2: Dispersion curves for the velocity ratios cg/cp based on the current shell theory obtained for the symmetric (mem-
brane) solutions (cl = 6.3 km/s, ct = 3.2 km/s).

In order to obtain dispersion curves for the phase cp and group velocities cg, associated with either
symmetric (membrane) or anti-symmetric (bending) behaviour of the shell element, solutions of Eqs. (4) and
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Eqs. (5) can be assumed as representing harmonic waves [2] for each independent displacement component
φi(i = 0, 1), ψi(i = 0, 1) and θi(i = 0, 1):

φi = 〈φi〉 exp[−j(kxx+ kyy + ωt)]
ψi = 〈ψi〉 exp[−j(kxx+ kyy + ωt)]
θi = 〈θi〉 exp[−j(kxx+ kyy + ωt)]

(7)

where 〈φi〉(i = 0, 1), 〈ψi〉(i = 0, 1) and 〈θi〉(i = 0, 1) are the amplitudes of these harmonic waves, while kx
and ky denote the wave numbers in x and y directions, ω is the angular frequency and j =

√
−1 .

Two independent systems of linear homogeneous equations are obtained for the symmetric (membrane)
and anti-symmetric (bending) behaviour by a simple substitution of Eqs. (7) into Eqs. (4) and Eqs. (5).
These two systems can be solved only then when their determinants vanish, which leads to two indepen-
dent characteristic equations associated with the problem. The roots of the characteristic equations define
particular symmetric (membrane) and anti-symmetric (bending) wave propagation modes and link together
the wave number k2 = k2x + k2y with the angular frequency ω. In this way dispersion curves for changes in
the phase cp and group cg velocities can be easily calculated and plotted, as presented in Fig. 2 and Fig.
3. In these cases results of numerical calculation were obtained for a thin aluminium layer (E = 72.7 GPa,
ν = 0.33, ρ = 2700 kg/m3) and plotted as the velocity ratios cg/cp.
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Figure 3: Dispersion curves for the velocity ratios cg/cp based on the current shell theory obtained for the anti-symmetric
(bending) solutions (cl = 6.3 km/s, ct = 3.2 km/s).

Six dispersion curves, associated with the six independent displacement components φi(i = 0, 1), ψi(i =
0, 1) and θi(i = 0, 1), can be easily distinguished based on Fig. 2 and Fig. 3. They represent symmet-
ric (membrane) and anti-symmetric (bending) modes associated with the current formulation of the shell
element. These are four modes corresponding to Lamb solutions: two symmetric modes S0, S1 and two
anti-symmetric modes A0, A1, as well as two modes associated with horizontal symmetric SH0 and anti-
symmetric SH1 shear waves. It should be emphasised here that the results presented in Fig. 2 and Fig. 3
confirm that the current formulation of the shell element, utilising the extended form of the displacement
field, enables one to investigate propagation of elastic waves in shell-like structures associated with their
either symmetric or anti-symmetric dynamic behaviour.

2.3. Approximation error

In general two kinds of errors play significant roles strongly influencing results of numerical simulations
in the case of dynamic problems solved numerically. The first type of error is a discretisation error ε that
comes from the fact that continuous structures, characterised by infinite numbers of degrees of freedom, are
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typically represented by a certain number of discrete points thus reducing these infinite numbers to finite
sets. This error becomes very important in the case of high frequency dynamic responses as well as wave
propagation problems and can be reduced by increasing the size of numerical models.

The second type of error is a modelling error δ and it results from the fact that the dynamic behaviour
of investigated structures is usually described by certain approximated theories that remain valid only in
a range of applications. As in the case of the discretisation error ε the modelling error δ becomes very
important at high frequency regimes and can be reduced by the application of higher order refined theories.
It should be emphasised that these two kinds of errors are independent of each other. Thus decreasing the
value of the discretisation error ε by increasing the number of model degrees of freedom has no effect on the
value of the modelling error δ.

In the case of the higher order shell theory under consideration the modelling error δ was assessed based
on the dispersion curves presented in Fig. 2 and Fig. 3. This error was calculated for the fundamental
symmetric modes S0 and SH0 as well as the fundamental anti-symmetric A0 and SH1 modes. Its evaluation
was based on the appropriate ratios cg/cp of the group velocity cg and the phase velocity cp as:

δ =
cb − ca
ca

× 100% (8)

where cb denotes the velocity ratio cg/cp obtained by the use of the current shell theory, while ca refers to
the velocity ratio cg/cp obtained from the analytical solutions.

At this point it is very interesting to note that the modelling error δ was equal to zero in the case of
both fundamental symmetric and anti-symmetric shear modes SH0 and SH1 within the whole range of the
frequency parameter f · h taken into account. For the fundamental symmetric (membrane) S0 and anti-
symmetric (bending) A0 modes changes in the relative error δ are illustrated by Fig. 4 as a function of the
frequency parameter f · h.
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Figure 4: Relative error δ for the fundamental symmetric (membrane) and anti-symmetric (bending) modes based on the
current shell theory measured against Lamb solutions (cl = 6.3 km/s, ct = 3.2 km/s).

It can be noted from Fig. 4 that the symmetric (membrane) S0 mode is characterised by very small
values of the modelling error δ up to the frequency parameter f1 · h of 1.59 MHz·mm, corresponding to
the first cut-off frequency f1, i.e. the value of the frequency f at which the second wave propagation mode
SH1 appears. At this point the error δ reaches 0.5%. Also at this point two anti-symmetric modes start
to propagate simultaneously as the A1 and SH1 modes, as presented in Fig. 3. From this moment on, the
modelling error δ increases. In contrast, the modelling error δ calculated for the anti-symmetric (bending)
A0 mode stays moderate and positive. The modelling error δ reaches its maximum value of 4.4% for the
first cut-off frequency f1.
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In order to compare the current shell theory with two other popular shell theories widely exploited in the
literature, in a similar manner as before, the modelling errors δ associated with the Mindlin and Reddy shell
theories were evaluated also for the fundamental symmetric (membrane) S0 and anti-symmetric (bending)
A0 modes, as presented in Fig. 5 and Fig. 6. Since both the Mindlin and Reddy shell theories approximate
the in-plane displacements in the same manner the modelling error related to the symmetric (membrane)
S0 mode exhibits the same type of behaviour. It can be seen that the error δ increases very rapidly with
an increase in the frequency parameter f · h. It reaches 15.5% for the frequency parameter f1 · h of 1.59
MHz·mm, corresponding to the first cut-off frequency f1.
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Figure 5: Relative error δ for the fundamental symmetric (membrane) and anti-symmetric (bending) modes based on the
Mindlin shell theory measured against Lamb solutions (cl = 6.3 km/s, ct = 3.2 km/s).

-10

-5

0

5

10

15

20

δ
[%

]

0.0 0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0

f · h [MHz·mm]

Fundamental modes – Reddy theory

S0

A0

f1 · h

Figure 6: Relative error δ for the fundamental symmetric (membrane) and anti-symmetric (bending) modes based on the Reddy
shell theory measured against Lamb solutions (cl = 6.3 km/s, ct = 3.2 km/s).

In the case of the fundamental anti-symmetric (bending) A0 modes the observed behaviour is different
for the Mindlin and Reddy shell theories. The modelling error δ associated with the Mindlin shell theory is
relatively small in the whole range of the frequency parameter f · h under investigation. It takes its highest
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negative value of -1.6% around the frequency parameter f1 · h of 1.59 MHz·mm, corresponding to the first
cut-off frequency f1. In contrast, the modelling error δ associated with the Reddy shell theory takes its
highest negative value of -0.8% around the frequency parameter f1 ·h of 0.5 MHz·mm to increase up to 1.4%
around the frequency parameter f1 · h of 1.59 MHz·mm corresponding to the first cut-off frequency f1.

For better presentation of differences and similarities between the shell behaviour theories considered
above Tab. 1 is given. It summarises particular shell theories in terms of wave propagation modes used
by these theories as well as the form of displacement components φi(i = 0, . . . , 3), ψi(i = 0, . . . , 3) and
θi(i = 0, . . . , 3). For completeness Tab. 1 also includes the Kirchhoff shell theory.

Table 1: Displacement field components and wave propagation modes available for selected shell theories: Kirchhoff, Mindlin,
Reddy and a higher order transversely deformable shell theory developed by the authors.

Theory Modes Component

Kirchhoff
S0

A0

SH0

φ0 6= 0 ψ0 6= 0 θ0 6= 0
φ1 = −∂xθ0 ψ1 = −∂yθ0 θ1 = 0
φ2 = 0 ψ2 = 0 θ2 = 0
φ3 = 0 ψ3 = 0 θ3 = 0

Mindlin
S0

A0,A1

SH0,SH1

φ0 6= 0 ψ0 6= 0 θ0 6= 0
φ1 6= 0 ψ1 6= 0 θ1 = 0
φ2 = 0 ψ2 = 0 θ2 = 0
φ3 = 0 ψ3 = 0 θ3 = 0

Reddy
S0

A0,A1

SH0,SH1

φ0 6= 0 ψ0 6= 0 θ0 6= 0
φ1 6= 0 ψ1 6= 0 θ1 = 0
φ2 = 0 ψ2 = 0 θ2 = 0
2φ3 = φ1 + ∂xθ0 2ψ3 = ψ1 + ∂yθ0 θ3 = 0

current
S0,S1

A0,A1

SH0,SH1

φ0 6= 0 ψ0 6= 0 θ0 6= 0
φ1 6= 0 ψ1 6= 0 θ1 6= 0

2φ2 = a2∂xθ1 2ψ2 = a2∂yθ1 2θ2 = a2 λ
λ+2µ

(∂xφ1 + ∂yψ1)

2φ3 = φ1 + ∂xθ0 2ψ3 = ψ1 + ∂yθ0 2θ3 = θ1 + λ
λ+2µ

(∂xφ0 + ∂yψ0)

It should be mentioned here that in practical applications concerned with dynamics and wave propagation
analysis of shell-like structures the frequencies of excitation signals usually remain much lower than the first
cut-off frequency f1 avoiding in this way the simultaneous excitation of various modes that are very different
in their nature in terms of their amplitudes, dispersion characteristics and damping. It can be said that
within this range of frequencies the current higher order shell theory under consideration is characterised by
the smallest values of the modelling error δ simultaneously for the symmetric and anti-symmetric dynamic
behaviour. This plays a significant and very important role in the case of wave propagation analysis when
coupled interaction and conversion between symmetric and anti-symmetric modes takes place.

2.4. Time-domain Spectral Finite Element Method

TD-SFEM, as originally proposed by Patera in [17], is based on specific distributions of nodes within
SFEs that are different from those known from the classical FEM approach. Thanks to this TD-SFEM has
certain unique properties. Typically two different kinds of node distributions are employed by TD-SFEM,
these being: Lobatto or Chebyshev node distributions [12, 23]. They are based on the roots of appropriate
Lobatto Ln(x) or Chebyshev Un(x) orthogonal polynomials [12], where x ∈ [−1,+1].

Thanks to the orthogonality of these polynomials, the discretisation error ε associated with the use of
TD-SFEM decreases exponentially as a function of their order n with no oscillation effects from the so-
called Runge phenomenon [30]. Additionally the application of dedicated discrete integration rules, taking
advantage of their orthogonality [12], results in diagonal or almost diagonal and very sparse forms of the
characteristic elemental inertia matrices [M ], corresponding to the Lobatto or Chebyshev node distributions,
respectively. The above mentioned properties make TD-SFEM a very attractive tool everywhere, where high
accuracy at minimised computational costs are required, especially in the case of applications concerned with
dynamics as well as wave propagation problems.

In the current formulation of the higher order transversely deformable shell SFE the Lobatto node
distribution was used based on the 6-th order complete Lobatto polynomial Lc6(x) [12, 23]. In the normalised
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(curvilinear) coordinate system ξηζ of the element the coordinates of the element nodes ξi(i = 1, . . . , 6) and
ηj(j = 1, . . . , 6) are assumed as the roots of:

Lc6(ξi) = 0, i = 1, . . . , 6
Lc6(ηj) = 0, j = 1, . . . , 6

(9)

where the complete Lobatto polynomial Lc6(x) is defined in the following manner [23]:

Lc6(x) = (1− x2)L4(x) = (1− x2)P ′5(x) (10)

where L4(x) is the 4-th order Lobatto polynomial, P5(x) is the 5-th order Legendre polynomial and the
symbol ′ denotes differentiation in respect of x. The roots ri(i = 1, . . . , 6) of the complete Lobatto polynomial
Lc6(x) can be found as:

ri = ±1,±

√
1

3
+

2

3
√

7
,±

√
1

3
− 2

3
√

7
(11)

Two Lagrange interpolation polynomials p(ξ) and q(η) can be uniquely built on the specified element
nodes ξi(i = 0, . . . , 6) and ηj(j = 0, . . . , 6) as:

p(ξ) =

6∑
i=1

Ni(ξ)pi, q(η) =

6∑
j=1

Nj(η)qj (12)

where Ni(ξ)(i = 1, . . . , 6) and Nj(η)(j = 1, . . . , 6) are one-dimensional shape functions of the element, while
pi(i = 1, . . . , 6) and qj(j = 1, . . . , 6) represent nodal values of the functions q(ξ) and p(η). It should be
strongly emphasised at this place that both shape functions Ni(ξ)(i = 1, . . . , 6) and Nj(η)(j = 1, . . . , 6) are
orthogonal in a discrete sense:

+1∫
−1

Ni(x)Nj(x)x. =

6∑
k=1

wkNi(xk)Nj(xk) = wiδij (13)

where wk(k = 1, . . . , 6) are the Gauss-Lobatto-Legendre (GLL) weights and δij is the Kronecker symbol
[12].

Finally a set of two-dimensional shape functions Ñk(ξ, η)(k = 1, . . . , 36) can be constructed by simple
multiplication of the one-dimensional shape functions Ni(ξ)(i = 1, . . . , 6) and Nj(η)(j = 1, . . . , 6) in the
following manner:

Ñk(ξ, η) ≡ Ni(ξ)Nj(η), k = 1, . . . , 36, i, j = 1, . . . , 6 (14)

where the index mapping noted by k = k(i, j) depends on a chosen node numbering convention [12, 21–23].
Assuming that the shell element under consideration has a uniform thickness h its geometry can be

described in the global coordinate system XY Z by well-known relations from the classical FEM approach
[22]. These relationships link, through the element shape functions Ñk(k = 1, . . . , 36), coordinates of any
point within the shell element {X} = {X,Y, Z}t with the vector of nodal coordinates {Xk}(k = 1, . . . , 36)
as well as the unit vector {V 3k}(k = 1, . . . , 36) normal to the mid-plane of the element:

{X} =

36∑
k=1

Ñk(ξ, η) [{Xk}+ aζ{V 3k}]

{Xk} = {Xk, Yk, Zk}t, {V 3k} = {U3k, V3k,W3k}t
(15)

where the vectors {Xk}(k = 1, . . . , 36) and {V 3k}(k = 1, . . . , 36) are defined at the mid-plane of the element.
It can be seen that Eqs. (15) result in the shell element having as many as 36 nodes and 216 degrees of
freedom.
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Since the displacement field given by Eqs. (1) is defined in the local coordinate system xyz it is necessary
to transform these relationships to the global coordinate system XY Z in order to evaluate the elemental
characteristic inertia [M ] and stiffness [K] matrices. This is a standard and well-known procedure of FEM
[22] and it was also used in the case of the current shell element. It is briefly explained below.

The most important aspect of this procedure involves the calculation of the matrix [Θk](k = 1, . . . , 36)
representing local directional cosines associated with element nodes. It should be noted here that in the
case of the Lobatto node distribution the local coordinates ξi(i = 1, . . . , 6) and ηj(i = 1, . . . , 6) of element
nodes coincide with the coordinates of the abscissas used for numerical evaluation of the inertia [M ] and
stiffness [K] matrices [12, 23]. The matrix [Θk](k = 1, . . . , 36) is required to transform all local derivatives
associated with the higher order terms of the displacement field φ(i = 2, 3), ψ(i = 2, 3) and θ(i = 2, 3), given
by Eqs. (2) and Eqs. (3) as well as all components of local strains. It is defined as [22]:

[Θk] = [V 1k,V 2k,V 3k], k = 1, . . . , 36 (16)

where {V 1k}(k = 1, . . . , 36) and {V 2k}(k = 1, . . . , 36) represent two orthonormal vectors defined at the
mid-plane of the element and normal to the vector {V 3k}(k = 1, . . . , 36).

Based on that definition it can be found that [22]:

[εk] = [Θk]t[Jk]−1[ek][Θk] (17)

with [εk](k = 1, . . . , 36) being the matrix of derivatives defined in the local coordinate systems xyz:

[εk] =

 ∂xu ∂xv ∂xw
∂yu ∂yv ∂yw
∂zu ∂zv ∂zw


k

, k = 1, . . . , 36 (18)

where [Jk](k = 1, . . . , 36) denotes the Jacobian matrix [12, 21–23] mapping the volume of the shell element
from the global coordinate system XY Z to the normalised (curvilinear) coordinate system ξηζ:

[Jk] =

 ∂ξX ∂ξY ∂ξZ
∂ηX ∂ηY ∂ηZ
∂ζX ∂ζY ∂ζZ


k

, k = 1, . . . , 36 (19)

while [ek](k = 1, . . . , 36) is the matrix of corresponding derivatives defined also in the normalised (curvilin-
ear) coordinate system ξηζ of the element:

[ek] =

 ∂ξU ∂ξV ∂ξW
∂ηU ∂ηV ∂ηW
∂ζU ∂ζV ∂ζW


k

, k = 1, . . . , 36 (20)

It should be emphasised that in exactly the same manner all higher order derivatives can be evaluated
that are associated with all higher order terms of the displacement field φ(i = 2, 3), ψ(i = 2, 3) and θ(i = 2, 3)
given by Eqs. (2) and Eqs. (3). Then the elemental characteristic inertia [M ] and stiffness [K] matrices can
be easily calculated based on the standard and well-known procedures common for FEM and TD-SDEM
[12, 21–23].

3. Numerical simulations

Results of numerical simulations presented below concern two different types of analysis as well as two
different structures. The first structure is a thin-walled spherical shell, representing a pressure vessel, while
the second structure is a thin-walled half-pipe structure. It was assumed that in both these cases the
structures are made out of aluminium alloy of the following material properties: Young’s modulus E = 72.7
GPa, Poisson’s ratio nu = 0.33, density ρ = 2700 kg/m3.
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In the case of the thin-walled spherical shell the numerical calculations concerned the analysis of natural
frequencies and modes of vibrations as well as the propagation of elastic waves within the shell. In the
case of the second structure, i.e. the thin-walled half-pipe, numerical calculations carried out were focused
on the propagation of elastic waves. All numerical calculations were carried out by the use of the higher
order transversely deformable shell SFE described above and the application of TD-SFEM in MATLAB
environment.

3.1. Natural vibrations

Firstly the analysis of natural frequencies and modes of natural vibrations of a thin-walled aluminium
spherical shell was carried out. It was initially assumed that the shell thickness h was 5 mm, while its
radius R was 1000 mm. The geometry of the shell under investigation is presented in Fig. 7(a), while its
exemplary discretisation by higher order transversely deformable shell SFEs in Fig. 7(b). In this analysis
the first 45 natural frequencies and modes of natural vibrations were calculated. The results obtained were
compared against known analytical solutions [31], as well as the results obtained through the application of
the classical FEM approach and a commercial FEM package.

At this point it is interesting to note that in the case of a perfectly symmetrical and isotropic thin-walled
elastic sphere there are two main branches of multiple (degenerated) modes of natural vibrations. The first
branch represents purely torsional behaviour, where the radial displacement component ur vanishes, i.e.
ur = 0, while the polar uφ and azimuthal uθ displacement components remain, i.e. uφ 6= 0 and uθ 6= 0.
Contrary to that the second branch corresponds to coupled radial-extensional behaviour due to shearing and
stretching [31]. These two branches are supplemented by a single purely extensional natural vibration mode,
where only the radial displacement component ur exists, i.e. ur 6= 0, while the polar uφ and azimuthal uθ
displacement components vanish, i.e. uφ = uθ = 0.

(a) (b)

Figure 7: The geometry of a thin-walled spherical shell (a) and its discretisation by 2400 shell SFEs (b) used in the analysis of
natural vibrations.

The multiplicity (degeneration degree) of a particular natural frequency (either torsional or coupled)
increases linearly [31–33] with the natural frequency number m as k = 2m + 1. This is clearly shown in
Figs. 8–11. For this reason for a given frequency number m (either torsional or coupled) there exists a set
of substantially different modes of natural vibrations (either torsional or coupled), as presented in Fig. 10.
As a consequence of this, numerically calculated values of natural frequencies are scattered around a certain
average value, which additionally influences the approximation error ε by increasing its value. Moreover,
due to axisymmetric nature of the primary mode in each set of k multiple (degenerated) modes of natural
vibrations, the meshes of SFEs used in this analysis were arranged in such a manner as to expose that
symmetry, as presented in Fig. 7(b). The first six axisymmetric modes of natural vibrations calculated
numerically by the use of the current formulation of the shell SFE are presented in Fig. 12.

The analysis was carried out for various mesh densities di(i = 1, . . . , 6) in order to show how the
discretisation error ε influences the results obtained. The mesh densities di(i = 1, . . . , 6) were chosen in such
a manner that S · di(i = 1, . . . , 6) was equal to 6, 24, 54, 96, 150 as well as 2400 elements, where S denotes
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715.53 Hz

715.53 Hz 715.54 Hz 715.54 Hz

715.55 Hz 715.55 Hz 715.55 Hz

Figure 8: Multiple (degenerated) modes of natural vibrations for the frequency number m = 3 calculated for a 5 mm thick
isotropic spherical shell based on the use of the current shell SFE for a mesh density S · d6 = 2400(60002) elements(nodes).

760.35 Hz

760.36 Hz 760.36 Hz 760.36 Hz 760.37 Hz

760.37 Hz 760.37 Hz 760.37 Hz 760.37 Hz

Figure 9: Multiple (degenerated) modes of natural vibrations for the frequency number m = 4 calculated for a 5 mm thick
isotropic spherical shell based on the use of the current shell SFE for a mesh density S · d6 = 2400(60002) elements(nodes).
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the surface of the spherical shell. Due to the mode multiplicity, apart from the average discretisation error
εm related to a given frequency number m, an additional characteristic of the results obtained was taken into
account. It was defined in a similar manner as the standard deviation σm of the natural frequencies calculated
numerically and related to the exact analytical solution, rather than to the mean value of computational
results. For that reason both the average discretisation error εm as well as the standard deviation σm were
defined as follows:

εm =
1

k

k∑
i=1

εm,i, εm,i =
f cm,i − fam

fam
× 100%, m = 2, 3, . . . , k = 1, 2, . . . , 2m+ 1 (21)

σm =

√√√√1

k

k∑
i=1

(
f cm,i − fam

)2
, m = 2, 3, . . . , k = 1, 2, . . . , 2m+ 1 (22)

where f cm,i denotes the i-th natural frequency calculated numerically and associated with the i-th mode of
natural vibration out of k multiple (degenerated) modes belonging to the frequency number m, while fam is
the value of the same natural frequency calculated analytically [31].

The results obtained by the application of the shell SFE under investigation are presented in Tab. 2 as
the natural frequency relative error εm and standard deviation σm calculated on the basis of the current
shell SFE for a 5 mm thick spherical shell as a function of mesh density. It can be seen from the results
presented in Tab. 2 that the current formulation of the shell SFE can be characterised by extremely good
accuracy for all mesh densities considered except d1. In this case higher values of the natural frequency
relative error εm as well as the natural frequency standard deviation σm results from wrong estimation of
the multiplicity k of particular natural frequencies m.

0

1

2

3

4

5

6

7

8

f m
[k
H
z]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
m

Spherical shell modes

fundamental radial mode
pure torsional modes
coupled modes

Figure 10: Natural frequencies of a thin-walled elastic, isotropic spherical shell.

In order to compare the results of numerical calculations obtained by the application of the current higher
order transversely deformable shell SFE a comparative analysis was performed, for which a commercial FEM
package was employed. The results of this analysis are presented in Tab. 3 and were obtained by the use of
the Autodesk TYPE-6 triangle shell FEs [21, 22]. In this analysis the total number of degrees of freedom of
numerical models used were kept close to, or in favour of, the commercial FEM package.

It can be found that the values of the average discretisation error εm, calculated in the case of the results
obtained by the commercial FEM package, are comparable with the current shell SFE with slightly higher
values. However, this is not the case with the standard deviation σm of the calculated natural frequency.
Their values indicate a high dispersion of the natural frequency associated with a given frequency number
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795.04 Hz

795.05 Hz 795.05 Hz 795.05 Hz 795.07 Hz

795.07 Hz 795.07 Hz 795.07 Hz 795.07 Hz

795.07 Hz 795.07 Hz 795.07 Hz 795.07 Hz

Figure 11: Multiple (degenerated) modes of natural vibrations for the frequency number m = 6 calculated for a 5 mm thick
isotropic spherical shell based on the use of the current shell SFE for a mesh density S · d6 = 2400(60002) elements(nodes).

m = 2 m = 3 m = 4

602.48 Hz 715.53 Hz 760.35 Hz

m = 5 m = 6 m = 7

782.49 Hz 795.04 Hz 802.86 Hz

Figure 12: First six axisymmetric modes of natural vibrations calculated for a 5 mm thick isotropic spherical shell based on
the use of the current shell SFE for a mesh density S · d6 = 2400(60002) elements(nodes).
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m, which increases rapidly with the frequency number m and which reaches considerable values for smaller
mesh densities. For example, the value of the average discretisation error ε4 is −0.67% and the value of the
standard deviation σ4 is 12.4 Hz for the mesh density S · d2. In contrast, the corresponding values of the
average discretisation error ε4 and standard deviation σ4, obtained for the current formulation of the shell
SFE, are 0.0% and 0.01 Hz.

Table 2: Natural frequency relative error εm and standard deviation σm calculated for a 5 mm thick isotropic spherical shell
based on the use of the current shell SFE for selected mesh densities: S · d1 = 6(152), S · d2 = 24(602), S · d3 = 54(1352),
S · d4 = 96(2402), S · d5 = 150(3752), S · d6 = 2400(60002) elements(nodes).

Mode number Mode multiplicity εm
m k d1 d2 d3 d4 d5 d6
2 5 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
3 7 –0.01% 0.00% 0.00% 0.00% 0.00% 0.00%
4 9 –1.47% 0.00% 0.00% 0.00% 0.00% 0.00%
5 11 –1.79% 0.00% 0.00% 0.00% 0.00% 0.00%
6 13 –1.45% 0.00% 0.00% 0.00% 0.00% 0.00%

Mode number Mode multiplicity σm
m k d1 d2 d3 d4 d5 d6
2 5 0.01 Hz 0.00 Hz 0.00 Hz 0.00 Hz 0.00 Hz 0.00 Hz
3 7 0.14 Hz 0.00 Hz 0.00 Hz 0.00 Hz 0.01 Hz 0.01 Hz
4 9 18.93 Hz 0.01 Hz 0.01 Hz 0.01 Hz 0.01 Hz 0.01 Hz
5 11 15.97 Hz 0.02 Hz 0.02 Hz 0.02 Hz 0.02 Hz 0.02 Hz
6 13 11.96 Hz 0.07 Hz 0.03 Hz 0.03 Hz 0.03 Hz 0.03 Hz

Table 3: Natural frequency relative error εm and standard deviation σm calculated for a 5 mm thick isotropic spherical shell
based on the use of the Autodesk TYPE-6 triangle shell FE for selected mesh densities: S · d1 = 296(150), S · d2 = 1200(602),
S · d3 = 2992(1498), S · d4 = 5080(2542), S · d5 = 7776(3890), S · d6 = 134944(67474) elements(nodes).

Mode number Mode multiplicity εm
m k d1 d2 d3 d4 d5 d6
2 5 0.55% 0.31% 0.13% 0.08% 0.06% 0.01%
3 7 –2.44% 0.32% 0.22% 0.16% 0.11% 0.01%
4 9 –2.38% –0.67% 0.30% 0.25% 0.17% 0.02%
5 11 –1.46% 0.01% 0.38% 0.34% 0.24% 0.03%
6 13 1.63% 1.23% 0.39% 0.44% 0.31% 0.04%

Mode number Mode multiplicity σm
m k d1 d2 d3 d4 d5 d6
2 5 6.57 Hz 2.38 Hz 0.85 Hz 0.51 Hz 0.36 Hz 0.03 Hz
3 7 25.24 Hz 8.45 Hz 2.13 Hz 1.25 Hz 0.85 Hz 0.09 Hz
4 9 19.59 Hz 12.40 Hz 3.69 Hz 2.08 Hz 1.38 Hz 0.17 Hz
5 11 14.96 Hz 9.23 Hz 4.67 Hz 2.89 Hz 1.97 Hz 0.24 Hz
6 13 17.10 Hz 10.83 Hz 4.63 Hz 3.98 Hz 2.81 Hz 0.34 Hz

In a similar manner as above the influence of the relative thickness h/R of the spherical shell under
investigation was taken into account. It was assumed in this analysis that the thickness h of the spherical
shell could vary, while its radius R was constant. Different values of the shell thickness hi(i = 1, . . . , 6) were
considered equal to 1 mm, 2 mm, 10 mm, 15 mm, 20 mm as well as 25 mm. This analysis was carried
out for the mesh density S · d3. The results of numerical calculations obtained on the basis of the current
formulation of the higher order transversely deformable shell SFE are presented in Tab. 4, while those
corresponding to the application of the commercial FEM package are presented in Tab. 5. Also in this case
the same observations can be made.

In the whole range of the relative thickness h/R considered as well as the modes of natural vibrations the
results of numerical calculations obtained by the use of the current higher order transversely deformable shell
SFE can be characterised by very small values of the average discretisation error εm. This error reaches its
extreme value of −0.12% in the worst case, i.e. the shell thickness h6 equal to 0.025 mm and the frequency
number m equal to 6. Similarly, the standard deviation of natural frequencies σm stays very small and
reaches its maximum value of 1.01 Hz for the same shell thickness h6 and the frequency number m. It is
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interesting to note that in the present analysis the values of both the average discretisation error εm and
the natural frequency standard deviation σm increase towards higher values of the relative thickness h/R as
well as towards higher frequency numbers m characterised by greater multiplicity (higher degeneration) of
the associated modes of natural vibrations.

Table 4: Natural frequency relative error εm and standard deviation σm calculated for an isotropic spherical shell and the mesh
density d3 based on the use of the current shell SFE for selected values of relative thickness h/R: h1 = 0.001, h2 = 0.005,
h3 = 0.010, h4 = 0.015, h5 = 0.020, h6 = 0.025 mm.

Mode number Mode multiplicity εm
m k h1 h2 h3 h4 h5 h6
2 5 0.00% 0.00% 0.00% 0.00% –0.01% –0.02%
3 7 0.00% 0.00% 0.00% –0.01% –0.02% –0.04%
4 9 0.00% 0.00% –0.01% –0.02% –0.03% –0.06%
5 11 0.00% 0.00% –0.01% –0.03% –0.05% –0.09%
6 13 0.00% 0.00% –0.01% –0.03% –0.07% –0.12%

Mode number Mode multiplicity σm
m k h1 h2 h3 h4 h5 h6
2 5 0.00 Hz 0.00 Hz 0.00 Hz 0.01 Hz 0.04 Hz 0.13 Hz
3 7 0.00 Hz 0.00 Hz 0.02 Hz 0.06 Hz 0.13 Hz 0.29 Hz
4 9 0.00 Hz 0.01 Hz 0.05 Hz 0.12 Hz 0.25 Hz 0.51 Hz
5 11 0.00 Hz 0.02 Hz 0.08 Hz 0.21 Hz 0.40 Hz 0.75 Hz
6 13 0.00 Hz 0.03 Hz 0.11 Hz 0.28 Hz 0.54 Hz 1.01 Hz

Table 5: Natural frequency relative error εm and standard deviation σm calculated for an isotropic spherical shell calculated
and the mesh density d3 based on the use of the Autodesk TYPE-6 triangle shell FE for selected values of relative thickness
t/R: h1 = 0.001, h2 = 0.005, h3 = 0.010, h4 = 0.015, h5 = 0.020, h6 = 0.025 mm.

Mode number Mode multiplicity σm
m k h1 h2 h3 h4 h5 h6
2 5 0.00% 0.13% 0.16% 0.18% 0.19% 0.20%
3 7 –0.61% 0.22% 0.32% 0.36% 0.39% 0.41%
4 9 –3.92% 0.30% 0.50% 0.57% 0.62% 0.66%
5 11 5.28% 0.38% 0.73% 0.84% 0.91% 0.97%
6 13 –4.17% 0.39% 0.99% 1.16% 1.25% 1.34%

Mode number Mode multiplicity σm
m k h1 h2 h3 h4 h5 h6
2 5 0.34 Hz 0.85 Hz 1.07 Hz 1.16 Hz 1.24 Hz 1.32 Hz
3 7 5.08 Hz 2.13 Hz 2.74 Hz 2.97 Hz 3.13 Hz 3.28 Hz
4 9 30.23 Hz 3.69 Hz 4.55 Hz 4.98 Hz 5.29 Hz 5.59 Hz
5 11 41.37 Hz 4.67 Hz 6.55 Hz 7.31 Hz 7.86 Hz 8.37 Hz
6 13 33.99 Hz 4.63 Hz 8.74 Hz 10.17 Hz 10.97 Hz 11.78 Hz

This is not the case for the results of numerical calculations obtained by the use of the commercial
Autodesk FEM package and the application of TYPE-6 triangle shell FEs. It can be clearly seen from Tab.
5 that the corresponding values of the average discretisation error εm and the natural frequency standard
deviation σm are much higher and they tend to their extreme values not only in the case of higher frequency
numbers m, but also in the case of very thin and thick shell FEs used, i.e. for the shell thickness h1 equal to
1 mm and h6 equal to 0.025 mm. For example, the value of the average discretisation error ε5 is 5.28% and
the value of the standard deviation σ5 is 41.37 Hz for the shell thickness h1. In contrast, the corresponding
values of the average discretisation error ε5 and standard deviation σ5, obtained for the current formulation
of the shell SFE, are 0.0% and 0.0 Hz.

3.2. Wave propagation

Secondly the analysis of wave propagation in the same thin-walled aluminium spherical shell was carried
out. It was assumed for that analysis that the shell thickness h and its radius R remained the same.
The geometry of the shell under investigation is presented in Fig. 13(a), while its discretisation by higher
order transversely deformable shell SFEs in Fig. 13(b). It should be mentioned here that discretisation
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requirements for this type of analysis are different. The analysis of wave propagation requires uniform, or
close to uniform, discretisation by a mesh of SFEs since strong irregularities in the mesh density results in so-
called mesh anisotropy [12]. A direct consequence of this anisotropy are different wave propagation velocities
in different spatial directions x, y and z, which effect should be avoided as it leads to significant numerical
errors. In the current analysis it was additionally assumed that the spherical shell under investigation was

(a) (b)

Figure 13: The geometry of a thin-walled spherical shell (a) and its discretisation by 2400 shell SFEs (b) used in the analysis
of wave propagation.

excited kinematically by a transverse displacement component W (t) acting on the top surface of the spherical
shell, as shown in Fig. 13(a). The amplitude of this excitation was 100 µm and it had a form of 5 sine pulses
modulated by the Hann window. The carrier frequency fc was 5 kHz, while the modulation frequency fm
was 1 kHz. The excitation signal in both time and frequency domains are presented in Fig. 14.
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Figure 14: Excitation signal in the time domain (a) and in the frequency domain (b).

Apart from that an additional mass m was located on the top surface of the spherical shell at the polar φ
and azimuthal θ angles equal to 45◦ and equal to 0.001 of the total mass of the structure. Wave propagation
patterns were observed over the total time span of 4 ms, which was divided into 16,000 equal time steps. As
a solution to the equation of motion the method of central difference was chosen. No material or numerical
damping was assumed.

The results obtained by the application of the current formulation of the higher order transversely
deformable shell SFE are presented in Fig. 15 at different time instances. It should be added that due
to the curvature of the shell surface wave propagation patterns are displayed as representing the total
displacement magnitude defined as

√
U2 + V 2 +W 2, where U , V and W are the displacement components

defined in the global coordinate system XY Z.
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t = 500 µs t = 1500 µs

t = 750 µs t = 1750 µs

t = 1000 µs t = 2000 µs

t = 1205 µs t = 2250 µs

Figure 15: Wave propagation patterns for coupled S0, SH0 and A0 wave propagation modes at various time instances, for a 5
mm thick isotropic spherical shell with an additional mass, based on the use of TD-SFEM and current shell SFE for a mesh
density S · d6 = 2400(60002) elements(nodes).
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Due to the selected excitation frequency of 5 kHz three wave propagation modes are allowed to propagate
within the spherical shell, these being: two symmetric (membrane) modes S0 and SH0 as well as one
anti-symmetric (bending) mode A0. The symmetric (membrane) modes can be assumed as non-dispersive
because of relatively small or no difference between their phase cg and group velocities cp. In the current
case their values are approximately: cg = 5.48 km/s and cp = 5.49 km/s for S0 mode, cg = 3.18 km/s and
cp = 3.18 km/s for SH0, respectively. However, the anti-symmetric (bending) mode is highly dispersive.
The corresponding values are approximately cg = 2.54 km/s and cp = 1.48 km/s. An additional source of
dispersion of the wave propagation patterns comes from the geometry of the spherical shell, which strongly
couples all wave propagation directions. This is clearly shown in the case of the wave propagation patterns
associated with time instances t greater that 1500 µs. Moreover, as a consequence of the excitation form
the wave propagation patterns observed are dominated by the anti-symmetric (bending) mode A0.

As a final structure a thin-walled aluminium half-pipe was investigated. As before it was assumed for
the analysis that the shell thickness h and its radius R remained the same, while the total length L of the
half-pipe was 3000 mm. The geometry of the half-pipe under investigation is presented in Fig. 16(a), while
its discretisation by higher order transversely deformable shell SFEs is shown in Fig. 16(b).

(a) (b)

Figure 16: The geometry of a thin-walled half-pipe (a) and its discretisation by 2704 shell SFEs (b) used in the analysis of
wave propagation.

In the same manner as previously it was additionally assumed that the half-pipe was excited kinematically
by a transverse displacement component W (t) acting on the top surface of the spherical shell, as shown in
Fig. 16(a). The amplitude of this excitation was 0.1 mm and it had the same form of 5 sine pulses modulated
by the Hann window. Their carrier frequency was also 5 kHz. Also an additional mass m was located at
half its length on the top surface of the half-pipe at the polar angle φ equal to 45◦ and equal to 0.001 of the
total mass of the structure. Similarly, wave propagation patterns were observed over the total time span
of 4 ms, which was divided into 16,000 equal time steps. The same solution to the equation of motion was
chosen with no material nor numerical damping.

The results obtained are presented in Fig. 17 as wave propagation patterns at different time instances
as representing the total displacement magnitude defined as before as

√
U2 + V 2 +W 2, where U , V and W

are the displacement components defined in the global coordinate system XY Z.
Due to the same type of excitation as well as material properties and the thickness of the structure

the same observations can be made also in this case. Selected excitation frequency of 5 kHz results in
three wave propagation modes, these being: two symmetric (membrane) modes S0 and SH0 as well as one
anti-symmetric (bending) mode A0 of the same dispersion characteristics.
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t = 500 µs t = 2000 µs

t = 875 µs t = 2375 µs

t = 1250 µs t = 2750 µs

t = 1625 µs t = 3125 µs

Figure 17: Wave propagation patterns for coupled S0, SH0 and A0 wave propagation modes at various time instances, for a 5
mm thick isotropic half-pipe with an additional mass, based on the use of TD-SFEM and current shell SFE for a mesh density
S · d6 = 2704(68121) elements(nodes).
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4. Conclusions

Numerical simulations have become a very important activity in engineering sciences as they are a source
of very valuable information about structural behaviour. Therefore it is very important to develop and test
more efficient and more sophisticated models that enable their users to gain a deeper insight into simulated
phenomena. Dynamic problems, especially those related to the propagation of elastic waves, remain not
only very important, but also very demanding due to the complexity of simulated phenomena as well as
the geometrical properties of investigated structures. The concept of a higher order transversely deformable
shell SFE appears as a very good solution, especially when combined with such an effective numerical tool
as TD-SFEM.

The results presented in the current paper allow the authors to draw a number of general conclusions.
They can be formulated in the following way:

• The methodology employed by the authors to construct the displacement field of the higher order
transversely deformable shell SFE can be thought of as a general and universal approach to generate
the displacement fields of other higher order FEs or SFEs based of the assumption of the zero traction
boundary conditions for τyz, τzx and σzz stress components on the upper and lower surfaces of the
elements.

• Further on, a method to generate the dispersion curves associated with the displacement fields obtained
is presented by the authors, which utilises Hamilton’s principle and which leads to a set of associated
equations of motion. These equations are presented in the paper for the case of the analysed shell SFE
as well as the dispersion curves resulting from them.

• Comparison analysis of the dispersion curves shown confirms that the current shell SFE is characterised
by higher accuracy than classical shell theories developed by Mindlin or Reddy, which is clearly seen in
the case of the fundamental symmetric (membrane) and anti-symmetric (bending) wave propagation
modes.

• TD-SFEM as a numerical computational technique serves as perfect implementation grounds for the
application of higher order theories developed not only for the purpose of high frequency dynamics,
but also in the case of classical modal analysis or even static problems. This is very clearly presented
for modal and wave propagation analysis of the spherical shell.

• Modal analysis of a spherical shell, which by itself presents a serious computational challenge due to
the advancing multiplicity (degeneration) of natural vibration modes with an increase in the natural
frequency number, proves that the application of the current shell SFE leads to much smaller discreti-
sation errors and their dispersion than typical FEs. It also proves to be less sensitive to the relative
shell thickness, which additionally enhances its application fields. However, it must be remembered
that this type of analysis is very sensitive to the discretisation of the computational domain. This
was easily observed in the case of modal and wave propagation analysis, which required different
discretisation of the very same computational domain.

• Combined application of TD-SFEM and the higher order transversely deformable shell SFE developed
by the authors helps to reduce significantly modelling and discretisation errors of numerical investi-
gation providing excellent accuracy, especially in comparison to the classical FEM and typical FEs
commonly used for that purpose.

• The ability of the current shell SFE to deform transversely is a very desirable feature in the context of
its application for wave propagation problems, where the ease of excitation of either symmetric (mem-
brane) and/or anti-symmetric (bending) wave propagation modes is very important. Additionally, it
greatly improves the accuracy of modelling of the symmetric (membrane) wave propagation modes,
especially the fundamental S0 mode. In the case of the classical FEM this feature is achievable only
through the application of 3-D FEs, which greatly increases computational costs.
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[12] W. Ostachowicz, P. Kudela, M. Krawczuk, A. Żak, Guided Waves in Structures for SHM. The Time-domain Spectral

Element Method, John Wiley & Sons Ltd., Singapore, 2012.
[13] S. A. Rizzi, J. F. Doyle, A spectral element approach to wave motion in layered solids, Journal of Vibration and Acoustics

114 (1992) 569–577.
[14] J. F. Doyle, Wave Propagation in Structures, Springer-Verlag, Inc., New York, 1997.
[15] S. Gopalakrishnan, J. F. Doyle, Spectral super-elements for wave-propagation in structures with local nonuniformities,

Computer Methods in Applied Mechanics and Engineering 121 (1995) 79–90.
[16] S. Gopalakrishnan, A. Chakraborty, D. Roy Mahapatra, Spectral finite element method: Wave propagation, diagnostics

and control in anisotropic and inhomogeneous structures, Springer-Verlag London, London, 2008.
[17] A. T. Patera, A spectral element method for fluid dynamics: Laminar flow in a channel expansion, Journal of Computa-

tional Physics 54 (1984) 468–488.
[18] O. O. Ochoa, J. N. Reddy, Finite Element Analysis of Composite Laminates, Kluwer Academic Publishers, Dordrecht,

1992.
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