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Abstract    In this paper, a method for numerical analysis of steady gradually var-

ied flow in channel networks with hydraulic structures is considered. For this pur-

pose, a boundary problem for the system of ordinary differential equations consist-

ing of energy equation and mass conservation equations is formulated. The 

boundary problem is solved using finite difference technique which leads to the 

system of non-linear algebraic equations. The arising system is solved with modi-

fied Picard method. The presented methodology is applicable to any channel net-

work type and any type of hydraulic structure. 

1 Introduction 

One-dimensional steady gradually varied flow (SGVF) in open channels is one 

of the most frequently considered flow types in hydraulic engineering. As it is one 

of the basic problems, it seems to be well recognized (Chow, 1959; Cunge et. al., 

1978; French, 1978; Chanson, 2004; Szymkiewicz, 2010). However, practical 

modeling of this kind of flow in channel networks still remains an issue. In the lit-

erature, two approaches to this problem can be found. From formal viewpoint, 

both of them require formulation of the boundary problem for the governing equa-

tions describing SGVF. Both approaches have their advantages and drawbacks. 

One of the approaches is based on the shooting method. Such approach is, for ex-

ample, implemented in HEC-RAS software (US Army Corps of Engineers, 2010). 
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However, this method has it difficult to converge in cases where looped channel 

networks are considered, which makes it useless for example for flow modelling 

in irrigation canals. Some improvements were introduced to this approach by Mis-

ra (1995, 1996, 1998) which allowed to work around the convergence problem. 

The second approach is based on the finite difference method (Schulte and 

Chaudhry, 1987; Szymkiewicz and Szymkiewicz, 2004). This approach offers an 

elegant mathematical formulation of the problem as well as unified description of 

the issue. In this approach, a global system of equations for the entire channel 

network is formulated. This method allows to perform computations for looped 

and dendric channel networks without distinction. However, it does not allow to 

perform simulations of the mixed flow regime, which is possible in the first case. 

 In this paper, the second approach is evaluated. The method introduced 

by Szymkiewicz and Szymkiewicz (2004) for SGVF modelling is adjusted for 

SGVF modelling in channel networks of any type, including hydraulic structures. 

This work is the expansion of the considerations presented in Szymkiewicz and 

Artichowicz (2016). 

2 Governing equations 

The modelling of the one-dimensional SGVF in open channels is based on the 

system of two ordinary differential equations derived from the system of the Saint-

Venant equations (Artichowicz, 2015; Szymkiewicz, 2010): 

 0
dx

dQ
, (1) 

 S
dx

dE
  (2) 

where Q denotes the flow discharge, x is the spatial coordinate, E is the mechani-

cal energy of the flow, and S is the energy slope. The first equation represents the 

mass conservation principle, whereas the second one represents the energy con-

servation principle. In the presented form the mass conservation equation states 

that no lateral flow is taken into consideration. However, including lateral inflow 

or outflow does not influence the presented solution methodology. The flow ener-

gy in Eq. (2) is expressed as follows 

 
2

2

2 Ag

Q
hE


 , (3) 
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where h is the water stage level,  is the energy correctional coefficient, A is the 

active flow area and g is the gravitational acceleration. The energy slope can be 

estimated using Manning’s formula: 

 
3/42

22

RA

Qn
S  , (4) 

in which n denotes the roughness coefficient and R is the hydraulic radius. 

3 Boundary value problem for energy equation and its 

numerical solution with finite difference method 

If flow discharge in a channel is known, then to obtain the flow profile it is neces-

sary to formulate and solve the initial value problem for the energy equation. Such 

problem is a typical one and has been widely described in the literature (Cunge et. 

al., 1978; French, 1978; Szymkiewicz, 2010). However, if the flow discharge in a 

channel is unknown then, to find the water profile, a boundary problem for the 

system of ordinary differential Eqs. (1) and (2) has to be stated. Its solution pro-

vides the flow discharge value and flow profile in the considered channel (Fig. 1). 

To formulate the boundary problem for Eqs. (1) and (2) it is necessary to impose 

the boundary conditions at both ends of the considered channel reach. It means 

that water stage levels in the first (h0) and the last (hL)  cross-section of the chan-

nel reach have to be imposed (Fig. 1). 

 
Fig. 1 Boundary problem for Eqs (1) and (2) in a channel reach. 

 

The energy equation has to be approximated with numerical scheme. At least 

formally, the numerical solution of the boundary problem can be obtained by any 

numerical approach like collocation method, shooting method, finite difference 

method etc. In this work, the finite difference method (FDM) will be used. Appli-

cation of the FDM to Eq. (2) yields:  
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. (5) 

In fact the FDM approximation is identical to implicit trapezoidal rule (Arti-

chowicz and Prybytak, 2016; Ascher and Petzold, 1998). Substitution of Eqs. (3) 

and (4) into Eq. (5) yields: 
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This form of the equation allows to consider the flow in one direction only. How-

ever, when channel networks are considered it is sometimes impossible to assume 

the proper flow directions in all of the network branches. To work around this 

problem, Eq. (6) can be rewritten in another form:   
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Substituting the square of the flow discharge in the energy slope term with the 

product of the discharge and its absolute value allows to include the direction of 

the flow with sign of the discharge value. If the value is positive, it means that the 

flow occurs in the assumed direction; if the sign is negative, the flow occurs in the 

direction opposite to the assumed one. The assumed flow direction is from the 

cross-section 1 (x=0) to M (x=L). 

The idea of the FDM is to divide the channel into M computational sections 

(Fig. 2) and to write Eq. (7) for each of them. 

 
Fig. 2 A computational schematic of the channel. 

 

The resulting system of equations will have M-1 equations and M+1 unknowns. 

Necessary additional equations arise from the imposed boundary values in the first 

and last cross-sections: 

 
01 hh   and  

LM hh  . (8a,b) 

The resulting system of non-linear algebraic equations can be written in the 

short form as 

 bAx  . (9) D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


5 

The structure of the system (9) is presented in Eq. (10). 
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The elements of this system are as presented below. The first and last rows corre-

spond to the imposed boundary conditions, so the elements values will be 

 11,1 a  and  1,1  MMa , (11a,b) 

whereas other elements are resulting from Eq. (7): 
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The elements of the unknown vector are 

 
ii hx  ,  and  QxM 1

,    (13a,b) 

for i=1, ..., M.  The elements of the right-hand side vector are equal to 

 
01 hb  , 0ib ,  and  

LM hb 1
,    (14a,b,c) 

The obtained system of equations (10) is an algebraic non-linear one. It can be 

successively solved using modified Picard method (Szymkiewicz and Szymkie-

wicz, 2004). Let us rewrite Eq. (9) in a form introducing iteration index k: 

 bxA
*  )1(k

, (15) 

where the modified system matrix A
* is computed based on the mean values of 

two previous iterations of the solution vector: 
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AA
* . (16) 

In the first iteration (for k=0), the matrix is computed based on the starting point 

only x(0): 

  )(k
xAA

*  . (17) 

The iterative process is considered as finished when the following criteria are ful-

filled: 

 
h

k

i

k

i hh  || )()1( ,  and  
Q

kk QQ  || )()1( ,    (18a,b) 

for i=1, 2, ..., M, where h and Q are the required solution accuracies of water 

stage levels and flow discharge, respectively.  

5 Including the hydraulic structures 

The method presented in the previous section can be applied to a channel with 

one or multiple hydraulic structures as well. An example of such a channel is pre-

sented in Fig. 3.  

 

 
Fig. 3 The top view and longitudinal cross-sectional view to the schematic of the chan-

nel with hydraulic structure. 

 

In such a situation, the elements of the system (10) corresponding to channel sec-

tion with the hydraulic structure will be replaced. Instead of elements resulting 

from Eq. (7), the ones resulting from the formulas describing the hydraulic struc-

ture will be used. In general, such a formula can be written as D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


7 

 ),( 1 jj hhQQ , (19) 

meaning that water stage levels around the structure and the flow discharge are in-

volved.  

To include Eq. (19) into system (9) it has to be rearranged to a form allowing 

the extraction of the unknown water stage levels and flow discharge into the vec-

tor of unknowns x. The rearrangement will be presented on the examples of two 

most common hydraulic structures: weir and orfice. 

4.1 Weir 

The hydraulic scheme for submerged weir is presented in Fig. 4. 

 
Fig. 4 The computational scheme for weir discharge computations. 

 

In literature there are many formulas for estimating flow discharge of such struc-

tures as weirs. For simplicity let us consider rectangular sharp-crested weir. Ex-

pression for the discharge of such weir is 

 
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where   is the weir discharge coefficient, Hg the water level above the crest be-

fore the weir, pg the crest level over the bottom before the weir, B the weir width, 

and  is the submersion coefficient, which can be expressed as (Kubrak and Ku-

brak, 2010) 
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in which Hd is the water level above the crest behind the weir, and pd is the crest 

level over the bottom behind the weir. 

Formula (20) is valid if 0.25<(Hg-Hd/pd)<0.75. If the weir is not submerged, then 

the value of the coefficient is taken as =1. 

To include Eq. (20) into system of Eqs. (9) it has to be rearranged in such way 

that it will be possible to extract from it hj, hj+1 and Q into the vector of unknowns. 

If the weir is not submerged, the rearranged Eq. (20) will take the form: 
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In such case, the resulting matrix and right-hand side vector will be expressed with 

the following formulas: 

 Ua jj ,
, 01, jja ,  11, Mja ,    (23a,b,c) 
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If the weir is submerged, Eq. (20) will be written as follows: 

 3
1

13 021.00291.1
021.0

gd

j

j

gd

j
H

r

p

z
TQh

H

r

p
ThU 
































 , (25) D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


9 

with  
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In such a situation, the resulting matrix and right-hand side vector will be ex-

pressed with the following formulas: 

 Ua jj ,
, 31,
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H
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p
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,   11, Mja ,    (26a,b,c) 
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If necessary, it is possible to include the variability of the weir coefficient . 

4.2 Unsubmerged orfice  

Similarly as the weir, an orfice can be considered. The formula for the dis-

charge of the small unsubmerged orfice is (Fig. 5): 

 
oo HgAQ 2 . (28) 

where  is the orfice discharge coefficient, Ao the area of the orfice, Ho the water 

level above the centre of the orfice area, and p is the distance between the bottom 

and the bottom edge of the orfice. 
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Fig. 5 The computational scheme for unsubmerged orfice discharge computations. 

 

As previously, to include Eq. (28) in the system of Eqs. (9) it has to be rearranged. 

To this order, let us notice that in case of the circular or rectangular orfice it can be 

written that 

 
2

D
pzz jo  , (29) 

and 

 
ojo zhH  . (30) 

To rearrange Eq. (28) for suitable form to be included in the system (9) it is con-

venient to raise its both sides to the power of two. Eq. (28), after rearrangement, 

will take the form: 

     oDjD zAghAgQ
222 22   , (31) 

which leads to resulting matrix and right-hand side vector elements: 

  2

, 2 Djj Aga  , 01, jja ,   Qa Mj 1,
,    (32a,b,c) 

   oDj zAgb
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2  . (33) 
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4.3 Submerged orfice  

 

If the orfice is submerged, then the formula describing its discharge is (Fig. 6) 

 HgAQ o  2 , (34) 

where H=hj-hj+1 is the difference between the water level before and behind the 

orfice.  

 
Fig. 6 The computational scheme for submerged orfice discharge computations. 

 

As previously, it is convenient to raise both sides of formula (34) to the power of 

two: 

     022 1

222  jDjD hAghAgQ  . (35) 

The elements of the matrix and the right-hand side vector are 

  2

, 2 Djj Aga  ,  2

1, 2 Djj Aga 
,   Qa Mj 1,

,    (42a,b,c) 

 0jb . (36) 
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4.4 Example 

To illustrate the FDM method and its accuracy let us consider a laboratory 

flume with adjustable bottom slope. The flume has the following parameters: 

length L=10 m, width B=0.38 m, bed slope s=0.001745. The Manning’s roughness 

coefficient of the channel is constant and equal to n=0.0185 s m-1/3. At the distance 

of xovf= 2.0 m, the sharp crested weir of height pg=pd =0.24 m is situated. The 

sketch of the laboratory station is presented in Fig. 10. 

 
Fig. 7 The sketch of the laboratory flume. 

 

The flow discharge was set to Q=0.0133 m3 s-1. The corresponding measured wa-

ter stage levels at the first (x=0 m) and last (x=9 m) cross-sections were  h0=1.31 

m, hL=1.26 m, respectively. The above-mentioned FDM method was applied to 

simulate the flow in the flume. The initial discharge value was taken as Q0= 0.01 

m3 s-1. The initial water stage was taken as the stage corresponding to mean value 

of the depths resulting from the imposed boundary conditions. The weir discharge 

coefficient was computed using the following formula 
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 . (37) 

The computations required 6 iterations to finish with demanded accuracy h = 

0.0001 m and Q=0.0001 m3 s-1. The obtained flow discharge value is Qc=0.0142 

m3 s-1, which means the relative error =|Q-Qc|/Q∙100%=6.76%. The outcome of 

the measurements and computations was presented in Fig. 8. The computed water 

stage levels are very similar to the measured values, which confirms the efficacy 

of the presented methodology.  
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Fig. 8 The comparison of the measurements and computations outcome. 

5 Channel networks 

The presented methodology can be applied seamlessly to channel networks of 

any type. To perform the computations in such a case, each channel has to be di-

vided into computational cross-sections in the same manner as presented in the 

case of the single channel. However, to close the arising system of equations, ad-

ditional equations are required. Those equations are representations of the mass 

conservation principle and the energy stage equality applied to junctions.  

The scheme of the typical channel junction and its computational representa-

tion is displayed in Fig. 9. 

 
Fig. 9 (a) The sketch of the channel junction and (b) its typical computational representa-

tion. 

 

It is possible to include any number of channels in a junction representation, 

however, in practice, junctions with more than three channels are very rare. The 

equation representing the mass conservation principle is 

  
P

PQ 0 . (38) 

with P becoming the index of each channel included in the junction. For the situa-

tion presented in Fig. 9 it would mean that P=I, J, K. Equation (38) means that the 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


14  

volume of the water flowing into the junction and flowing out of the junction is 

identical. To include Eq. (38) in the arising global system of equations it is neces-

sary to assume the flow directions in each channel of the considered network. The 

flow direction is then represented with the sign of the discharge value as previous-

ly mentioned. The equations representing the equality of the energy in the junction 

can be written as 

 
2

2

2

2

2

2

222 k

Kk

k

j

Jj

j

i

Ii

i
Ag

Q
h

Ag

Q
h

Ag

Q
h


 , (39) 

which means that the flow energy in each of the cross sections included in junc-

tion is the same. Eq. (39) in fact represents two equations resulting from the situa-

tion presented in Fig. 9. In a general case in which P channels are included in the 

junction to express the equality of the energy in the junction P-1 equations will 

arise, where P means the number of channels included in the joint. 

The resulting global system of equations will include subsystems written for 

each channel expressed by system (10) and from Eqs. (38) and (39) representing 

the junctions. If there are hydraulic structures in the channels included in the net-

work they can be included in the model with the methodology described in section 

4 without any changes. In each step of the computational process, the flow direc-

tion in the channels can change, which has to be taken into consideration when 

writing the equations describing the hydraulic structures. The resulting system of 

non-linear algebraic equations, as previously, can be solved using the modified Pi-

card method. 

5.1 Example 

Let us consider an imaginary channel network consisting of eleven channels 

(Fig. 10). All channels in the network are rectangular and have width equal to B=5 

m. Also roughness coefficient is identical in all channels and is equal to n=0.03  

s m-1/3. The bed slopes s and lengths L of the channels are given in Table 1. The 

channel network contains four identical rectangular weirs (denoted in Fig. 10 as 

wr 1-4 situated in channels 2, 3, 5 and 7). The parameters of the weirs have the 

following values: the width Bwr=5 m, the crest levels over the bottom pg=pd=1 m. 

The discharge wr coefficient is computed using Eq. (37). The orfice parameters 

are: width Borf=2.5 m, height D=0.3 m, discharge coefficient orf=0.67, the bottom 

edge of the orfice is at the level of the channel bed thus p=0 m. The orfice is situ-

ated in channel 4. All hydraulic structures are positioned in the half of the channel 

lengths. 

The network contains pairs of identical channels placed symmetrically: 2 and 3, 

5 and 7, 9 and 10. The channel network is thus symmetrical with regard to the 

channels 1, 4 and 11. 
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The imposed boundary conditions are water stage levels corresponding to the 

given water depths HB1= 2 m, HB2= 1.2 m, HB3 =HB4= 1.3 m. The imposed starting 

values for iterative process were the same for all the channels and were equal to 

H(0)= 5 m and Q(0)=0.1 m3 s-1. It took 16 iterations to obtain the demanded accura-

cy h = 0.001 m and Q=0.001 m3 s-1. The computed flow discharges are presented 

in  Table 1. 

 
Fig. 10 The schematic of the considered channel network. 

 

Table 1 The parameters of the channel network and the computed discharges. 

No. s [-] L [m] Q [m3 s-1] 

1 0.0001     2000  5.502 

2 0.0001     1000 2.751 

3 0.0001     1000  2.751 

4 0.0001     1500   1.087 

5 0.0001333     1500 2.207 

6 0.0001     1500  1.477 

7 0.0001333     1500   2.207 

8 0.0001     1500   1.477 

9 - 0.00005     1000   0.730 

10 - 0.00005     1000 0.730 

11 0.0002     1000 2.547 

 

The water profiles in paths consisting of channels 1-2-5-6, 4-11 and channel 9 are 

presented in Figs. 11, 12 and 13, respectively. As the network is symmetrical, the 

flow profiles in the remaining channels are identical as in the presented paths (Fig. 

10). 
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Fig. 11 The flow profile in the path connecting channels 1-2-5-6. 

 

 
Fig. 12 The flow profile in the path connecting channels 4-11. 

 

 
Fig. 13 The flow profile in channel 9. 

7 Conclusions 

In this paper, the methodology for SGVF modeling in channel networks with hy-

draulic structures of any type was presented. The core of the presented methodol-

ogy is the system of ordinary differential equations consisting of the continuity 

and energy equations representing the one-dimensional SGVF in open channels. 

This system was approximated with finite difference method, which led to non-

linear system of algebraic equations. If the network branches include hydraulic 

structures, the rows of this system corresponding to the cross-sections embracing 

the structures have to be modified. For such cross-sections the algebraic formulas 

involving discharge and water stage values before and behind the structure are 

used instead of the equations resulting from the approximation of the energy equa-
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tion. The resulting system is closed by adding the equations representing the 

boundary conditions written for the pending cross-sections, and equations repre-

senting the energy line equality and mass conservation principle in the network 

junctions. The resulting system can be successively solved with modified Picard 

method.  

The efficacy of this methodology was tested with imaginary examples as well 

as against experimental outcome. 
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