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Human subarachnoid space width 
oscillations in the resting state
Marcin Gruszecki1, Gemma Lancaster2, Aneta Stefanovska   2, J. Patrick Neary3,  
Ryan T. Dech3, Wojciech Guminski4, Andrzej F. Frydrychowski5, Jacek Kot   6 &  
Pawel J. Winklewski5,7

Abnormal cerebrospinal fluid (CSF) pulsatility has been implicated in patients suffering from various 
diseases, including multiple sclerosis and hypertension. CSF pulsatility results in subarachnoid space 
(SAS) width changes, which can be measured with near-infrared transillumination backscattering 
sounding (NIR-T/BSS). The aim of this study was to combine NIR-T/BSS and wavelet analysis methods 
to characterise the dynamics of the SAS width within a wide range of frequencies from 0.005 to 2 Hz, 
with low frequencies studied in detail for the first time. From recordings in the resting state, we also 
demonstrate the relationships between SAS width in both hemispheres of the brain, and investigate 
how the SAS width dynamics is related to the blood pressure (BP). These investigations also revealed 
influences of age and SAS correlation on the dynamics of SAS width and its similarity with the BP. 
Combination of NIR-T/BSS and time-frequency analysis may open up new frontiers in the understanding 
and diagnosis of various neurodegenerative and ageing related diseases to improve diagnostic 
procedures and patient prognosis.

Below the scalp and the skull lie the dura mater, the arachnoid, and the pia mater. The space between the arach-
noid and the pia mater is known as the subarachnoid space (SAS) and is filled with translucent cerebrospinal 
fluid (CSF). CSF plays a very important role in the prevention of injury, acting as a cushion and circulating within 
the ventricular system of the brain. It has been shown in a number of radiological studies that CSF circulation is 
affected by heart and respiration driven changes in the cardiovascular system1–8. This can be explained by con-
sidering the cerebral circulation in more detail. Blood vessels that serve the brain must first go through the SAS 
and cross the pia mater before penetrating the brain9. Therefore, from a mechanical perspective, any changes in 
the volume of these blood vessels must result in CSF motion. In turn, CSF motion leads directly to SAS width 
fluctuations. For example, during the cardiac systolic phase, blood volume in the cerebral vessels increases. As the 
brain is enclosed in a rigid skull, any increase in blood volume needs to be accompanied by a displacement of an 
approximately equal amount of CSF into the compliant spinal compartment to prevent an increase in intracranial 
pressure1,3. This induces oscillations in the CSF with the same frequency as the heartbeat. Breathing-driven CSF 
oscillations, including changes in SAS width, have also been described in a number of studies2,4,5.

Previous studies revealed six different frequency intervals corresponding to different physiological oscilla-
tions of the vessels. Intervals I (0.6–2 Hz) and II (0.145–0.6 Hz) are related to cardiac and respiratory function, 
respectively. Interval III (0.052–0.145 Hz) is usually associated with smooth muscle cell activity while interval IV 
(0.021–0.052 Hz) has been proposed to reflect smooth muscle autonomic innervation10. There is one structural 
component in common throughout the entire cardiovascular system, a smooth inner vessel lining of endothelial 
cells. The endothelium is located at the interface between the blood and the vessel wall. Furchgott and Zawadzki11 
showed that intact endothelium produces a factor that causes relaxation of vascular smooth muscle. This factor 
is nitric oxide (NO) and is released continuously by the endothelium in the arterioles and arteries, contributing 
to vasodilation in the basal state. The production of NO can be stimulated by acetylcholine or by mechanical 
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effects, such as increase of blood flow or pressure. Endothelial effects manifest in intervals V (nitric oxide (NO) 
dependent) and VI (NO independent) (0.0095–0.021 and 0.005–0.0095 Hz, respectively)12,13. Considering that 
the SAS width is directly affected by the volume of cerebral vessels, it is likely that signatures of these blood flow 
oscillations will also be transmitted to the CSF, and thus be observable as SAS width changes.

CSF oscillations were first characterised by Lundberg6. Lundberg et al. described three types of waves: A, B 
and C14,15. A waves, or plateau waves, are usually associated with transient decline in neurological function. B 
waves occur periodically with a frequency of 0.25–0.33 Hz and are associated with cardiorespiratory dynamics8,16.  
C waves are entirely synchronous with blood pressure Traube-Hering-Meyer waves (0.1 Hz) and are seen in 
patients with severe intracranial hypertension or brain stem dysfunction. The presence of C waves is associated 
with loss of autoregulation7. Due to technological limitations and short recordings, earlier studies did not assess 
CSF oscillations below the frequency of Lundberg’s C waves. Chen et al. postulated that unspecified low fre-
quency oscillations may modulate CSF motion4. Signatures of much lower frequency oscillations in SAS width 
were observed by Frydrychowski et al.17 during the development of a novel method for the measurement of SAS 
width known as near-infrared transillumination-backscattering sounding (NIR-T/BSS) but were not investigated 
further.

NIR-T/BSS uses infrared light as a radiation source17. The principle of NIR-T/BSS is built on the assumption 
that by proper manipulation of the distance between the source and detectors, the infrared light absorption of 
haemoglobin can be removed and the SAS can be used as an optical duct17. Changes in the SAS width translate 
into changes in the volume of this duct, thus directly affecting the amount of radiation reaching the detector. To 
ensure that the signal observed is truly related to the SAS width, extracranial contamination is removed using one 
detector placed close to the source (the proximal detector), and another detector placed further away (the distal 
detector)18. Although the theoretical background of the NIR-T/BSS technique has been established for some 
time, more recently it has been verified as a reliable technique for the assessment of SAS width through extensive 
development. It has since been shown that SAS width changes measured with magnetic resonance imaging and 
NIRT-B/SS demonstrate high interdependence between the methods (r = 0.81, p < 0.001)19. Further validations 
of the NIR-T/BSS system have demonstrated SAS width oscillations at the cardiac and respiratory frequencies20. 
SAS width signals have recently been collected from elite apnoea divers21, although external reproduction of the 
method remains limited. The theoretical and practical foundations of the NIR-T/BSS method were described in 
more detail in earlier studies22, and are briefly discussed in the Methods section.

The properties of biological oscillations vary in time due to naturally occurring physiological perturbations. 
The wavelet transform is a time-frequency analysis method that provides optimal resolution for high and low fre-
quencies and gives information about any changes that occur in time10,23. The method allows full characterisation 
of the underlying dynamics of an oscillatory biological system over time, with no prior assumptions, making it 
ideal for the analysis of biological systems in their resting state24. As these oscillations are expected to have very 
low frequencies, they need to be recorded at rest, with no artificial perturbations, over a long period of time in 
order to investigate the naturally present dynamics24.

In this study we provide the first description of SAS width oscillations in a wide frequency range from 0.005 
to 2 Hz, in the resting state, by combining NIR-T/BSS and wavelet analysis. This frequency range encompasses 
the known frequencies of blood flow oscillations discussed above, and allows the investigation of the hypothesis 
that low frequency oscillations are observable in SAS width. The relationship between blood pressure (BP) and 
SAS width oscillations was also investigated. CSF circulation is increasingly recognised as a critical factor in white 
matter disruption in various pathophysiological states such as multiple sclerosis and hypertension. We propose a 
new method for the analysis of CSF fluctuations noninvasively, and in the resting state, which may provide new 
opportunities for research and diagnostics and increase understanding of brain homeostasis.

Results
Three signals were recorded simultaneously from 36 subjects: blood pressure (BP), TQLEFT (SAS width in left 
hemisphere) and TQRIGHT (SAS width in right hemisphere). Subject characteristics are shown in Table 1. Example 
signal segments are shown in Fig. 1(a–c).

To assess the spectral content of these signals, their continuous wavelet transforms were calculated, as shown 
in Fig. 1(d–f), and their time averages compared between signal types (see Fig. 2). Cardiac oscillations with fre-
quencies around 1 Hz are clearly visible for the whole duration of all signals, but there are also clear oscillations at 
much lower frequencies (below 0.03 Hz). The latter are much more prominent in the SAS signals recorded in both 

Males (n = 22) Females (n = 14)

Age (years) 27.02 ± 8.41 24.53 ± 6.19

BMI (kg/m2) 25.21 ± 3.37 23.81 ± 3.32

TQLEFT (AU) 1085.32 ± 83.21 1412.14 ± 91.16

TQRIGHT (AU) 1242.47 ± 81.56 1373.73 ± 91.82

SBP (mmHg) 121.53 ± 5.41 119.36 ± 7.23

DBP (mmHg) 71.86 ± 6.82 70.23 ± 4.42

HR (beats/min) 61.74 ± 7.43 69.21 ± 6.75

RR (breathes/min) 16.23 ± 3.13 16.98 ± 3.03

SaO2 (%) 97.86 ± 1.15 98.12 ± 1.02

Table 1.  Subject characteristics. Values shown are mean ± standard deviation.
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hemispheres than in the BP signals. The spectra were separated into the frequency intervals described above, and 
the power compared between signal types. The most significant differences (p < 0.001) were observed between BP 
and SAS spectra in the frequency intervals associated with cardiac (I) and endothelial (V& VI) activity. No sig-
nificant differences were observed between the spectra of the left and right SAS signals in any frequency interval.

As observed in the dynamics of blood flow10, clear peaks were present in the spectra of the SAS width signals. 
The frequencies of these peaks are plotted in Fig. 2(g–i). The locations of these peaks result in clear bands in the 
SAS spectra, thus justifying the use of the six previously discussed frequency bands to describe the SAS signals.

To characterise the shape of the spectra in SAS signals, the significance of the difference in mean amplitude 
between intervals was calculated between the cardiac and respiratory intervals (I & II) and the endothelial inter-
vals (V & VI). Values are shown in Table 2. The results demonstrate that the endothelial spectral amplitude is 
significantly higher in SAS signals than the cardiac and respiratory amplitude. This result is in contrast to the BP 
spectra, where the dominant component is the cardiac activity.

Phase coherence and phase difference.  Wavelet phase coherence, and the corresponding phase dif-
ference (see Methods), were calculated between BP and both (left and right) SAS signals, and directly between 
the SAS signals (see Fig. 3). Phase coherence at each frequency was considered significant if its value was above 
the 95th percentile of 1260 (2-permutations of 36 subjects) intersubject surrogates. Phase difference was only 
taken into consideration at the frequencies where significant coherence was observed. Significant coherence was 
found in the cardiac, respiration and myogenic frequency intervals when comparing BP and SAS width signals 
from both hemispheres. Statistically significant coherence between SAS signals from both hemispheres was also 
obtained at much lower frequencies, down to the NO-dependent endothelial interval. The positive (negative) 
value of the phase difference for BP and SAS means that the phase of the SAS (BP) signal is leading. For the sig-
nificant phase coherence (I, II and III frequency interval) the value of phase difference varies at different frequen-
cies. At the cardiac and respiration frequencies, the value of the phase difference is close to zero and we do not 
observe large phase lag between the two signals. For the whole myogenic frequency interval the phase difference 
is positive which means that the SAS signal is leading. For the phase coherence between SAS signals the positive 
(negative) value of phase difference means that the TQLEFT (TQRIGHT) signal is leading. The phase difference is 
close to zero for the whole statistically significant frequency interval in this case, showing that there is no phase 
lag between SAS signals. Correlation analysis was also used to search for relationships between the wavelet phases 
coherence between SAS and BP signals and age. Significant correlations with age were not observed.

The coherence results were investigated to ascertain whether gender or age differences affect these results. A 
third parameter was also investigated, the relationship between the correlation of SAS signals and the observed 
wavelet phase coherence between the signals. These comparisons are presented in Fig. 4. Significant differences 
were found in the coherence between the different age groups, consisting of subjects below and above or equal to 
the age of 25, but not between genders. The difference in coherence with age was found in the frequency intervals 
associated with respiratory and cardiac activity. As expected, subjects that showed significantly higher correlation 

Figure 1.  (a–c) Simultaneous segments (15 second) recordings of (a) blood pressure, (b) SAS width (left 
hemisphere) and (c) SAS width (right hemisphere) signals measured for one subject. (d–f) Wavelet transforms 
of the whole recording (30 minutes) for each signal shown.
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between the two SAS signals also showed significantly higher phase coherence between the same signals (Fig. 4e). 
Significant differences were observed in all frequency intervals except the lowest endothelial interval (VI), which 
is likely due to the effects of the surrogates and the bias of phase coherence at low frequencies.

Discussion
We investigated the dynamics of sub-arachnoid space (SAS) width oscillations, and how they are related to the 
blood pressure and, indirectly, blood flow. The main finding of the study were the prominent oscillations observed 
at low frequencies in the TQLEFT and TQRIGHT SAS width signals across a wide frequency range (0.005–2 Hz) (see 
Fig. 1e,f). Further investigation into these oscillations showed that, in contrast to the blood pressure (BP) signal, 
the amplitude of the lowest frequency oscillations, those associated with endothelial activity, is much higher than 
the amplitude of the cardiac and respiratory oscillations in the same signals (see Table 2). Analysis of the locations 
of the peaks in the wavelet transform showed similarities with the widely accepted frequency intervals that are 
used to characterise blood flow oscillations, providing evidence that low frequency SAS oscillations may have 
similar origins.

We also investigated how these oscillations are related to the blood pressure using wavelet phase coherence 
(see Fig. 3a,c). Significant coherence was found between BP signals recorded from the finger and SAS width 
signals recorded from both sides of the head (see Fig. 3a,c). Clear coherence peaks were observed in the cardiac, 
respiration and myogenic intervals (see Fig. 3a,c). Phase difference analysis suggests that at the cardiac and res-
piratory frequencies both signals are independent and oscillations are generated centrally by the heart and lungs, 
respectively23. On the contrary, the leading of the SAS phase in the myogenic frequency may indicate active local 

Figure 2.  (a–c) Median (thick lines) of the time-averaged wavelet transforms of signals recorded in all 36 
subjects: BP (a) and SAS (b—left hemisphere, c—right hemisphere) obtained from 30 minute recordings. (d–f) 
Median (thick lines) of the time-averaged wavelet transforms of (d) BP and SAS—left hemisphere, (e) BP and 
SAS—right hemisphere, and (f) SAS—left and right hemispheres, all obtained from 30 minute recordings. 
Shaded areas indicate the inter-quartile range (25th, 75th percentiles). *p < 0.05; **p < 0.01; ***p < 0.001. (g–i) 
The position of peaks in the time-averaged wavelet transforms of the (g) BP and (h,i) the SAS width in the 
left and right hemispheres, respectively. The y-displacement of each point corresponds to a particular subject 
number organized in the same order for all three signals.

TQLEFT TQRIGHT

I vs. V 7.81 ∙ 10−12 2.31 ∙ 10−9

I vs. VI 1.31 ∙ 10−11 4.56 ∙ 10−8

II vs. V 1.45 ∙ 10−12 2.02 ∙ 10−12

II vs. VI 1.84 ∙ 10−11 6.68 ∙ 10−12

Table 2.  p-values for the differences between wavelet transform mean amplitude in frequency intervals for SAS 
signals.
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processes adjusting vessel activity to the metabolic requirements of the brain25. Significant phase coherence was 
also observed between the two SAS signals in the same intervals, and also in the lower neurogenic and endothelial 
frequency intervals (see Fig. 3e).

No significant differences due to gender were observed in the wavelet transforms or in the phase coherence 
analysis (see Fig. 4c), however age-dependent differences in the wavelet phase coherence between BP and SAS sig-
nals were demonstrated (see Fig. 4a). These are very interesting findings, especially considering the relative youth 
of the subjects included in this study, and may suggest that cerebrovascular ageing begins earlier than expected. 
Several authors have demonstrated that cerebral microcirculation is impaired with age, which is reflected in 
declining low frequency oscillations (0.005–0.145 Hz)26–28. As the number of individuals investigated was rela-
tively small and the age range (18–42 years) does not cover the critical span of life where ageing affects health, this 

Figure 3.  Median (thick lines) of wavelet phase coherence between (a) BP and SAS (left hemisphere), (b) BP 
and SAS (right hemisphere), and (c) SAS right hemisphere vs SAS left hemisphere. (b,d,f) Phase differences for 
the coherence in (a,c,e). Coloured shading indicates the interquartile range for 36 subjects. Coherence below the 
95th percentile of the surrogates (light grey line and shading) is not considered significant.

Figure 4.  Median (thick lines) of wavelet phase coherence between (a) Subjects above and below 25 years of 
age, (b) male and female subjects, and (c) subjects with high or low correlation between SAS signals. (b,d,f) 
Phase differences for the coherence in (a,c,e). Coloured shading indicates the interquartile range for 36 subjects. 
Coherence below the 95th percentile of the surrogates (light grey line and shading) is not considered significant.
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finding should be confirmed in a larger cohort with a wider age range. Nevertheless, it demonstrates the potential 
of the proposed combination of NIR-T/BSS and wavelet analysis methods for the investigation of CSF dynamics.

Abnormal CSF pulsatility has been implicated in subjects with impaired jugular outflow29–32 and in patients 
suffering from diseases such as multiple sclerosis or hypertension29,32,33. However, all of these studies analysed 
CSF pulsatility at the cardiac frequency. Heart and respiratory driven CSF fluctuations are largely of a mechanical 
nature. CSF is proposed to be part of a Windkessel mechanism, absorbing abrupt systolic blood inflow, smooth-
ing the capillary blood flow, and facilitating diastolic jugular outflow32. These mechanisms become less efficient 
with ageing and are particularly dysfunctional in patients suffering from dementia32. Our results suggest that 
age-related changes in CSF pulsatility may be detected at a relatively early stage, though this effect needs to be 
verified in older subjects.

It has been shown that cardiorespiratory coupling is impaired with ageing34–36. Consequently, BP respiration 
modulation diminishes and transmission of BP oscillations to CSF is also less evident. Inspiratory-driven venous 
return is likely governed by different age-dependent dynamics34. This provides a possible explanation for the 
reduction of phase similarity between BP and SAS width oscillations with age at the respiratory frequency.

Correlation between left and right hemisphere SAS width oscillations was also investigated, and found to vary 
significantly between subjects. Separating subjects with high or low SAS dynamics correlations into two groups, 
we identified differences in phase coherence in most frequency intervals. We consider that these differences could 
have arisen from the activation of the brain noradrenergic system (α2-receptors in prefrontal cortex in particu-
lar) by the different states of mind of the participants, in whom the synchrony in brain regions could have been 
affected by thinking, planning, or memory retrieval. It should be noted that there was a slightly higher SAS 
correlation in the female group (although not statistically significant), which may suggest a trend towards higher 
interhemispheric connectivity in females, which is in line with existing knowledge37,38.

We have proposed a non-invasive method, based on NIR-T/BSS and time-frequency analysis, for the inves-
tigation of SAS width dynamics in humans. By combining uniquely the power of oscillations associated with 
individual physiological processes within the frequency range 0.005–2 Hz and SAS signals recorded with NIR-T/
BSS we obtain a method that reveals valuable functional information about the dynamics of the SAS width and 
its relationship to the BP. Combining NIR-T/BSS with advanced signal analysis tools is a promising approach 
in describing the interrelations and pathways involved in white matter damage in several brain diseases or car-
diovascular and neurological origin. The observed CSF oscillations could explain the occurrence of specific 
intracranial pressure waves, i.e. the B-waves which can be observed especially in pathological situations like head 
injury or hydrocephalus. Future studies could provide further insights into various neurodegenerative and ageing 
related diseases through the investigation of coherences between NIR-T/BSS and NIRS or EEG signals. This could 
open new frontiers in science and improve diagnostic and follow-up procedures.

Methods
Measurements.  Thirty-six healthy subjects were recruited to the study. All subjects received detailed infor-
mation about the study objectives and any potential adverse reactions, and they provided written informed 
consent to participate in the study. Signals were collected at the University of Regina, Canada and the Medical 
University of Gdansk, Poland. The experimental protocol and the study were approved by the Research Ethics 
Committees of the University of Regina (REB 55R1213) and Medical University of Gdansk (NKBBN/572/2014–
2015). The study conformed to the standards set by the Declaration of Helsinki. Participants were all non-smok-
ers, did not suffer with any known disorders, and were not taking any medication, as confirmed by a general 
and neurological health demographic questionnaire. Exclusion criteria included the consumption of any caffeine 
containing food and beverages for 8 hours prior to the measurements. Participants were also asked to refrain from 
exercise training for a minimum of 12 hours prior to testing, and from the consumption of alcohol for 24 hours 
before the test. All tests were conducted in a comfortable quiet room pre-set to a temperature of 18–20 °C with 
low ambient light. Participants were instructed to lie down on a bed with a pillow to support their head. A blanket 
was provided if required. The atmosphere was normobaric throughout testing.

Blood pressure (BP) was measured using a Finometer (Finapres Medical Systems, Arnhem, The Netherlands). 
This system uses a finger-cuff to assess beat-to-beat blood pressure from the left middle finger. Finger blood pres-
sure was initially calibrated against brachial arterial pressure (PhysioCal), but then the calibration was turned off 
during the measurement to obtain an unaltered waveform39.

The SAS width was recorded separately for right and left hemispheres with two identical head-mounted sen-
sors of the NIR-T/BSS device (SAS 100 monitor, NIRTI SA, Wierzbice, Poland). A single sensor-detector mod-
ule of NIR-T/BSS (on one side of the head) consists of the source (S) and two photo-detectors (PD—proximal 
detector and DD—distal detector). The PD and DD were positioned 7 and 28 mm away from the source, respec-
tively. These distances have been shown to be optimal based on Monte Carlo simulations22. Figure 5(a) illustrates 
the symmetrical placement of the NIR-T/BSS headband onto the forehead during the measurements. The near 
infrared radiation emitted from the source penetrates the skin, the skull and tissue layers, propagates through 
the SAS, and returns to the detectors, again through tissues, skull and skin (see Fig. 5(c)). Figure 5(c) illustrates 
the pulsatile modulation of near infrared radiation related to cardiac-induced pulsatile changes of blood vessel 
volume in the SAS layer. Increased blood volume during the systolic phase results in a decrease in the width of 
the SAS, and thus a reduction in the amount of radiation propagated from the source to the detector. Figure 5(b) 
shows a simplified structure of cerebral vessels. Large cerebral arteries arising from the circle of Willis branch out 
into smaller pial arteries, arterioles, and capillaries. The vessels travel on the surface of the brain, across the sub-
arachnoid space and enter into the substance of the brain. Figure 5(d) shows the vessel structure in more detail.

Relatively short distance between source light and detectors helps to limit extracranial contamination40,41. 
Using the signal from the PD, the absorption from skin and bone is eliminated. The quotient of the remaining 
signals is sensitive to changes in the width of the SAS, and is known as the transillumination quotient (TQ)17. The 
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intensity of infrared radiation at one wavelength is registered by the two sensors that provide information about 
the attenuation of the original signal in tissues. The infrared radiation used has a wavelength of 880 nm, which 
has been proven to easily penetrate tissues and importantly, be almost completely insensitive to changes in hae-
moglobin oxygen saturation42–45. To ensure that the NIR-T/BSS method is sensitive only to SAS width variations, 
Monte Carlo simulations were recently performed46, which showed that for the chosen source-detector distances 
the dominant contribution to the TQ signal is SAS width rather than the absorption of the brain.

Although using a similar radiation source, NIR-T/BSS is distinct from near-infrared spectroscopy (NIRS). 
NIR-T/BSS uses only one wavelength, while NIRS uses several. The frequency modulation of the source in 
NIR-T/BSS is much less than in NIRS, and any physiological disturbances are immediately visible in NIR-T/BSS. 
This is in contrast to NIRS, where physiological changes occur with some delay. The most important limitation of 
NIR-T/BSS is that TQ is not a measure of the absolute width of the SAS expressed e.g. in millimetres, but provides 
information about the changes in SAS width over time. This is due to the effects of anatomical differences in scalp 
and tissue thickness. Monte Carlo simulations have been used to investigate the effects of varying thicknesses of 
SAS and skull bone18. Strong correlations were observed between the power of the reflected stream of photons 
and the varying bone-brain distance. This conclusion was fully consistent with the findings presented by other 
authors47,48.

Raw BP and SAS width signals were recorded for 30 minutes and imported into PowerLab 16/30 (AD instru-
ments, Colorado Springs, Colorado, USA) and then viewed as live data in LabChart Pro. The signals were digi-
tized with 16-bit resolution at a sampling rate of 300 Hz. Prior to analysis, the BP and SAS signals were detrended 
using a moving average with a window size of 120 s and normalized by subtraction of their mean and division by 
their standard deviation. The signals were also downsampled to 10 Hz.

Analysis.  The dynamics in the recorded signals were investigated using the wavelet transform and wavelet 
phase coherence. The wavelet transform is a time-frequency analysis method that provides the opportunity to 
observe how the frequency content of a signal changes over time. This makes it ideal for application to biologi-
cal signals, which are consistently time-varying. Another advantage of the wavelet transform is the logarithmic 
frequency scale that it provides, allowing a much higher resolution at the low frequencies at which biological 
oscillations usually manifest10. The wavelet transform was previously employed to reveal the periodic components 
in blood flow signals10, and as we expect similar modulations to be present in SAS signals, we consider this the 
optimal approach.

The wavelet transform is defined as:

∫ ϕ=




− 

−∞

+∞
W s t

s
u t

s
g u du( , ) 1 ( ) ,

(1)

Figure 5.  Location of NIR-T/BSS sensors on right and left hemispheres. (b) A simplified model of cerebral 
vessels located in the frontal part of the head. (c) A simplified diagram illustrating the influence of heart 
induced pulsatile changes during diastolic and systolic phases, which directly affect the NIR-T/BSS radiation 
propagation within the tissues in the head. (d) Model of cerebrovascular vessels, from large pial arteries to small 
capillaries.
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where W(s,t) is the wavelet coefficient, g(u) is the time series, and ϕ is the Morlet mother wavelet, scaled by factor 
s and translated in time by t. The Morlet mother wavelet is defined by the equation:

u i u u( ) 1 exp( 2 )exp( 0 5 ),
(2)

2
4

ϕ
π

π= − − .

where i 1= − . The Morlet wavelet is used due to its good localisation of events in time and frequency due to its 
Gaussian shape49,50. Signals of 30 minute duration with a sampling rate of 100 Hz enable reliable calculation of the 
frequency spectrum in the range 0.003–50 Hz. Here we focus on the interval between 0.005–2 Hz, where the 
oscillations described above would be expected to manifest if present. When using the Morlet wavelet transform, 
the obtained coefficients are complex numbers, X(ωk, tn) = Xk,n=ak,n + ibk,n, providing both amplitude 
( X a bk n k n k n, ,

2
,

2= + ), and phase (θ = arctan( )k n
b
a,

k n

k n

,

,
) information for each point in frequency and time. This 

allows phase information to be studied independently to amplitude modulations. This separation can be exploited 
in the method of wavelet phase coherence (WPCO), which uses this phase information to determine whether the 
oscillations detected are significantly correlated over time. To calculate the WPCO, the instantaneous phases at 
each time and frequency point are extracted for both signals (θ1k,n, θ2k,n). Phase coherence is then51,52:

∑ θ θ= − .θ
=

C f
n

i( )
1 exp[ ( )]

(3)k
t

n

k n k n
1

2 , 1 ,

The value of the WPCO function Cθ(fk) will be between 0 and 1. The phase difference of two unrelated oscilla-
tions will continuously change with time, giving a phase coherence that tends to zero. If the oscillations are related 
and their phase difference remains almost constant, the value of the phase coherence will tend to 1.

Wavelet phase coherence examines phase relationships only, and is not enhanced by any amplitude relation-
ships that may also be present in the signals. In our previous studies we have shown that BP-SAS amplitude 
similarity at the cardiac frequency is affected by several stimuli such as apnoea20 or hypoxia53. In these cases the 
wavelet coherence approach which also takes amplitude into account may be more appropriate. However, in the 
resting state presented in this study, wavelet phase coherence is sufficient.

Additionally, we can calculate the phase difference Δθk between two signals according to

arctan
sin

cos
( )

( ) (4)
k

n t
n

k n k n

n t
n

k n k n

1
1 2 , 1 ,

1
1 2 , 1 ,

θ
θ θ

θ θ
Δ =







∑ −

∑ −






.=

=

The value of Δθk is between −180° and 180° and provides information about the phase lag of one oscillator 
compared to the other.

Within a time-frequency representation of a signal, there are naturally less cycles of oscillations the lower in 
frequency that we consider. This can cause artificially increased wavelet phase coherence at low frequencies. This 
bias has been demonstrated using pairs of unrelated white noise data, for which the wavelet phase coherence was 
shown to increase at low frequencies51,54. Therefore, to obtain a reliable coherence value, surrogate data testing 
should be used. Surrogate data testing is a method that provides a ‘statistical zero’, or the expected range of values 
of a discriminating statistic in data which is the same as the data to be tested, but is missing the property to be 
tested. In this case, we wish to calculate the expected values of wavelet phase coherence in data where there is 
definitely no coherence. If the coherence calculated in the real data is higher than the threshold set by the range 
of surrogate values, it can be considered as significant, with a confidence dependent on the threshold used. Many 
different surrogate types have been used. In this work we used intersubject surrogates35,55, which rely on the 
assumption that similar mismatched signals recorded from different subjects will not be coherent. This method 
was shown to provide similar results to the widely used iterative amplitude adjusted Fourier transform (IAAFT) 
surrogates56,57 for the calculation of wavelet phase coherence35.

Nonparametric statistical tests were used for all comparisons, to avoid the assumption of normality in the 
results. The Wilcoxon rank sum test was used to compare whether the median of different groups was signifi-
cantly different, both for comparisons of wavelet amplitude and wavelet phase coherence.

We examined the effects of three parameters on our results: age, sex and SAS correlation. For each parameter, 
the subject population were split into two groups. For each parameter comparison, it was ensured that there were 
no significant differences in the other parameters, for example, there were no significant age differences in the two 
subject groups when performing statistical tests for sex differences. In cases where significant differences were 
found between groups, for example the difference in BP vs. SAS width coherence in subjects below and above or 
equal to the age of 25, the effect size was evaluated using the statistical ‘pwr’ package in the R statistical program-
ming language. Significant differences were only reported if the effect size exceeded the threshold required to 
ensure a test power of at least 0.8, i.e. β = 0.2.
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