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Refined theoretical study of radiative association: Cross sections and rate
constants for the formation of SiN

Magnus Gustafsson,a) Sergey V. Antipov, Jan Franz,b) and Gunnar Nyman
Department of Chemistry and Molecular Biology, University of Gothenburg, 41296 Gothenburg, Sweden

(Received 20 April 2012; accepted 21 August 2012; published online 10 September 2012)

Radiative association of silicon mononitride (SiN) in its two lowest molecular electronic states is
studied through quantum and classical dynamics. Special attention is paid to the behavior of the
cross section at high collision energies. A modified expression for the semiclassical cross section is
presented which excludes transitions to continuum states. This gives improved agreement with quan-
tum mechanical perturbation theory at high energies. The high energy cross section is overestimated
if conventional semiclassical theory is used. The modified semiclassical theory should be valid in
general for radiative association transitions from an upper to a lower electronic state. We also im-
plement a quantum dynamical optical potential method with the same type of modification. The rate
coefficient is calculated using Breit–Wigner theory and the modified semiclassical formula for the
resonance and direct contributions, respectively, for temperatures from 10 K to 20 000 K. A rapid
decrease in the rate constant for formation of ground state SiN is observed above 2000 K which was
not seen previously. © 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4750029]

I. INTRODUCTION

Understanding molecular formation is of central inter-
est in chemistry. To form a diatomic molecule from two free
atoms requires that energy is removed so that a bound state
of the molecule can be reached. Under normal conditions on
Earth this typically happens by a third body carrying away the
energy. If the density is extremely low, however, three body
collisions become very unlikely and radiative association can
be important. In radiative association a photon is emitted to
stabilize the molecule. In forming a diatom this emission has
to be fast as the atoms are only close for a short period of time
since the translational energy cannot be redistributed into vi-
brational motion.

In this paper we review and compare some ways of cal-
culating cross sections for radiative association of diatomic
molecules. The methods include perturbation theory,1 a quan-
tum dynamical optical potential (OP) approach,2, 3 a semiclas-
sical implementation4 and Breit–Wigner (BW) theory.5, 6

Quantum mechanical perturbation theory is popular for
treating radiative association. The resulting cross section gen-
erally displays striking resonance features superimposed on a
smooth baseline. The resonances stem from quasibound states
that are supported by a barrier in the effective potential, and
the baseline is produced by direct (nonresonant) radiative as-
sociation. While perturbation theory works well, it overesti-
mates the cross section for resonances where the tunneling
width is comparable to or smaller than the lifetime broaden-
ing of the radiative decay.7, 8 For those resonances quantum
dynamics with an explicit optical potential offers an alterna-
tive which is also quite convenient computationally. It has,
however, other limitations which we will return to below.

a)Electronic mail: magngu@chem.gu.se.
b)Present address: Mulliken Center for Theoretical Chemistry, University of

Bonn, Beringstr. 4-6, 53115 Bonn, Germany.

The semiclassical method is based on classical trajecto-
ries and does therefore not contain the resonance structure in
the cross sections. The resonances can be important to in-
clude in order to obtain the thermal rate constant accurately
at low temperature. Breit–Wigner theory only describes the
resonances and not the direct contribution. Thus, combining
the semiclassical approach with the Breit–Wigner method can
be a useful strategy. In this work one aim is to understand
how well this works by comparing the various methods. These
comparisons lead us to propose a modification of the theory,
which affects both the optical potential and the semiclassical
implementations. We apply the discussed methods to the for-
mation of silicon mononitride (SiN).

The silicon atom has a 3P ground electronic state and the
nitrogen atom a 4S state. As the atoms approach, the nine spin-
orbit states of Si(3P) can be combined with the four spin-orbit
states of N(4S) to form 36 molecular spin-orbit states. These
states can be of doublet, quartet, and sextet multiplicities but
here we restrict ourselves to study radiative association in-
volving only the two lowest doublet states, viz.,

Si(3P ) + N(4S) → SiN(A2�) → SiN(X2�+) + hν (1)

and

Si(3P ) + N(4S) → SiN(X2�+) → SiN(A2�) + hν. (2)

Spin-orbit and rotational couplings should in general be taken
into account in radiative association. Their effect has been in-
vestigated in the formation of the cyano radical (CN) where,
for example, their role in the low energy cross section was
demonstrated.9 In this work spin-orbit and rotational cou-
plings are excluded. Note that for atom–atom collisions, in the
absence of those couplings, only shape resonances (no Fesh-
bach resonances) are possible.

Reaction (1) has been studied semiclassically by Singh
et al.10 We use the same ab initio data as Singh et al. for

0021-9606/2012/137(10)/104301/7/$30.00 © 2012 American Institute of Physics137, 104301-1
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the potential energy curves and transition dipole moments,
which they calculated at multireference configuration inter-
action (MRCI) level with correlated consistent polarized va-
lence quadrupole zeta (cc-pVQZ)11, 12 basis functions.

We note that SiN has been detected in the circumstel-
lar envelope of the carbon rich star IRC+1021613 and in the
interstellar medium.14 The SiN formation rate is thus of im-
portance in astrochemistry and we calculate the rate constant
over the temperature interval 10 K–20 000 K.

II. THEORY

The rate constant at a given temperature T for formation
of SiN by radiative association according to reaction (1) or
(2) can be written as

k�→�′(T )=
(

8

μπ

)1/2( 1

kBT

)3/2∫ ∞

0
E σ�→�′(E)e−E/kBT dE,

(3)

where μ is the reduced mass, kB is the Boltzmann constant,
and E is the collisional energy. � and �′ indicate the or-
bital electronic angular momentum, projected on the molec-
ular axis, of the initial state (of approach) and the final
(bound) state, respectively. Since only doublet states of the
diatomic system are considered we frequently refer to reac-
tions (1) and (2) as � → � and � → �, respectively, without
indicating the spin multiplicity or the reflection symmetry.

The cross section σ�→�′ can be computed by a number
of different approaches. In this section we will outline four of
those, each with its merit in the study of radiative association.

A. Perturbation theory

We will begin with a brief summary of the established
quantum mechanical perturbation theory for radiative associ-
ation. The Fermi golden rule cross section for the process can
be expressed as1, 15

σ�→�′(E) = 64

3

π5¯2

(4πε0)c3

1

2μE
P�

×
∑
v′J ′J

ν3
E�′v′J ′ S�J→�′J ′ M2

�EJ,�′v′J ′ , (4)

where the sum is over all initial rotational (J) and final vibra-
tional (v′) and rotational (J′) quantum numbers. The speed of
light is c, the frequency of the emitted photon is νE�′v′J ′ , and
S�J→�′J ′ are the Hönl–London factors given in Table I. The
statistical weight factor for approaching in the initial molecu-
lar electronic state � is given by (see, e.g., Andreazza, Singh,
and Sanzovo16)

P� = (2S + 1)(2 − δ0,�)

(2LSi + 1)(2SSi + 1)(2LN + 1)(2SN + 1)
, (5)

where LSi = 1, SSi = 1, LN = 0, SN = 3/2, are the electronic
orbital angular momentum and spin quantum numbers of the
atoms and � = 0 or 1 for the � or � molecular states, re-
spectively. We consider only doublet states of SiN, so that the
total electronic spin is S = 1/2. The values of P� are given in
Table II.

TABLE I. Hönl–London factors, S�J→�′J ′ of Watson.17 See also the dis-
cussion in the Appendix.

J′ A2� → X2�+ X2�+ → A2�

J − 1 (J + 1)/2 J − 1
J (2J + 1)/2 2J + 1
J + 1 J/2 J + 2

The transition dipole matrix element is given by the
integral

M�EJ,�′v′J ′ =
∫ ∞

0
F�

EJ (R) D(R) 
�′
v′J ′ (R) dr, (6)

where D(R) is the matrix element of the dipole moment oper-
ator between the two molecular electronic states (X2�+ and
A2�) as a function of the internuclear distance R. F�

EJ (R) is
the continuum wave function of the initial state for the partial
wave J, normalized to the collision energy E (see, e.g., Landau
and Lifshitz18) and 
�′

v′J ′ (R) is a bound state wave function,
normalized to unity. In Eqs. (4) and (6) above we have applied
the approximation for the total angular momentum and spin
that J − S ≈ J (see, e.g., Babb and Dalgarno1).

B. Optical potential method

The explicit optical potential method can be efficient
since it does not necessarily require the calculation of bound
states. It has been applied before to radiative charge transfer3

and radiative quenching.19 The optical potential for the sys-
tem under consideration reads

Vopt(R) = − i¯

2
A�→�′(R), (7)

where

A�→�′(R) = 64

3

π4

(4πε0)hc3

(
2−δ0,�+�′

2−δ0,�

)
ν3

�→�′(R) D2(R)

(8)

is the transition probability (with dimension time−1) and

ν�→�′(R) = max(0, V�(R) − V�′(R))

h
(9)

is the photon frequency which, including the max function,
follows from the stationary phase approximation,20 or equiv-
alently, the classical Franck–Condon principle; the relative
momentum and positions of the atoms are conserved during
radiative transitions. The form of Eq. (9) is convenient in our
study of SiN where it applies to both transitions � → � (for
R < 3.28 bohrs, see Fig. 1) and � → � (for R > 3.28 bohrs).
Note that calculations based on Eqs. (7)–(9) are limited to

TABLE II. Statistical weights.

A2� → X2�+ X2�+ → A2�

P� 4/36 2/36

2 − δ0,�+�′

2 − δ0,�

1 2
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FIG. 1. Potential energy curves for SiN in the X2�+ state (red) and A2�

state (green). Also shown is the magnitude of the difference between them
(blue), and the X2�+ ↔ A2� transition dipole moment D(R) (pink). The
data is taken from Singh et al.10

transitions from an upper to a lower electronic state. This the-
ory can thus not be applied to, e.g., X2�+→X2�+ transitions.
This is also a limitation of the semiclassical theory which is
outlined in Sec. II C.

The completeness of the final states was applied in the
derivation of Eqs. (7)–(9). This means that spontaneous emis-
sion to both bound and continuum final states is included.15

The emission corresponds to molecule formation through ra-
diative association only when the final state is bound. In order
to obtain the cross section for this process we define a re-
stricted transition probability

AEJ
�→�′(R) =

⎧⎪⎪⎨
⎪⎪⎩

A�→�′(R)
if E < V�(R) − V�′(R) and

V�′ (R) + ¯2J (J+1)
2μR2 < 0

0 otherwise

,

(10)

where the first condition ensures transitions to bound states,
and the second condition checks that bound states are sup-
ported (excluding the zero point energy) on the final effective
potential. The angular momentum term in the final effective
potential is approximate (J′ ≈ J and �′ ≈ 0) but the formula
mainly comes into play for large J and then it is a good ap-
proximation.

The Schrödinger equation with the optical potential reads{
− ¯

2

2μ

d2

dR2
+ ¯

2(J (J + 1) − �2)

2μR2
+ V�(R)

− i¯

2
AEJ

�→�′(R) − E

}
F�→�′

EJ (R) = 0 (11)

and the cross section for radiative association is given by

σ�→�′(E) = π¯2

2μE
P�

∑
J

(2J + 1)
(
1 − e−4η�→�′

EJ

)
, (12)

where η�→�′
EJ is the imaginary part of the phase shift of

F�→�′
EJ (R). A real phase shift gives a unitary S-matrix and the

cross section (12) is thus determined by the loss of unitarity.

C. Semiclassical limit

From their optical potential formalism Zygelman and
Dalgarno19 rederived the semiclassical cross section origi-
nally put forward by Bates.4 They did this by application of
the distorted wave and JWKB approximations, and by chang-
ing the partial wave (J) summation to an impact parameter in-
tegration. In the same way we obtain from Eq. (12) the cross
section

σ�→�′(E) = 4π
( μ

2E

)1/2
P�

∫ ∞

0
b

×
∫ ∞

Rc

AEb
�→�′(R) dR db

(1 − V�(R)/E − b2/R2)1/2
, (13)

where b is the impact parameter, for which Rc is the outer
classical turning point on the potential V�. The restricted tran-
sition probability

AEb
�→�′(R) =

⎧⎪⎪⎨
⎪⎪⎩

A�→�′(R)
if E < V�(R) − V�′(R) and

V�′(R) + Eb2

R2 < 0

0 otherwise

(14)

is defined similarly to that in Sec. II B, now with the classi-
cal expression for the centrifugal energy in the final effective
potential.

D. Breit–Wigner theory

In Sec. II B we have presented a quantum mechanical
theory which should correctly predict the cross section, even
for resonances corresponding to very long-lived quasibound
states.2 The total width of these peaks is, however, so small
that a straightforward integration of the cross section to obtain
the rate constant is not feasible. The established method to
compute the resonance contribution to the rate for radiative
association is the Breit–Wigner theory.5, 6 The cross section
due to resonances with rotation J and vibration v is

σ�→�′(E) = π¯2

2μE
P�

∑
vJ

(2J + 1)

× �rad
vJ�→�′�

tun
vJ�

(E − EvJ�)2 + (
�tun

vJ� + �rad
vJ�→�′

)2/
4
,

(15)

where the radiative width, �rad
vJ�→�′ (summed over all final

rovibrational states), the tunneling width, �tun
vJ�, and the res-

onance energies EvJ� can be computed efficiently, e.g., by
application of the Airy boundary condition in the scattering
calculation.21, 22 The resonance component of the rate coeffi-
cient

k�→�′(T ) = ¯2P�

(
2π

μkBT

)3/2 ∑
vJ

(2J + 1)

× e−EvJ�/kBT

1/�tun
vJ� + 1/�rad

vJ�→�′
(16)
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is obtained by integration of Eq. (3) with the cross section
(15) inserted and assuming that the widths of the resonances
are small compared to the thermal energy.

III. COMPUTATIONAL DETAILS

For the potential energy curves and transition dipole mo-
ment function the data of Ref. 10 are used (see Fig. 1). The
wave functions 
�′

v′J ′ (R) of the final bound states in Eq. (6)
are obtained by solving the Schrödinger equation with the dis-
crete variable representation method of Colbert and Miller.23

The time-independent wave functions FEJ(R) of the contin-
uum states in Eqs. (6) and (11) are computed with the Nu-
merov method.24 Numerical integration of the semiclassical
cross section (13) is very fast and no elaborate method is
necessary. In the R-dimension we have, however, applied a
Romberg integration (original implementation in Ref. 25) to
manage the integrand’s behaviour as R → R+

c .
The resonance parameters in Eqs. (15) and (16) have been

computed using LEVEL.22 With regards to the radiative widths
�rad

vJ�→�′ it should be noted that LEVEL has Hönl–London
factors implemented for singlet molecular states by default.
Fortunately, for � → � transitions, these agree with the val-
ues for doublets in Table I. For � → � some care, however,
has to be applied. LEVEL provides contributions correspond-
ing to lines 3 and 4 in Table IV. Adding these and dividing by
two gives a radiative width which is averaged over the initial
parity, and �rad

vJ�→�′ is then effectively calculated using the
Hönl–London factors of Table I.

IV. RESULTS

Figure 2 shows the cross sections computed using quan-
tum mechanical perturbation theory and the semiclassical for-
mula. The semiclassical calculation reproduces the quantum
mechanical baseline for both transitions up to certain thresh-
old energies of 1.95 eV and 0.563 eV for the � → � and
� → � transitions, respectively. These energies can be in-
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FIG. 2. Cross sections for forming SiN through radiative association, com-
puted using quantum mechanical perturbation theory (Eq. (4)) and semiclas-
sical theory (Eq. (13)). The semiclassical results obtained with an unrestricted
transition probability according to Eq. (8) are also displayed.
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FIG. 3. Cross sections for forming SiN through radiative association around
the threshold energies. Besides the results from perturbation theory (Eq. (4))
and semiclassical theory (Eq. (13)) we also display the quantum dynamical
result using the optical potential method (Eq. (12)).

ferred from |V� − V�|, which is displayed in Fig. 1. Above
the threshold energies Franck–Condon transitions go to con-
tinuum rather than bound states and thus they do not represent
molecule formation. To illustrate that mechanism we show in
Fig. 2 the semiclassical results with the unrestricted transi-
tion probability A�→�′(R) from Eq. (8) replacing AEb

�→�′(R)
in Eq. (13). It is clear that the restriction on the transition
probability in Eq. (14) is necessary to qualitatively reproduce
the drop in the cross section above the threshold energy. The
quantum cross section decreases fast above the threshold en-
ergy, but does not go to zero since it allows for molecule for-
mation through non-Franck–Condon transitions.

In Fig. 3 the behaviour of the cross sections around
the threshold energies is displayed. Here the cross section
computed with the optical potential method is also shown.
The baseline of that calculation is almost exactly reproduced
by the semiclassical theory. The small discrepancy close to
2 eV for � → � can be attributed to the difference in treat-
ment close to the classical turning point. The wave function in
Eq. (11) can penetrate the repulsive potential while the WKB
wave function used in the derivation of Eq. (13) cannot. In
fact the bound state condition on the transition probabilities
in Eqs. (10) and (14) assumes no penetration of the poten-
tial so the semiclassical treatment is more consistent in this
respect.

In Fig. 3 the resonance structure appears to be identical
in the OP and perturbation treatments, except for at energies
larger than the threshold for � → � transitions where the OP
cross section drops to zero. Many of the peaks are, however,
extremely narrow and when they are resolved there is differ-
ence in height when the two approaches are compared. The
optical potential method shows reasonable agreement (within
about 8%) with BW theory for all five resonances shown in
Table III. This is consistent with the conclusion that the reso-
nances are correctly described with an optical potential,2 from
which the Breit–Wigner formula can be obtained.8 The mod-
ification in Eq. (10) does not appear to have any significant
effect on the OP peak heights. For quasibound states with
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TABLE III. Comparison of heights of five selected cross section peaks, four corresponding to quasibound states with tunneling width comparable with the
radiative width and one (the last) with a much larger tunneling width. The columns labeled perturbation theory (PT), optical potential (OP), and Breit–Wigner
(BW) show the peak heights in bohr2 obtained with Eqs. (4), (12), and (15), respectively. The optical potential peak heights are determined both with and
without the restriction in Eq. (10), OP and unr. OP, respectively. The resonance parameters used for BW (three last columns) are given in Hartree.

Transition v J PT OP Unr. OP BW EvJ� �tun
vJ� �rad

vJ�→�′

� → � 53 61 1.3 × 102 0.40 0.40 0.419 6.607 × 10−4 5.411 × 10−15 8.740 × 10−14

� → � 54 55 96 0.80 0.80 0.859 4.732 × 10−4 7.920 × 10−15 7.204 × 10−14

� → � 46 65 36 0.70 0.73 0.691 4.492 × 10−4 2.535 × 10−16 1.649 × 10−15

� → � 47 63 86 0.44 0.43 0.450 3.934 × 10−4 1.615 × 10−16 2.114 × 10−15

� → � 47 65 6.3 × 10−5 6.4 × 10−5 6.4 × 10−5 6.90 × 10−5 5.285 × 10−4 1.197 × 10−10 1.624 × 10−15

tunneling widths comparable with or smaller than their ra-
diative widths (i.e., long-lived quasibound states) perturba-
tion theory seriously overestimates the height of the peaks.
This is a consequence of that the method has no built-in
unitarity limit, or, in other words, it does not account for radia-
tive broadening.7 Assuming that the resonance profiles com-
puted with perturbation theory are perfectly Lorentzian, they
are given by the BW cross section, Eq. (15), with �tun

vJ� replac-
ing �tun

vJ� + �rad
vJ�→�′ in the denominator, and thus the peaks

are too high by a factor (1 + �rad
vJ�→�′/�tun

vJ�)2.
The direct component of the rate coefficient is displayed

in Fig. 4. For each of the two transitions it is computed with
Eq. (3) using cross sections obtained in three different ways:

1. direct: a combination of perturbation theory and
semiclassical results. For � → � transitions the semi-
classical cross section is taken up to 0.7 eV and that of
perturbation theory otherwise. For � → � we take the
semiclassical cross section up to 0.27 eV and selected
points along the baseline of the perturbation theory cross
section above that energy.

2. semiclassical: i.e., theory with the transition probability
of Eq. (14).

3. unrestricted semiclassical: i.e., theory with the transition
probability A�→�′(R) from Eq. (8) replacing AEb

�→�′(R)
in Eq. (13).

 1e-21

 1e-20

 1e-19

 10  100  1000  10000

ra
te

 c
on

st
an

t (
cm

3 /s
)

temperature (K)

direct Π → Σ
semi-classical Π → Σ

unrestr. semi-classical Π → Σ
direct Σ → Π

semi-classical Σ → Π
unrestr. semi-classical Σ → Π

FIG. 4. The rate constant for direct radiative association of SiN through
� → � and � → � transitions, computed using cross sections which are
obtained in three different ways.

It is clear that the rate constants obtained with semiclas-
sical and perturbation theory combined, which are the best es-
timates, differ very little from the pure semiclassical rates. At
20 000 K the former exceeds the latter by 1.5% and 5.6% for
� → � and � → �, respectively. Both of them differ con-
siderably from the unrestricted (conventional) semiclassical
result above ∼2000 K. The direct part of the rate constant can
thus be determined with reasonable accuracy with the modi-
fied semiclassical formula presented in this work.
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FIG. 5. The rate constant for SiN formation through radiative association
through (a) � → � and (b) � → � transitions. Present results are shown
with curves and the semiclassical calculation by Singh et al.10 for � → �

transitions is shown with symbols.
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TABLE IV. Hönl–London factors S�SJ
ε�′SJ ′
′ε′ according to Watson.17 The approximate values for doublets are obtained by shifting J by one half in two
of the factors in the numerator. They are valid for large J.

2S + 1� 
 ε 2S + 1�′ 
′ ε′ J′ = J − 1 J′ = J J′ = J + 1

1�+ 0 1 1� 0 −1 0 2J + 1 0
1�+ 0 1 1� 0 1 J − 1 0 J + 2
1� 0 −1 1�+ 0 1 0 2J + 1 0
1� 0 1 1�+ 0 1 J + 1 0 J

2�+ 1/2 −1 2� 1/2 −1 (J−1/2)(J+1/2)
2J

≈ J−1
2 0 (J+1/2)(J+3/2)

2(J+1) ≈ J+2
2

2�+ 1/2 −1 2� 1/2 1 0 (2J+1)(J+1/2)(J+1/2)
2(J+1)J ≈ 2J+1

2 0

2�+ 1/2 −1 2� 3/2 −1 (J−3/2)(J−1/2)
2J

≈ J−1
2 0 (J+3/2)(J+5/2)

2(J+1) ≈ J+2
2

2�+ 1/2 −1 2� 3/2 1 0 (2J+1)(J−1/2)(J+3/2)
2(J+1)J ≈ 2J+1

2 0

2�+ 1/2 1 2� 1/2 −1 0 (2J+1)(J+1/2)(J+1/2)
2(J+1)J ≈ 2J+1

2 0

2�+ 1/2 1 2� 1/2 1 (J−1/2)(J+1/2)
2J

≈ J−1
2 0 (J+1/2)(J+3/2)

2(J+1) ≈ J+2
2

2�+ 1/2 1 2� 3/2 −1 0 (2J+1)(J−1/2)(J+3/2)
2(J+1)J ≈ 2J+1

2 0

2�+ 1/2 1 2� 3/2 1 (J−3/2)(J−1/2)
2J

≈ J−1
2 0 (J+3/2)(J+5/2)

2(J+1) ≈ J+2
2

2� 1/2 −1 2�+ 1/2 −1 (J−1/2)(J+1/2)
2J

≈ J+1
2 0 (J+1/2)(J+3/2)

2(J+1) ≈ J
2

2� 1/2 −1 2�+ 1/2 1 0 (2J+1)(J+1/2)(J+1/2)
2(J+1)J ≈ 2J+1

2 0

2� 1/2 1 2�+ 1/2 −1 0 (2J+1)(J+1/2)(J+1/2)
2(J+1)J ≈ 2J+1

2 0

2� 1/2 1 2�+ 1/2 1 (J−1/2)(J+1/2)
2J

≈ J+1
2 0 (J+1/2)(J+3/2)

2(J+1) ≈ J
2

2� 3/2 −1 2�+ 1/2 −1 (J+1/2)(J+3/2)
2J

≈ J+1
2 0 (J−1/2)(J+1/2)

2(J+1) ≈ J
2

2� 3/2 −1 2�+ 1/2 1 0 (2J+1)(J−1/2)(J+3/2)
2(J+1)J ≈ 2J+1

2 0

2� 3/2 1 2�+ 1/2 −1 0 (2J+1)(J−1/2)(J+3/2)
2(J+1)J ≈ 2J+1

2 0

2� 3/2 1 2�+ 1/2 1 (J+1/2)(J+3/2)
2J

≈ J+1
2 0 (J−1/2)(J+1/2)

2(J+1) ≈ J
2

Figure 5 shows the computed total rate coefficients for
formation of SiN. Breit–Wigner theory has been used to cal-
culate the resonance contribution according to Eq. (16) and
the direct contribution is the same as that in Fig. 4. The rate
coefficient for the � → � transition increases steadily up to
a maximum of 1.65 × 10−19 cm3/s around 1500 K. The rate
for � → � displays slow oscillations and its highest value
is 1.01 × 10−20 at about 80 K. Both rates decrease rapidly at
temperatures above ∼2000 K as a consequence of the drop
in the cross sections. The semiclassical calculation by Singh
et al.10 for � → � is also displayed and it shows no drop
at high temperature, as expected since it is based on the un-
restricted transition probability. We also see a difference be-
tween their result and our direct component (green curve) at
low temperatures. This is probably due to a difference in the
implementation of the long-range part of the potential.26

The rate coefficients are of interest for modeling of chem-
istry in the interstellar medium and our results will be made
available in the database KIDA.27

V. CONCLUSION

We have calculated radiative association cross sections
and thermal rate constants for SiN formation using different
approaches. First, we have used perturbation theory. This ap-
proach works well, excluding resonances for which the life-
time broadening of the tunneling is smaller than or compara-

ble to the lifetime broadening of the radiative decay. This is
a natural observation which stems from the perturbation, i.e.,
the coupling of the molecular system with the electromagnetic
field, not being a weak perturbation to the dynamics in these
cases. This typically happens for very long-lived quasibound
states, which require that the tunneling width and the radiative
decay width are both small.

The radiative widths are rather small for all investigated
transitions for SiN. It is thus when the tunneling width, which
varies by several orders of magnitude, becomes small that we
observe long-lived quasibound states and narrow resonances,
and this is when perturbation theory is typically observed to
break down. As a result, for very narrow resonances, the per-
turbation theory approach overestimates the peak height and
its contribution to the thermal rate constant. This can be over-
come by using a quantum dynamical approach with an optical
potential that accounts for the decay by spontaneous emission.
Even though this method is less demanding than perturbation
theory it appears to give the narrow resonances quite accu-
rately. At least the peak heights that we have calculated are in
good agreement with those obtained from Breit–Wigner the-
ory which is expected to give all resonances accurately.

At high energies a calculation based on an optical po-
tential with a conventional transition probability has a contri-
bution that does not correspond to molecule formation. This
contribution should be excluded in the calculations, which can
easily be done by noticing that there exists a corresponding
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threshold energy that can be obtained directly from the po-
tentials. Preliminary calculations for A2S+1� → X2S+1�+

radiative association of CO and CN indicate that this thresh-
old behaviour is general. Those cross sections display similar
drops at high energies, below which the conventional transi-
tion probability gives no discernible transitions to the contin-
uum. In the present form the optical potential method only
includes vertical, i.e., Franck–Condon, transitions, but not
others. It therefore yields cross sections that drop to zero too
quickly as energy is increased towards the threshold. Further-
more, it is very hard to integrate the narrow resonance contri-
butions to the cross sections to obtain thermal rate constants.

For cases where resonances are not important semiclassi-
cal theory appears to work well which was seen by comparing
to the baselines of the perturbation theory and optical poten-
tial approaches. We have found that the semiclassical calcula-
tions reproduce the baseline of those cross sections accurately
all the way down to as low energies as 0.02 meV, which is as
far down as we perform calculations. A restricted transition
probability, which accounts for the threshold energy as in the
optical potential method, has been applied in our semiclassi-
cal treatment. This leads to a drop in the semiclassical cross
sections at high energies which improves agreement with the
quantum dynamical cross sections.

For thermal rate constant calculations of radiative asso-
ciation we suggest calculating the baseline with the improved
semiclassical formula and adding the resonance contribution
using Breit–Wigner theory. If the thermal rate constant is de-
sired at high enough temperatures so that kinetic energies
above the threshold contributes, the procedure outlined in
Sec. IV involving perturbation theory can be used for better
accuracy. Unless the temperature is low, a reasonably good
estimate for the total rate can be obtained from the new semi-
classical expression alone, excluding resonances entirely. For
example, the resonance contribution amounts to 17% at 300 K
for � → � transitions in SiN, and less at higher temperatures.

ACKNOWLEDGMENTS

This project was supported by the ASTRONET CATS
collaboration. Valuable discussions with Gerd Schiffel are
gratefully acknowledged. J.F. thanks Daniel Nilsson from the
Chalmers C3SE computer center for support.

APPENDIX: HÖNL-LONDON FACTORS

The Hönl–London factors in Table I are defined as

S�J→�′J ′ =
∑

′ε′

S�SJ
ε�′SJ ′
′ε′ , (A1)

where S are presented in Table IV. The approximate values
for doublets in Table IV have been used in this work. The
summation over 
ε is not done explicitly in the calculations
of the cross section in Eq. (4) but it is instead taken care of by
multiplication by the factor P�.
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