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Abstract The investigation concerns local buckling of compressed flanges of axially compressed composite
channel columns. Cooperation of the member flange and web is taken into account here. The buckling mode
of the member flange is defined by rotation angle a flange about the line of its connection with the web. The
channel column under investigation is made of unidirectional fibre-reinforced laminate. Two approaches to
member orthotropic material modelling are performed: the homogenization with the aid of theory of mixture
and periodicity cell or homogenization upon theVoigt–Reuss hypothesis. The fundamental differential equation
of local buckling is derived with the aid of the stationary total potential energy principle. The critical buckling
stress corresponding to a number of buckling half-waves is assumed to be a minimum eigenvalue of the
equation. Some numerical examples dealing with columns are given here. The analytical results are compared
with the finite element stability analysis carried out by means of ABAQUS software. The paper is focused on a
close analytical solution of the critical buckling stress and the associated buckling mode while the web–flange
cooperation is assumed.

Keywords Fibre composites · Channel column · Analytical solution · FEM

List of symbols

A Column cross-section area
b Flange width
Dl Modulus of elasticity in longitudinal direction
Dt Modulus of elasticity in transverse direction
Ef Modulus of elasticity of fibre
Em Modulus of elasticity of matrix
El Young’s modulus of elasticity in longitudinal direction
Et Young’s modulus of elasticity in transverse direction
G Shear modulus
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f Fibre volume fraction
h Web height
Jd Free torsion moment of inertia of the flange cross section
Jw Moment of inertia of the web cross section
Jx , Jy Moment of inertia of the flange cross section
L Length of the column
L0 Characteristic length of the column
n Number of half-waves of a buckling mode
δ Wall thickness
V Total potential energy
Ve Elastic strain energy
Vl Potential energy of applied loads
Vs Potential energy of uniformly distributed springs
Vw Potential energy of web
x, y, z Cartesian coordinate system
η Ratio of the member length to characteristic one
vlt, vtl Poisson’s ratios
v(z) Deflection of the flange due to the rotation angle
u(z) Deflection of the web due to the rotation angle
μ Coefficient of the flange–web cooperation in longitudinal direction
χ Coefficient of the flange–web cooperation in transverse direction
σcr Critical local buckling stress
σcr,min Minimum critical local buckling stress
σb Local buckling stress
θ(z) Angle of rotation of the flange

1 Introduction

Thin-walled members made of particulate, flake and fibre composites are increasingly applied in engineering
problems (aerospace structures, military and civilian aircraft, transportation industry, ship structures, etc.)
[4]. The main reasons for the application of composite structures are low cost, high strength and simple
manufacturing process. Unfortunately, there are drawbacks or limitations to use fibre composites [14]. The
advantages and disadvantages of mechanical behaviour of composite materials are widely described in many
publications [3,13,15,18,33].
In the design of thin-walled channel columns, it is important to fulfil different criteria of stability loss: overall,
local and distortional conditions. The problems of different types of buckling and post-buckling, in sense of
Generalized BeamTheory (GBT), in elastic range are well described in the literature [22–24,30–32]. In studies
is also highlighted the influenceof initial geometrical imperfections onbucklingbehaviour of structures [21,29].
Recent advances in buckling and post-buckling behaviour of composite plates and shells structures subjected
to static and dynamic loads [16,17,20,27] and [19] lead to extended applications in engineering. Theoretical
and numerical studies of stability problems are verified experimentally too [1,6,7,25,28]. Nowadays, the
software based on finite element method (FEM) or semi-analytical method (SAM) [7,17] and [5] is applied to
solve a variety of stability problems. Nevertheless, in initial structural design, sensitivity analysis or optimal
design analytical closed-form solution of specific problems is convenient. Models employed for the analysis
of buckling in fibre-reinforced materials are being developed also in the study of fibred sheets, woven fabrics
and textiles, pantographic fabrics, elastic nets, etc. [2,8,10,11,26].
The paper focuses on local stability of flanges of axially compressed channel columns accounting for its
cooperation with the member web. The column material is assumed to be orthotropic, and its parameters
are assessed by two homogenization variants: based on the theory of mixture and periodicity cell or the
Voigt–Reuss hypothesis. The total potential energy of the flange is formulated; applying the stationary energy
principle, the fundamental differential equation and the natural boundary conditions are derived. Solution of
the equation with appropriate boundary conditions leads to closed-form analytical formulas for the critical
buckling stress and the corresponding shape of the buckling mode. The formulas to estimate the number of
the buckling mode half-waves are presented too. It should be emphasized that the critical stresses obtained are
valid only in the elastic range of the columnmaterial behaviour. Moreover, it is assumed that the local buckling
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Fig. 1 Thin-walled channel column—numerical example

stresses of flange and web, taken separately, without cooperation, are higher than the critical buckling stress
of a compound buckling. Comparative stability analysis results are presented, in accordance with the present
formulation and the finite element method, for the column with two values of thickness flange δ. The paper
deals with a special type of composite structural columns made of fibre composites with long continuous fibres
in one direction (longitudinal direction).

2 Total potential energy of flange

Let us consider composite thin-walled channel section column shown in Fig. 1. It is assumed that the column is
made of unidirectional fibre-reinforced composite material. Using homogenization, the material is considered
orthotropic, and its mechanical properties are based on the theory of mixture and periodicity cell [3,15,17,18]
or in accord with the Voigt–Reuss hypothesis [3,17,19].
The description of homogenized orthotropic material for composite plates is based on the theory of mixture
and periodicity cell (material model type A) [19]

El = Em(1 − f ) + Ef f

Et = Em
Em(1 − √

f ) + Ef
√

f

Em[1 − √
f (1 − √

f )] + Ef
√

f (1 − √
f )

G = Gm
Gm

√
f (1 − √

f ) + Gf [1 − √
f (1 − √

f )]
Gm

√
f + Gf(1 − √

f )

vlt = vm(1 − √
f ) + vf

√
f

Elvtl = Etvlt (1)

where El, Et—Young’s modulus in longitudinal and transverse direction for composite material, Em, Ef—
Young’s modulus for matrix and fibre, G—homogenized shear modulus, Gm, Gf—shear modulus for matrix
and fibre, vm, vf—Poisson’s ratios for matrix and fibre, vl, vt—Poisson’s ratios in longitudinal and transverse
direction, and f—fibre volume fraction. Another simple homogenization method based on the Voigt–Reuss
hypothesis (material model type B) [3,19] is characterized by

El = Em(1 − f ) + Ef f

Et = EfEm

Ef − E f f + Em f

G = GfGm

Gf − G f f + Gm f

vlt = vm(1 − f ) + vf f

Elvtl = Etvlt (2)

Due to plane stress, the Young’s modulus values in both directions should be modified

Dl = El

1 − vltvtl
= El

1

1 − Et
El

v2lt

Dt = Et
1

1 − Et
El

v2lt

(3)
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Fig. 2 Cartesian coordinate system and flange displacement

Local buckling of the compressed flange is related to rotation of the flange about the axis corresponding to the
line of the flange and web connection. The flange is considered a long thin-walled beam elastically supported
by uniformly distributed springs along the flange–web connection modelling the cooperation. In the case of
axially compressed column, the cross section in the buckling mode is symmetrical. Let us assume the Cartesian
coordinate system (x , y, z) located at the point of the flange–web connection. The displacement v(z) of an
arbitrary point x of the flange may be related to rotation angle (Fig. 2)

v(z) = xθ(z) (4)

The total potential energy of the column V is a sum of the elastic strain energy of the flanges Ve, the elastic
energy of the web Vw, the elastic energy of uniformly distributed springs along the flange–web connection Vs
and the potential energy of the external stresses uniformly distributed in the end cross section Vl

V = Ve + Vw + Vs + Vl (5)

The elastic strain energy of the flange of length L may be expressed as a sum of the energy related to the
bending and free torsion of the flange

Ve = 1

2
Dl J

∫ L

0
θ ′′2

∫ b

0
x2dxdz + 1

2
GJd

∫ L

0
θ ′2dz

= 1

6
Dl Jb

3
∫ L

0
θ ′′2dz + 1

2
GJd

∫ L

0
θ ′2dz (6)

where Dl, G stand for the elasticity in longitudinal direction and shear modulus, respectively, primes denote
differentiation with respect to z, Jd is the flange free torsion moment of inertia and J = δ3

12 describes moment
of inertia of a unit part of the wall.
The deflection of the web due to the same rotation angle at both its ends (Fig. 2) is

u(z) = θ(z)y
(
1 − y

h

)
(7)

where h is the web depth.
Thus, the elastic potential energy of the web is

Vw = 1

2
Dl J

∫ L

0
θ ′′2

∫ h

0
y2

(
1 − y

h

)2
dy = 1

60
Dl Jh

3
∫ L

0
θ ′′2 (8)

The potential energy of uniformly distributed elastic springs accounting for cooperation of the flange with the
web in transverse direction is expressed as follows:

Vs = 1

2
kθ

∫ L

0
θ2dz (9)

where kθ is the stiffness of the springs defined as

kθ = χ
Dt Jw
h

(10)
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where Dt is the elasticity modulus in transverse direction and Jw describes a unit part of the web cross-section
moment of inertia and the coefficient χ = 2. The potential energy of the applied external stresses σ0 on the
column end cross-section takes the form

Vl = − 1

2
σ0

∫ L

0

(
2

∫ b

0
v′2δdx +

∫ h

0
u′2δdy

)
dz. (11)

Substituting the relations (4) and (7) for columns into (11) leads to

Vl = − 1

2
σ0δ

∫ L

0
θ ′2dz

(
2

∫ b

0
x2dx +

∫ h

0
u2dy

)

= − 1

2
σ0 J y

∫ L

0
θ ′2dz (12)

where

J y = 1

3
δb3

(
2 + 0.1

(h
b

)3) = μJy

Jy = 1

3
δb3 (13)

where Jy stands for the flange moment of inertia about y axis (see Fig. 2) and the coefficient

μ = 2 + 0.1
(h
b

)3
(14)

is introduced.
The total potential energy, a sum of all partial energies, equals

V = 1

2

∫ L

0

[
Dl Jμb2θ ′′2 + (2GJd − σ0μJy)θ

′2 + 2χ
Dt Jw
h

θ2
]
dz (15)

3 Governing differential equation and its solution

The principle of stationary total potential energy (15) [9] leads to the governing differential equation of the
problem

DlμJb2θ ′′′′ + (σ0μJy − 2GJd)θ
′′ + 2χ

Dt Jw
h

θ = 0 (16)

and the suitable natural boundary conditions for both member ends for i=0 or L

θ(i) = 0 or (2GJd − σ0μJy)θ
′(i) − DlμJb2θ ′′′(i) = 0

θ ′(i) = 0 or θ ′′(i) = 0 (17)

Equation (17) may be rewritten as
θ ′′′′ + 2αθ ′′ + β2θ = 0 (18)

where

α = σ0μJy − 2GJd
2Dl Jμb2

β2 = 2χ
Dt Jw

Dlμh Jb2
(19)

Solution of the Eq. (19) is

θ(z) = C1 sin(t1z) + C2 cos(t1z) + C3 sin(t2z) + C4 cos(t2z) (20)

where

t1 = α0.5
{
1 −

[
1 −

(β

α

)2]0.5}0.5

t2 = α0.5
{
1 +

[
1 −

(β

α

)2]0.5}0.5
(21)

The constants C1, C2, C3 and C4 should be determined from the appropriate boundary conditions.
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4 Simply supported column

Numerical examples are related to simply supported channel column of length L presented in Fig. 1. Using
the boundary conditions

z = 0 θ = 0, θ ′′ = 0

z = L θ = 0, θ ′′ = 0 (22)

one can calculate C1 = C2 = C4 = 0, and finally an equation reads

C3(t
2
1 − t22 ) sin(t2L) = 0 (23)

Local buckling may occur if C3 �= 0, hence

sin(t2L) = 0 (24)

Applying this Eq. (21) and relations (24), the stress σb may be determined as a function of number n of
half-wave buckling mode

σb = Dl

Jy

{
b2 J

[(nπ

L

)2 +
(βL

nπ

)2] + 2
GJd
μDl

}
(25)

Using relations (19), formula (25) may be simplified to

σb = Dl

( δ

b

)2[ 1

12
n2π2

( b

L

)2 Dt

2Dlμ
χn−2π−2

( L

b

)( L

h

)
+ 2G

μDl

]
(26)

In order to find the critical buckling stress, the integer number of half-wave buckling mode n should be chosen
to give a minimum value of the stress (26). Buckling stress (26) is considered a function of the column length
L , and its minimum is investigated.
The necessary condition for the stress extreme

dσb
dL

= 0 (27)

leads to the column length values to show minimum critical stress

L = ηL0 (28)

where

L0 = πb 4

√
Dlhμ

6Dtχb
(29)

is the characteristic member length and the ratio of the column length to the characteristic length η = L/L0
is introduced.
Substituting the results (29) into relation (26), it is possible to find a minimum critical buckling stress assuming
characteristic column lengths independent of the number of half-waves

σcr,min = 2Dl

( δ

b

)2[( Dtχb

24Dlhμ

)0.5 + G

μDl

]
(30)

The relation of the critical buckling stress vs. the relative member length is shown graphically in Fig. 3.
In conclusion, to determine the value of buckling critical stress, first it is necessary to find the value of
coefficient of characteristic length of the column η and next use Fig. 3 to read the number of half-waves n.
After substitution of the number of half-waves n into (26), we obtain the critical buckling stress sought.
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Fig. 3 Critical buckling stress versus column length scaled by characteristic length

Table 1 Material properties for matrix and fibres

Epoxy matrix Glass fibres

Density 1246 kg/m3 2450 kg/m3

Young’s modulus 3.5 GPa 71 GPa
Kirchoff’s modulus 1.25 GPa 30 GPa
Poisson ratio 0.33 0.22

Fig. 4 Two-dimensional finite element models, boundary conditions and load diagrams for axially compressed columns and an
example of buckling mode at n = 2

5 Numerical examples

Let us consider columns made of unidirectional fibre-reinforced composite material shown in Fig. 1. The
properties for epoxy matrix and glass fibres are presented in Table 1.

The numerical examples are related to axially compressed simply supported columns considered in the
previous chapter. Finite element models are shown in Fig. 4. Numerical analysis is conducted in ABAQUS
code [12]. In order to estimate the critical buckling loads, a linear perturbation procedure (LBA) is used.
The columns are modelled by fully integrated finite membrane-strain shell elements with reduced integration
type—S4R. The main finite element size is 0.01×0.01 m2, i.e. 80 elements along the cross section. The total
amount of finite elements in all cases equals: 4800 at L = 0.6 m, 7200 at L = 0.9 m and 9600 at L = 1.2 m. In
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Table 2 Material parameters for model types A and B at different fibre volume fraction f

f Material’s homogenization
type

Material’s homogenization
type

Material’s homogenization
type

Material’s homogenization
type

A B A B A B A B

El [GPa] Et [GPa] G [GPa] vlt [–]

0.2 17.000 5.841 4.322 1.669 1.546 0.281 0.308
0.4 30.500 8.424 5.648 2.466 2.027 0.260 0.286
0.6 44.000 12.774 8.148 4.039 2.941 0.245 0.264
0.8 57.500 22.642 14.618 7.959 5.357 0.232 0.242

Fig. 4, numerical models, schematic FEM mesh, load and imposed boundary conditions are shown. Material
behaviour is modelled by linear elastic orthotropic lamina-type procedure available in ABAQUS [12]. The
value parameters of material types A and B (E1 = El, E2 = Et, v12 = vlt,G12 = G13 = G23 = G and
v21 = (E2/E1)v12) are determined by Eqs. (1) and (2), respectively. Furthermore, the values of material
parameters are shown in Table 2.

The critical buckling stresses and the corresponding number of half-waves for the columns are presented
in Table 3 for δ = 1 and δ = 1.5 mm. The differences between the proposed analytical solutions and the
numerical FEM solutions are unsignificant from an engineering point of view, and their relative mean value
is 10%. This difference seems constant and independent of the numerical example. A correction factor ψ of
critical buckling stress (27) is therefore proposed. The value of the correction factor ψ should be equal to 1.1.
Furthermore, the results summarized in Table 3 are shown in Figs. 7 and 8. This proposal is confirmed by
the results of an extra numerical analysis at any other geometry and material parameters. Given geometrical
parameters: L = 1.8 m, b = 0.1 m, h = 0.3 m, δ = 1.25 mm and typical unidirectional reinforced composite
materials: boron-epoxy: El = 207 GPa, Et = 21 GPa, G = 7 GPa, vlt = 0.3, graphite-epoxy: El = 207 GPa,
Et = 5 GPa, G = 2.6 GPa, vlt = 0.25, aramid-epoxy: El = 76 GPa, Et = 5.5 GPa, G = 2.1 GPa, vlt = 0.34
[13], the critical buckling stresses and the number of half-waves n are shown in Table 4.

The minimum critical stress versus fibre volume fraction f at different values of wall thickness are shown
in Fig. 5.

Furthermore, the characteristic member length versus the fibre volume fraction for both material homoge-
nization types are shown in Fig. 6.

6 Conclusions

The work concerns local buckling of axially compressed channel columns made of unidirectional fibre-
reinforced laminate. The closed-form analytical formulas for critical buckling stresses and corresponding
buckling modes and the minimum critical stresses independent of the number of half-waves are derived here.
Stability analysis is carried out assuming four values of fibre volume fraction: 0.2, 0.4, 0.6 and 0.8 and for three
member lengths: 0.6, 0.9 and 1.2 m in order to estimate the impact of these parameters to the critical buck-
ling stresses. Furthermore, additional analysis is performed for different materials [13] and random structural
geometry. The following conclusions are drawn:

– The minimum critical stress values are slightly affected by the type of material homogenization method
(material model type A [19] and type B [3] and [19]) (see Fig. 5). In the case of the theory of mixture and
periodicity cell (material model type A) greater values of the minimum values of the critical stress occur
than in case of simple method of homogenization (material model type B), the difference is not high,

– The critical buckling stresses increase in accord with the fibre volume fraction that increases similarly as
the minimum critical one,

– The characteristic length depends significantly on the type of material homogenization method (material
model type A [19] and type B [3] and [19]). In the case of simple homogenization method based on the
Voigt–Reuss hypothesis (material model type B), the characteristic length is visibly greater than in the case
of the theory of mixture and periodicity cell (material model type A) (see Fig. 6),
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Table 4 Critical buckling stresses and number of half-waves n—extra numerical examples

L = 8m, h = 0.3m, b = 0.1m, δ = 1.25mm

Material type σcr,min
Analyt.
[MPa]

No. of half-wave n Critical buckl. stress [MPa]

Analyt. FEM LBA Analyt. FEM LBA Diff. [%]

ψ = 1 ψ = 1.1 ψ = 1 ψ = 1.1

Boron-Epoxy 2.064 3 3 2.068 2.275 2.295 −11 −1
Graphite-Epoxy 0.947 2 2 0.957 1.053 1.011 −6 4
Aramid-Epoxy 0.635 3 2 0.637 0.701 0.708 −11 −1

Fig. 5 Minimum critical stresses versus fibre volume fraction f for walls thickness a δ = 1.0 mm and b δ = 1.5 mm

– Comparison of analytical and numerical results shows the maximum discrepancies reach 11% and average
below 10%. It should be emphasized that the critical stresses computed analytically are lower than the FEM
analysis results. It means safe estimation of critical stresses. The same discrepancies between the analytical
and numerical results in all considered cases triggered simplification of the stress field in theoretical
analysis, and they may be removed introducing a correcting coefficient ψ = 1.1. The proposed correcting
coefficient is validated by stability analysis application for other random geometric andmaterial properties,
complementing the cases presented before, with positive results.
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Fig. 6 Characteristic member length versus fibre volume fraction f for both material’s homogenization types

Fig. 7 Critical buckling stress versus fibre volume fraction f for both material homogenization types for h = 0.4 m, b = 0.2 m
and L = 0.6 m or 1.2 m
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Fig. 8 Critical buckling stresses versus fibre volume fraction f for both material homogenization types for h = 0.4 m, b = 0.2 m
and L = 0.9 m

Acknowledgements The calculations presented in this paper were carried out at the TASK Academic Computer Centre in
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