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Gdańsk University of Technology, G. Narutowicza 11/12, 80-233 Gdańsk, Poland
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Abstract

The problem of an optimised placement of the hard quality sensors in drinking water dis-
tribution systems under several water demand scenarios for a robust monitoring of the
chlorine concentration is formulated in this paper. The optimality is understood as achiev-
ing a desired trade off between the sensors and their maintenance costs and the accuracy of
estimation of the chlorine concentration. The contribution of this work is a comprehensive
approach to optimised sensor placement by addressing a single, bi and multi-objective prob-
lem formulations including a comparison of the proposed methods in terms of the number
of hard sensors placed and the performance of the monitoring system. During the design
of optimised sensors placement algorithms, the interval observer, recently developed by the
authors is applied as the soft sensors. Finally, for the purpose of validating the performance
of the algorithms, they are applied to the model of a real drinking water distribution system.
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Principal symbols and abbreviations

DWDS drinking water distribution system

NSGA-II Non-dominated Sorting Genetic Algorithm II

± mark of upper and lower bounds, respectively

|(·)| number of elements in a set (·)
‖ · ‖ Euclidean norm

≤ mark of element-wise compare
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δl(υγ) value of the lth objective function at the γth Pareto solution

δrv,l relative value of the lth objective function and l ∈ L
εcout(t) measurement error

|εcout(t)| absolute value of measurement error

εmax
cout bound of measurement error

η real, arbitrary, positive and constant parameter

Γ set of Pareto solutions

Ω1 set of all nodes in a DWDS

Ω2 set of all tanks in a DWDS

ΩE ⊂ Ω1 set of monitored nodes in a DWDS

υγ the γth Pareto solution and γ ∈ Γ

υ∗ the best solution among Pareto solutions

A(t) ∈ Rn×n state matrix

ASR number of available sensors

b(t) ∈ Rn vector of inputs

c+
f,h(k) upper envelope bounding unknown chlorine concentration in the hth tank

c−f,h(k) lower envelope bounding unknown chlorine concentration in the hth tank

c+
out,r(k) upper envelope bounding unknown chlorine concentration at the rth node

c−out,r(k) lower envelope bounding unknown chlorine concentration at the rth node

c+
f,h,ob(k) upper envelope bounding unknown chlorine concentration in the hth tank for

the obth water demand scenario

c−f,h,ob(k) lower envelope bounding unknown chlorine concentration in the hth tank for
the obth water demand scenario

c+
out,r,ob(k) upper envelope bounding unknown chlorine concentration at the rth node for

the obth water demand scenario

c−out,r,ob(k) lower envelope bounding unknown chlorine concentration at the rth node for
the obth water demand scenario

disrv,υγ relative distance of the γth Pareto solution from a coordinate system origin

dt derivative with respect to t

fp,(·) penalty function identified by (·)
gsfr ∈ SFR decision variable allocating hard sensor to sensor feasible nodes

h ∈ Ω2 individual tank

I identity matrix

k discrete time instant and k = 1, 2, ..., K and K = T
TQP

L set of objective functions

m number of measured quality state variables

n number of quality state variables
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N1 ∈ Rs×s invertible matrix proportional to the identity matrix

ob individual water demand scenario

P(·) positive, real number identified by (·)
Pr,3 positive, real number for the rth node

Ph,4 positive, real number for the hth tank

r ∈ ΩE individual monitored node

R set of real numbers

s number of unmeasured quality state variables

S± interval observer

SC set of all considered water demand scenarios

SFR ⊂ Ω1 set of nodes where sensors can be located (sensor feasible nodes)

t time instant

T considered time horizon

TQP quality sampling interval

w(t) auxiliary variable

x(t) ∈ Rn vector of quality state variables

x1(t) ∈ Rs vector of unmeasured quality state variables

x̂±1 (t) upper and lower bounds on estimated state variables, respectively

x2(t) ∈ Rm vector of measured quality state variables

x±2 (t) upper and lower bounds on measured state variables, respectively

x̃2(t) vector of indirectly measured state variables (pseudo measurements)

X1,max,r upper limit on estimation accuracy at the rth node

X2,max,h upper limit on estimation accuracy in the hth tank

ycout(t) vector of measurements

1. Introduction

A drinking water distribution system (DWDS) is rated as one of the Critical Infras-
tructure Systems that are essential for functioning of modern society and economy [1]. An
operation of the DWDS aims at delivering to the users the required amount of water sat-
isfying the quality requirements [2]. Achieving this goal is complicated, therefore, on-line
suitable control and monitoring systems are needed. Moreover, two aspects must be taken
into account during control and monitoring in the DWDS: quantity and quality of water [3].
They interact but the relationship is only one way, from the hydraulics to the water quality
[4]. This was utilised in an integrated approach to control of water quantity and quality
presented in [5]. In particular, two-level hierarchical control structure was proposed and
investigated. Moreover, the details of designing the lower level controller in the mentioned
hierarchical structure was shown in [6]. In turn, the main task of the monitoring system
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is to provide information on the state of the DWDS. Because, the two above mentioned
issues must be considered, from the monitoring point of view, two cascaded systems can
be distinguished: the water quantity and the water quality. The robust estimates of the
water flow rates and hydraulic model parameters are produced by the quantity monitor-
ing system [7]. Furthermore, these flows estimates are the input data to the water quality
models, hence, to the water quality monitoring system [3]. It is worth to add that one of
the important elements for designing a water quality monitoring system is the optimised
placement of available hard quality sensors. This paper addressed this issue especially.

The water quality in the DWDS can be described by several factors. The most popu-
lar one is the disinfectant concentration. At present, the chlorine is commonly used as a
disinfectant [3]. The water quality monitoring system exploits water quality measurements
in order to gather knowledge on the state of water quality. In typical DWDSs the water
quality measurements are made at network nodes and in tanks. Hence, these elements of the
DWDS are called nodes or tanks with the hard sensors. The water quality may be measured
in laboratories or by using on-line sensors. The bacteriology measurements (e.g. the num-
ber of coli bacteria) are the typical laboratory measurements in DWDSs. It is worth to add
that modern sensors for on-line bacterial counts measuring will appear and they are tested
in DWDSs [8]. However, currently they are not widespread and, therefore, primarily the
free chlorine concentrations are measured on-line in DWDSs. Henceforth, this concentration
will be considered as the water quality factor in this work. Moreover, without any loss on
generality it is assumed that the hard sensors of the chlorine concentration can be placed
only at the DWDS nodes. Hence, in this paper the water quality state is meant as a set of
the chlorine concentrations in crucial elements (e.g. tanks) of the DWDS.

Unfortunately, placing the chlorine concentration sensors at all DWDS nodes is not pos-
sible. It is due to e.g. high costs of hard sensors as well as their maintenance and the access
limitations for their installation. Therefore, in this paper the estimates of unmeasured chlo-
rine concentrations called soft sensors are used to complete the measurement information
delivered by the hard sensors. Typically, the DWDS is composed of: pumps, valves, pipes,
nodes, tanks and reservoirs. The pumps and the valves are used to control the hydraulic
quantities that are the water flow rates and pressures. Hence, the DWDS water quality
model takes into account changes of the chlorine concentration at the nodes, in the tanks
and along the pipes. A problem of changes in water quality in the DWDS was noticed e.g. in
[9]. Because the chlorine reacts with organic and non-organic matter in water, the chlorine
concentration decreases with time [10]. During formulation of models of the chlorine concen-
tration decay, it is commonly assumed that the hydraulic solution of the DWDS (the values
of the water flow rates within the pipes etc.) is known and it is constant over a specified
time interval called the hydraulic step. The models of chlorine decay during water transfer
through the DWDS can be found in many publications. For instance modelling of changes
of the chlorine concentration in tanks was presented in [11]. In turn, a general description
modelling and simulation of water quality can be found in [12]. While a comparison between
the formulation and computational performance of four numerical methods for modelling
chlorine concentration dynamics was shown in [13]. In turn, a continuous lumped model of
the chlorine concentration can be found in [3]. Moreover, it is necessary to derive a model of
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the uncertainty. One of the practical approach is the set-membership [7]. The set bounded
estimation with the interval observer of the chlorine concentration recently developed by the
authors was presented in [3]. By integrating both models and measurements, the estimation
algorithm is obtained. It provides the estimates of unmeasured chlorine concentrations. It
is necessary to add that the preliminary results regarding the hard sensors placement clearly
show that under the same number of sensors, the accuracy of resulting water quality esti-
mates can vastly differ depending on the nodes of the DWDS where the sensors are located
[14]. Thereupon, this work considers the optimised placement of the hard sensors of the
chlorine concentration for robust monitoring of the water quality in the DWDS.

The problem of sensor placement is especially addressed for network systems such as
systems of distribution of oil, electricity, water and gas [15]. According to the subject of the
paper the problem of allocation of the water quality hard sensors has been investigated. In
literature this issue has been presented for years. However, until today, there is no universal
method of determining their location [16]. In many cases, much of research has focused
on deriving such algorithms of the sensors placement that a presumptive contamination of
water in the DWDS would be detected as soon as possible. Because of the threat of terrorist
attacks this is still a timely issue. The proposed algorithms differ especially in a number
and formulations of the indicators and the mathematical tools. A single as well as a multi-
objective optimisation is one of the most popular techniques for solving the hard sensors
placement problem. For example five objective functions: population exposed, time to
detection, volume consumed, number of failed detections and an extent of contamination are
defined in [17]. For each of them, a mixed-integer linear programming (MILP) is formulated.
Next, an analysis of relationships between received results is performed and the compromised
solution is chosen. An another approach can be found in [18]. There an expected fraction of
the population that is at risk from an attack is minimised. The problem was formulated as
the MILP and in order to solve it the CPLEX solver was used. Moreover, during formulation
of the optimisation problem, several water demand scenarios at the DWDS nodes were
taken into account. The methodology was further developed by using the stochastic models
in [19]. In turn, the formulation of the sensors allocation problem as the multi-objective
optimisation problem which was solved by using a solver for the single-objective can be found
in [20]. Clearly, three objective functions refer to: expected time of detection, expected
contaminated water demand prior to detection and expected likelihood of detection are
defined. It is worth to add that the detailed formulating of the last two objective function was
presented in [16]. Then, the multi-objective problem is reformulated by using an aggregation
method. Afterwards, it is minimised subject to an available number of the hard sensors by
using a dedicated genetic algorithm. Another approach based on the hydraulic analysis of
the DWDS to construct a bipartite graph between intrusion points and the suitable nodes
that can potentially be polluted by the contaminant was shown in [21].

Considering the short survey presented in the above paragraph, the following conclu-
sions can be drawn. Firstly, the information is delivered from the hard sensors located in
the DWDS in way that might be insufficient for the water quality monitoring purposes. Sec-
ondly, due to obvious reasons, the number of hard sensors and their cost was not minimised.
Therefore, the algorithms for the hard sensors placement dedicated for the monitoring sys-
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tems have appeared.
For instance a formulation based on maximising a demand coverage was presented in

[22]. It was developed in [23]. A given area represents a percent of the total demand in
the DWDS, which is monitored by placing sensor. A concept of pathways and a property
referring to decay of the disinfectant concentration are used in the algorithm. Clearly, if
the water quality is proper at the monitoring node and the outflow from a given upstream
node (inflow to the monitoring node) covers an appropriate percent of the demand at this
monitoring node, the water quality is also proper at the upstream node. This suitable
percent results from the demand coverage parameter and typically is between 50 - 75%.
Hence, the hydraulic solution of the DWDS as well as the flow directions are required by
the algorithm. Additionally, during formulation of the maximisation problem, several water
demand scenarios at the DWDS nodes can be taken into account. The optimisation problem
was formulated as the integer programming which is, in this case, time-consuming. For
this reason the more effective numerical procedures was shown in [24]. Whereas a genetic
algorithm was used in [25]. However, the proposed algorithm is marked by the appearance
of uncovered areas and the quantitatively information is available only at the monitoring
nodes.

In previous research papers, an alternative approach to the optimised placement of the
hard sensors of the chlorine concentration in the DWDS was presented. In general, this
placement achieves a desired trade off between the sensors and their maintenance costs and
the accuracy of estimation of the chlorine concentration. Moreover, several water demand
scenarios are taken into account during the placing of the sensors in the DWDS. Each of the
water demand scenario is composed of the water demand patterns at the nodes representing
the users of water within a given area in the DWDS. Clearly, one of the different possibilities
to assess the water demand pattern is based on dividing the DWDS into suitable parts
and assigning one cumulated consumer to each of them [12] and [26]. A crucial part of
the proposed algorithms is the interval observer used to produce the robust estimates of
unmeasured chlorine concentrations [3]. The robustness has been achieved by employing
the set bounded model of the uncertainty in: system dynamics, inputs, initial conditions
and measurement errors. The results obtained by solving a bi-objective sensor allocation
problem have been given in [27]. The approach was extended and introduced as a multi-
objective allocation problem in [28]. The contribution of this work is a comprehensive
approach to optimised sensor placement by addressing single, bi and multi-objective problem
formulations. This includes also a comparison of the proposed methods in terms of the
obtained results, namely the number of hard sensors placed within DWDS as well as the
performance of the monitoring system (interval observer bounds). The detailed research on
modelling, estimation with the interval observer and the optimised robust placement of the
hard sensors of the chlorine concentration can be found in [29].

The paper is organised as follows. The model of the water quality for estimation purposes
and the interval observer for the chlorine concentration are presented in section 2. Next,
the single, bi and multi-objective formulations of the problem of the optimised placement
of the hard sensors are derived in section 3. Next, the genetic solvers of the placement
are described in section 4. In section 5 the proposed methodology is applied to the water
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quality estimation in the real DWDS and its performance is validated by simulation. The
conclusions in section 6 complete this paper.

2. Optimised placement of the hard sensors - models

2.1. Model of the chlorine concentration in the DWDS

According to [9–12] the DWDS water quality model is composed of: a system of algebraic
equations that describes changes of the chlorine concentration at the nodes, a system of
ordinary differential equations that describes the chlorine decay in the tanks and a system
of partial differential equations that describes distribution of the chlorine concentration along
the pipes. There are several methods which can be used in order to solve this model [13].
One of them was comprehensively presented in [3]. By using this approach it is possible
to obtain a time continuous lumped model of the chlorine concentration for the estimation
purposes in the DWDS. Henceforth, the chlorine concentration dynamics throughout entire
DWDS can be written as [3]:

dtx(t) = A(t)x(t) + b(t), (1)

where: t is the time instant; dt denotes the derivative with respect to t; x(t) ∈ Rn stands for
the vector of the quality state variables representing the chlorine concentrations at all pipe
segment ends and in the tanks; n denotes the number of quality state variables; A(t) ∈ Rn×n

is the time varying state matrix which elements are composed of the hydraulic quantities,
the lengths of pipe segments and the reaction rate coefficients; b(t) ∈ Rn denotes the time
varying vector of inputs which elements are dependent on the hydraulic quantities, the
lengths of pipes segments, the quality quantities in the reservoirs and injection of the chlorine
at the quality controlled nodes.

Remark 1. The chlorine concentrations at the nodes and in the tanks are seen as the most
important and they are viewed as the DWDS quality outputs. However, only the state vari-
ables representing the chlorine concentrations at the nodes supplied by only one pipe and in
the tanks are directly transferred to system output. In contrast, the chlorine concentrations
at the nodes with several connected pipes are linear combinations of the appropriate state
variables. Therefore, the chlorine concentrations at these nodes are calculated based on the
suitable state variables [3].

2.2. Interval observer for the chlorine concentration in the DWDS

The detailed description of the set bounded estimation with the interval observer for
the chlorine concentration assessment purposes in the DWDS was presented in [3]. The
methodology utilises the water quality model (1) and takes into account the uncertainty in:
the system dynamics (matrix A(t)), the inputs (vector b(t)), the initial conditions and the
measurement errors. Hence, the following structure of the interval observer was derived [3]:

(
S±
)

:


dtw

±(t) = A±11(t)w±(t) +N1A
±
12(t)x±2 (t) +Mv±(t)

w±(0) = Nx±(0)

x̂±1 (t) = N−1
1 w±(t)

, (2)
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where: the mark ± is to distinguish between the upper and the lower bounds, the former
is given by taking variables and operators with upper parts of the mark while the latter
by taking their lower parts; x(t) = [x1(t) x2(t)]T ∈ Rn and x1(t) ∈ Rs, x2(t) ∈ Rm are
the vectors of unmeasured and measured state variables, respectively and s = n−m; x̂±1 (t)
denote the upper and the lower bounds on the estimated state variables; w(t) is the auxiliary
variable, defined as: w(t) = Nx(t); N = [N1 0]; N1 = ηI ∈ Rs×s denotes the invertible
matrix proportional to the identity matrix and η is the real, arbitrary, positive and constant

parameter; M = [N1 0 0]; v±(t) =
[
b±1 (t) 1

2
B1 ±1

2
B2

]T
; B1 = b+

2 (t) + b−2 (t); B2 =
b+

2 (t)− b−2 (t); A11(t) = {ai,j}, A12(t) = {ai,q}, A21(t) = {aq,j}, A22(t) = {aq,q}, ∀i, j ∈ 1, s,
∀q ∈ s+ 1,m are suitable parts of the matrix A(t) structured by the measurement state

variables: A(t) =
est.

meas.

[
A11(t) ∈ Rs×s A12(t) ∈ Rs×m

A21(t) ∈ Rm×s A22(t) ∈ Rm×m

]
n×n

; b1(t) = {bi}, b2(t) = {bq}

denote suitable parts of the vector b(t) structured by the measurement state variables:

b(t) =
est.

meas.

[
b1(t) ∈ Rs

b2(t) ∈ Rm

]
n

; x±2 (t) denote the upper and the lower bounds of the measured

state variables given by: x−2 (t) ≤ x2(t) ≤ x+
2 (t), where: x±2 (t) = ycout(t) ± εmax

cout , and:
ycout(t) is the vector of measurements and εcout(t) is the measurement error bound by:
|εcout(t)| ≤ εmax

cout ; ≤ is understood element-wise.

The interval observer (2) produces stable and robust upper x̂+
1 (t) and lower x̂−1 (t) en-

velopes, bounding the unmeasured state variables x1(t) in spite of the uncertainty in the:
inputs (chlorine measurements at reservoirs), initial conditions, state measurements (chlo-
rine measurements at network nodes) and state matrix A(t) in a linear part of the system
dynamics. The proof can be found in [3].

One should notice that, the chlorine concentration measurements are the state measure-
ments only at certain DWDS nodes (see remark 1). Therefore, the interval observer (2)
was further developed in order to handle the case where the chlorine concentration sensors
are located also at the nodes with several connected pipes. In this case the vector of mea-
surements is (3), where: x2(t) = [x2(t) x̃2(t)]T, and x̃2(t) denotes the vector of indirectly
measured state variables and is called the vector of pseudo measurements:

ycout(t) = x2(t). (3)

Hence, the letter structure of the interval observer was introduced [3]:

(
S±
)

:


dtw

±(t) = A±11(t)w±(t) +N1A
±
12(t)x±2 (t) +Mv±(t)

w±(0) = Nx±(0)

x̂±1 (t) = N−1
1 w±(t)

. (4)

The interval observer (4) produces stable and robust upper x̂+
1 (t) and lower x̂−1 (t) en-

velopes, bounding the unmeasured state variables x1(t) in spite of the uncertainty in the:
inputs, initial conditions, direct and indirect state measurements and state matrix A(t) in
the linear part of the system dynamics. The proof can be found in [3].
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Figure 1: General structure of the optimised hard sensors placement algorithm in the DWDS.

Remark 2. In order to estimate the unmeasured state variables by using the interval observer
(4), the necessity of calculating the pseudo measurements appears. Hence, the following
procedure was proposed [3]:
S1: The estimation of unmeasured state variables by using the interval observer (2) is
performed. During this estimation process only direct state measurements are used.
S2: The pseudo measurements of indirectly measured state variables are calculated. Next,
the state variables that refer to pseudo measurements are removed from the estimated states
and the vector of measurements x2(t) is augmented by adding the vector of pseudo mea-
surements x̃2(t) to produce the interval observer (4).
The pseudo measurements are the new, important source of information. Hence, the two-
step estimation algorithm has better performance than the estimation process without the
indirect state measurements.

3. Optimised placement of the hard sensors - problem formulation

The optimised placement of the chlorine concentration hard sensors enables to achieve
the desired compromise between the overall sensors cost and the resulting accuracy of the
robust quality estimates. The interval observer delivers the robust chlorine concentration
estimates in a form of lower and upper bounds envelopes of the unknown chlorine trajecto-
ries. Hence, the tighter the bounding intervals are the more accurate the estimates are. The
estimation accuracy needs to be traded off against the hard sensor costs. Therefore, a sensi-
ble approach is to formulate the sensors allocation problem as a multi-objective constrained
optimisation task with the use of e.g. Pareto definition of optimality. Such formulations in
the form of bi and multi-objective optimisation tasks are proposed and further discussed.
The difference between bi and multi-objective formulation is that the bi-objective optimised
hard sensors placement problem was formulated and solved under the one water demand sce-
nario. However, the formulation with one performance function can be also useful. Clearly,
the objective function expressing the hard sensor costs by specifying how many of them are
located in the DWDS can be applied. Nevertheless, a proper quality of estimates should be
guaranteed by a suitable choice of the estimation accuracy. This so-called single-objective
formulation approach is shown in section 3.1.

A general structure of the algorithm solving the problem is illustrated in Fig. 1. The
algorithm starts from an initially chosen hard sensors placement pattern in the DWDS with

9

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


a given water demand scenario. The measurements of chlorine concentrations at the mea-
surement nodes and in the reservoirs as well as the hydraulic solution are delivered by a
well-known EPANET simulator. The EPANET DWDS quantity-quality model equations
can be considered as a faithful representation of reality. Next, the obtained values of the
chlorine concentrations and the hydraulic quantities from the EPANET are distorted by
about ±∆%. Clearly, the above mentioned operation is performed for the purpose of sim-
ulating the water quantity monitoring system and drawing the chlorine concentrations at
the measurement nodes and in the reservoirs (with the set-membership description of un-
certainty). They are necessary for monitoring of water quality in the DWDS. Hence, they
are the input data to the interval observer of the chlorine concentration in the DWDS.
The interval observer produces the estimates of the chlorine concentrations over a whole
DWDS. These estimates are used by the optimisation solver. The optimiser can then evalu-
ate the fitness function of the hard sensors placement and produce a better one or stop the
algorithm.

3.1. Single-objective formulation

The hard sensors allocation problem is formulated as the single-objective constrained
optimisation task to minimise the number of sensors placed at the feasible nodes of the
DWDS. The mathematical formulation of this problem is:

min

Z =

|SFR|∑
sfr=1

gsfr

 , (5a)

subject to:

|SFR|∑
sfr=1

gsfr ≤ ASR, (5b)[
c+

out,r(k)− c−out,r(k)
]
≤ X1,max,r,[

c+
f,h(k)− c−f,h(k)

]
≤ X2,max,h,

(5c)

where: gsfr is a decision variable allocating hard sensor to the sensor feasible nodes, sfr ∈
SFR, gsfr ∈ {0, 1} and if gsfr = 1 the sensor is placed at the sfrth node; SFR denotes a
set of nodes where the sensors can be located (sensor feasible nodes) and |SFR| stands for a
number of nodes in SFR, SFR ⊂ Ω1; Ω1 is a set of all nodes in the DWDS and |Ω1| signifies
a number of nodes in Ω1; Ω2 denotes a set of all tanks in the DWDS and |Ω2| is a number
of tanks in Ω2; ΩE stands for a set of monitored nodes where there are not hard sensors and
|ΩE| signifies the number of nodes in ΩE, ΩE ⊂ Ω1; ASR is a number of available sensors;
c+

out,r(k), c−out,r(k) denote the upper and lower envelopes bounding the unknown chlorine
concentration at the rth node at the discrete time instant k, respectively, r ∈ ΩE; c+

f,h(k),

c−f,h(k) are the upper and lower envelopes bounding the unknown chlorine concentration in
the hth tank at the discrete time instant k, respectively, h ∈ Ω2; k = 1, 2, ..., K is a discrete
time instant imposed by the quality sampling interval (TQP) to produce the estimates at
these time instances, K = T

TQP
, T denotes a considered time horizon; X1,max,r, X2,max,h stand
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for the upper limits on estimation accuracy (a maximal allowed width of the bounding
intervals) at the rth node and in the hth tank, respectively.

The choice of the upper limits X1,max and X2,max on the estimation accuracy is very
important. Moreover, they can be the same or differ depending on how significant the
water user at a particular demand node is. Determining the upper limits is not always an
obvious task. Too small values of X1,max and X2,max may lead to a lack of solution of (5),
because the constraints (5c) will not be fulfilled. In turn, too relaxed limits may cause that
the estimation accuracy will not be acceptable despite the hard sensors placement will be
desirable (a few sensors will be located in the DWDS).

Moreover, limiting the SFR set to the most important nodes e.g. from the chlorine
propagation point of view significantly increases the computational efficiency. It can be done
by using the operator experience or by applicability different tools e.g. fractal geometry [30].

During formulation of the single-objective optimisation problem only one water demand
scenario is taken into account. Hence, in this case, the best results are obtained in the
DWDSs where the water demand scenarios are repeatable. Clearly, for a definite hard
sensors placement if the water demand patterns at DWDS nodes widely change the quality
of information from the chlorine concentration monitoring system might be unsatisfying.
In the following part of the text, the main considerations are focused on the bi and multi-
objective formulations. Hence, only reformulating of the single-objective optimisation task
for genetic algorithm purposes is shown is section 4.

3.2. Bi-objective formulation

In this formulation, the objective function related to the estimation accuracy is traded
off against the overall sensor costs maintaining the same priority of importance. The math-
ematical formulation of this problem is:

min

Z0 =

|SFR|∑
sfr=1

gsfr

 ,

min

Z1 =

|ΩE|∑
r=1

K∑
k=1

[
c+

out,r(k)− c−out,r(k)
]

+

|Ω2|∑
h=1

K∑
k=1

[
c+

f,h(k)− c−f,h(k)
] ,

subject to:

|SFR|∑
sfr=1

gsfr ≤ ASR.

(6)

One property of the bi-objective formulation is that the upper limits X1,max and X2,max

are not needed a priori. It is because, the estimation accuracy (the width of estimated in-
tervals) is one of the objective functions. Therefore, this formulation has only one constraint
referring to the number of available sensors (ASR). However, one needs to be aware that the
computational time might be longer than in the single-objective optimisation task. A dedi-
cated solver is employed in order to solve the bi-objective constrained optimisation problem
e.g. [31]. The Pareto definition of the optimality is utilised in this approach, hence, the final
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solution will be selected from the Pareto front, where there are solutions representing the
particular hard sensors placement patterns. The system user makes a decision on which of
the achievable solutions will be preferred.

Because the decision making process is almost always difficult the decision support tools
are very useful for the decision makers. In this paper the following procedure is taken for
these purposes [32]:
Step 1: Relative values of the objective functions for a given Pareto solution are calculated:

δrv,l =
δl(υγ)

max
γ

(δl(υγ))
, (7)

where: δrv,l denotes the relative value of the lth objective function, l ∈ L; L is a set of the
objective functions; υγ stands for the γth Pareto solution, γ ∈ Γ; Γ is a set of the Pareto
solutions; δl(υγ) signifies the value of lth objective function at the γth Pareto solution.

Step 2: Relative distances of the Pareto solutions from the coordinate system origin are
calculated:

disrv,υγ = ‖δrv‖, (8)

where: disrv,υγ is the relative distance of the γth Pareto solution from the coordinate system
origin; ‖ · ‖ denotes the Euclidean norm.

Step 3: The best solution among the Pareto solutions is chosen:

υ∗ = min
γ

(disrv,υγ ). (9)

One should notice that analogously as in the single-objective formulation also in the bi-
objective formulation of the hard sensors allocation problem only one water demand scenario
is taken into account. Hence, from this point of view, the bi-objective approach has the same
features.

3.3. Multi-objective formulation

The optimised hard sensors placement problem is formulated as the multi-objective con-
strained optimisation task subject to several water demand scenarios:

min

Z0 =

|SFR|∑
sfr=1

gsfr

 ,

min

Zob =

|ΩE|∑
r=1

K∑
k=1

[
c+

out,r,ob(k)− c−out,r,ob(k)
]

+

|Ω2|∑
h=1

K∑
k=1

[
c+

f,h,ob(k)− c−f,h,ob(k)
] ,

subject to:

|SFR|∑
sfr=1

gsfr ≤ ASR, ∀ob ∈ SC,

(10)
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where: ob is an individual water demand scenario; SC = 1, sc signifies a set of all considered
water demand scenarios and in consequence L = SC ∪ {0}; c+

out,r,ob(k), c−out,r,ob(k) denote
the upper and lower envelopes bounding the unknown chlorine concentrations at the rth
node at the discrete time instant k for obth water demand scenario, respectively; c+

f,h,ob(k),

c−f,h,ob(k), are the upper and lower envelopes bounding the unknown chlorine concentrations
in the hth tank at the discrete time instant k for obth water demand scenario, respectively.

Because several water demand scenarios are taken into account the hydraulic conditions
in the DWDS change. Therefore, the necessity of using more than one interval observer
during estimation process appears. Clearly, the appropriate interval observer is used for a
given water demand scenario. The structures of the chlorine concentration interval observers
are similar, but the values of the hydraulic quantities are different [3].

Analogously as in the bi-objective formulation also in the multi-objective formulation of
the hard sensors allocation problem the optimality is defined in the Pareto sense and the
final solution is chosen by using the procedure (7)-(9). However, one needs to be aware that
the computational time will be the longest of all approaches presented in this paper.

Obviously, the allocation of the hard sensors being the result of the multi-objective
approach is not robust with respect to change of the DWDS structure. For example, if a
new control algorithm is applied in the DWDS or the chlorine booster stations are located,
the given number and/or locations of sensors may turn out to be too small for obtaining
the proper water quality monitoring purposes. Of course, as an opposite situation, it might
happen that the sensors number will be excessive. Such cases might require solving of the
hard sensors allocation problem once again.

4. Solvers for the sensors placement tasks

The binary decision variables and the real as well as integer valued constraints mark the
optimisation tasks corresponding to the: single, bi and multi-objective formulations of the
hard sensors allocation problem defined by (5), (6) and (10). Moreover, the optimisation
tasks defined by (6) and (10) have two or more objective functions. Hence, e.g. evolutionary
algorithms can be used in order to solve this problem. Therefore, a genetic algorithm
NSGA-II (Non-dominated Sorting Genetic Algorithm II) has been chosen as a solver in this
work. Applied to the bi and multi-objective optimisation tasks, the algorithm determines a
solution set optimal in the Pareto sense [31]. NSGA-II has been already successfully applied
for solving the problem of sensor network design [33]. Moreover, it was used for an optimised
placement of the water quality control system actuators (the chlorine booster stations) in
exemplary DWDSs as well as in the model of a real DWDS [34] and [32], respectively.

In order to apply the NSGA-II the bi-objective optimisation task (6) has to be reformu-
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lated:

Z
′

0 =

|SFR|∑
sfr=1

gsfr + fp,1 + fp,2,

Z
′

1 =

|ΩE|∑
r=1

K∑
k=1

[
c+

out,r(k)− c−out,r(k)
]

+

|Ω2|∑
h=1

K∑
k=1

[
c+

f,h(k)− c−f,h(k)
]

+ fp,1 + fp,2,

(11)

where: Z
′
0, Z

′
1 are the objective functions to be minimised in the Pareto sense; fp,1, fp,2

denote the penalty functions.

The first penalty function fp,1 handles the constraint on the number of available hard
sensors and it is defined as:

fp,1 =


0 if

|SFR|∑
sfr=1

gsfr ≤ ASR

P1 if
|SFR|∑
sfr=1

gsfr > ASR

, (12)

where: P1 is a positive, real number.

Next, the penalty function fp,2 forces placement of at least one hard sensor and it is
defined as:

fp,2 =


0 if

|SFR|∑
sfr=1

gsfr 6= 0

P2 if
|SFR|∑
sfr=1

gsfr = 0

, (13)

where: P2 is a positive, real number.

For the purpose of applying the NSGA-II the multi-objective optimisation task (10) has
to be reformulated:

Z
′

0 =

|SFR|∑
sfr=1

gsfr + fp,1 + fp,2,

Z
′

ob =

|ΩE|∑
r=1

K∑
k=1

[
c+

out,r,ob(k)− c−out,r,ob(k)
]

+

|Ω2|∑
h=1

K∑
k=1

[
c+

f,h,ob(k)− c−f,h,ob(k)
]

+ fp,1 + fp,2,

(14)

where: Z
′
0, Z

′

ob are the objective functions to be minimised in the Pareto sense.

As it has been stated in the previous section, the selection of the final hard sensors
placement from the Pareto front will be done by a decision maker. In this paper, the
decision making process is supported by the procedure of a minimum distance from the
coordinate system origin (7)-(9).
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In order to be consistent with section 3.1, the single-objective optimisation task (5) can
be reformulated as follows:

Z
′
=

|SFR|∑
sfr=1

gsfr + fp,1 + fp,2 + fp,3 + fp,4, (15)

where: Z
′

is the objective function to be minimised; fp,3, fp,4 denote the penalty functions.

The penalty functions fp,3 and fp,4 handle the constraints (5c) on guaranteed estimation
accuracy at the rth node and in the hth tank, respectively and they can be defined as:

fp,3 =
∑
r∈ΩE

Pr,3

(
min

[
0,
(
X1,max,r −max

k

[
c+

out,r(k)− c−out,r(k)
])])2

fp,4 =
∑
h∈Ω2

Ph,4

(
min

[
0,
(
X2,max,h −max

k

[
c+

f,h(k)− c−f,h(k)
])])2

, (16)

or

fp,3 =
∑
r∈ΩE

K∑
k=1

Pr,3
(
min

[
0,
(
X1,max,r −

(
c+

out,r(k)− c−out,r(k)
))])2

fp,4 =
∑
h∈Ω2

K∑
k=1

Ph,4
(
min

[
0,
(
X2,max,h −

(
c+

f,h(k)− c−f,h(k)
))])2

, (17)

where: Pr,3, Ph,4 denote positive, real numbers for the rth node and hth tank, respectively.

5. Application in Chojnice DWDS case study

The algorithms of the hard sensors allocation were applied to the model of a real DWDS.
The considered DWDS (Fig. 2) is located in Chojnice [35]. This model has been also success-
fully applied for other research purposes e.g. an allocation of the chlorine booster stations,
leakage detection and their localisation in the DWDS by using the multiregional PCA or
the kernel PCA [32], [36] and [37], respectively. Chojnice DWDS delivers water to about
40,000 inhabitants. The number of particular elements in Chojnice DWDS is: 177 nodes,
271 pipes, 2 reservoirs, 1 tank and 3 pumps. The water is provided to the network from
two sources, which are modelled as the reservoirs of treated water with constant chlorine
concentration. There are no water quality controlled nodes. During the modelling process,
the Chojnice DWDS was divided into seven parts and one cumulated consumer was assigned
to each part. Consequently, there are seven water demand nodes in the presented model.
These water demand nodes are clearly marked in Fig. 2. The demand values as well as the
demand patterns at these nodes are based on real data and are distinguished by two types
of demand pattern at nodes: 31, 39, 67, 83, 88 and 60, 70 (Figs. 3 and 4). Moreover,
these patterns constitute two water demand scenarios: 1 and 2, respectively. The Chojnice
DWDS model was implemented in the EPANET to produce the input data to the optimised
hard sensors placement algorithms. Clearly, the demand patterns (Figs. 3 and 4) are used
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Figure 2: Chojnice drinking water distribution system.
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Figure 3: The water demand scenario 1.

in order to obtain the nominal values of hydraulic quantities from the EPANET and then
they are distorted by ±2% (this spans a range which encloses a typical hydraulic quantities
measurement error in DWDSs). The chlorine concentration measurements and the chlorine
concentrations in the reservoirs are provided by the EPANET also. However, reaction rate
coefficients were changed. The chlorine concentration measurements are contaminated by
the measurement error of ±2% (similarly, it is a typical error value for chlorine concentration
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Figure 4: The water demand scenario 2.

measurements). The influence of uncertainty values of the particular quantities on estimates
of unmeasured chlorine concentrations was examined for exemplary DWDS in [14]. Accord-
ing to section 3.1, T as well as TQP are introduced in the algorithms and they are equal to 24
[h] and 5 [min], respectively. Moreover, the EPANET Chojnice DWDS model was also used
to validate the optimised allocation results. The EPANET was coupled with MATLAB in
order to create a computational environment for the chlorine concentration soft sensors and
NSGA-II based optimisation solver.

The optimised placement obtained by the algorithm based on the bi-objective optimi-
sation problem formulation are shown in Figs. 5 and 6. The Pareto front is illustrated in
Fig. 5 where the best chromosome is marked and the optimised placement referring to this
solution is presented in Fig. 6. The algorithm parameters are: population of 80 chromo-
somes, SFR of 33 nodes and ASR equals to 20 sensors. During the allocation process water
demand scenario 1 (Fig. 3) was taken into account. With the optimally placed hard sensors
the estimation results at node 71 are shown in Fig. 7. Three trajectories are presented in
this figure: the chlorine concentration from the EPANET and the bounds on the estimated
chlorine concentration.

In turn, results obtained by the algorithm of the hard sensors allocation based on the
multi-objective optimisation problem formulation under the water demand scenarios 1 and
2 (Figs. 3 and 4) are illustrated in Figs. 8 and 9. The values of the algorithm parameters as
well as the interpretation of Figs. 8 and 9 are analogous to the one in the previous paragraph.
With the optimally placed hard sensors the estimation results at node 71 under the water
demand scenario 1 are shown in Fig. 10. Three trajectories are presented in this figure:
the chlorine concentration from the EPANET and the bounds on the estimated chlorine
concentration.

One should notice that the simulation results presented above confirm that the allocation
problem formulation has crucial impact on the location as well as the number of hard
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Figure 5: The bi-objective allocation algorithm - Pareto front.

Figure 6: The bi-objective allocation algorithm - sensors placement.

sensors in the DWDS. For example, the hard sensors placement differs in the bi and multi-
objective formulations. It is worth adding, that there are nodes where the hard sensors
are always placed independent of the approaches (Figs. 6 and 9). As it was mentioned, if
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Figure 7: The bi-objective allocation algorithm - interval estimation results at node 71.
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Figure 8: The multi-objective allocation algorithm - Pareto front.

the hydraulic conditions change, another allocation might be desirable. For example, if the
third water demand scenario is added in the considered DWDS the hard sensors placement
is as in Fig. 11. Therefore, it is important to identify a representative set of water demand
scenarios in order to cope with the related uncertainty. Moreover, enlarging the set of
considered water demand scenarios yields the increase in the computational time. It is
because every additional water demand scenario associates with additional objective function
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Figure 9: The multi-objective allocation algorithm - sensors placement.
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Figure 10: The multi-objective allocation algorithm - interval estimation results at node 71.

(see section 3.3). Hence, on one hand the wider hydraulic conditions are taken into account,
but on the other hand solving the allocation problem lasts longer. Moreover, as it was
mentioned in section 3.1, limiting the SFR set to the most important nodes also increases
the computational efficiency. However, it may cause the worse performance of estimation.
This issue might be one of direction of future work, but the preliminary results are presented
in Figs. 12 and 13. Clearly, for SFR that equals 24 nodes the optimised placement obtained
by the algorithm based on the bi-objective optimisation problem formulation is shown in
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Figure 11: The multi-objective allocation algorithm - sensors placement under three water demand scenarios.

Figure 12: The bi-objective allocation algorithm - sensors placement for SFR = 24 nodes.

Fig. 12. A comparison between the estimation results at node 71 in case when SFR equals
33 and 24 nodes is presented in Fig. 13. Five trajectories are presented in this figure:
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Figure 13: A comparison of the estimation performance, for different SFR sets, at node 71.
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Figure 14: A comparison of the estimation performance at node 71.

the chlorine concentration from the EPANET and the bounds on the estimated chlorine
concentration in both above cases.

Moreover, the presented simulation results show that the chlorine concentration trajecto-
ries are always inside the estimated bounds. However, the abrupt changes of the trajectories
during transients can be observed. This is the effect of initial and boundary conditions on the
chlorine concentration being equal to zero at the beginning of the observation. Additionally,
the location and the number of the hard sensors have an important impact on estimation
performance in the DWDS. A comparison (Figs. 7 and 10) of the estimation results at node
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71 is presented in Fig. 14. Five trajectories are presented in this figure: the chlorine con-
centration from the EPANET and the bounds on the estimated chlorine concentration from
the bi and multi-objective formulations.

6. Conclusions

In this paper the problem of an optimised placement of the hard sensors in the DWDS
for a robust monitoring of the chlorine concentration has been derived and implemented in
the MATLAB-EPANET environment.

Numerical algorithms to solve this problem have been presented. The optimality is
understood as achieving a desired trade off between the sensors and their maintenance costs
and the accuracy of estimation of the chlorine concentration.

The robust estimation algorithm recently developed by the authors has been applied as
a soft sensors for the chlorine concentration monitoring purposes.

The results have been successfully validated in Chojnice DWDS case study. The sensors
placements produced by the derived algorithms have been validated for several water demand
scenarios, hopefully adequately representing the DWDS disturbing inputs.

The undergoing as well as future research can be focused on certain interesting issues.
The utilisation of dedicated water demand patterns for certain nodes, connecting single
and multi-objective formulations in order to capture specified requirements for estimation
accuracy in certain nodes or parts of the DWDS and further considering the influence of the
set of feasible nodes on the sensor allocation belonging to them. Moreover, the presented
algorithms do not consider the hard sensor faults. Hence, the required accuracy of the
estimates is not guaranteed under the sensor faults. This issue is the next of important
topics for further research.
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