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Abstract

Here we discuss similarity and difference in anti-plane surface waves propagation in an elastic
half-space within the framework of the both theories of Gurtin-Murdoch surface elasticity and the
Toupin–Mindlin strain gradient elasticity. The qualitative behaviour of the dispersion curves and
decay of the obtained solutions are quite similar. On the other hand, we show that the solutions
related to the surface elasticity model is more localized near the free surface. For the strain gradient
elasticity there is a range of wavenumbers where the amplitude of displacements is decaying very
slow.
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1 Introduction

Surface-related phenomena play an important role in the mechanics of materials at the micro- and
nanoscales. Considering the mechanical models of surface phenomena we distinguish the surface elas-
ticity models where the additional constitutive relation on the surface are introduced and the enhanced
models of continua such as the strain gradient elasticity. It is worth to mention here the surface elas-
ticity models introduced by Gurtin and Murdoch [1], by Steigmann and Ogden [2,3] and the first and
second strain gradient elasticity presented in works by Toupin [4] and Mindlin [5, 6], see also [7, 8]
and [9, 10] for historical overview. Obviously, the both approaches may change the behaviour of so-
lutions of the corresponding boundary value problems. For example, they can describe the size-effect
that is the dependence of the apparent material properties on the specimen size, change the properties
of solutions near crack tips and other geometrical singularities, and found many applications in micro-
and nanomechanics, see e.g. [11–17] for the surface elasticity and [18–23] for the strain gradient elastic-
ity. Among such examples there is a problem of surface antiplane waves propagation that is antiplane
waves whose amplitude decays exponentially with distance from the surface. It is well-known that
within the classic linear elasticity anti-plane surface waves in an elastic halfspace do not exist, see
e.g. [24]. For extended models of continua such waves may exist, see [25] for the surface elasticity
and [26–28] for the strain gradient elasticity. Dynamics within the special case of the strain gradient
elasticity motivated by beam lattices was analyzed in [29,30].

1

Post-print of Eremeev V., Rosi G., Naili S. (2018) Comparison of anti-plane surface waves in strain-gradient materials and 
materials with surface stresses. MATHEMATICS AND MECHANICS OF SOLIDS. DOI: 10.1177/1081286518769960



In this paper we analyze the propagation of anti-plane surface waves in solids within the strain gradient
elasticity and within the theory of surface stresses by Gurtin-Murdoch. The aim of the paper is the
comparison of these two types of media in order to understand the similarities and difference of these
models trough the problem of anti-plane surface waves. The coupling between surface elastic and
kinetic energies and bulk waves has been studied in [31–33]. The analysis of propagation of shear
waves in order to determine surface properties of thin films was discussed in [34].
The paper is organized as follows. In Section 2 we present the both models of the linear strain
gradient elasticity using the general Mindlin’s model [4,5,35] and the Gurtin-Murdoch model of surface
elasticity [1, 36]. Then we transform the general boundary-value problems for the case of antiplane
motion. So the governing equations reduce to one scalar equations in the bulk and corresponding
boundary conditions. Finally, in Section 4 we present the numerical analysis of waves propagation
including the dispersion curves and the amplitude dependence on the depth-coordinate.

2 Governing equations

2.1 Strain-gradient elasticity

We consider infinitesimal deformations of an elastic solid which are described by the displacement field

u = u(x, t), (1)

where u is twice differentiable vector-function of displacements, x is the position vector and t is time.
We use the strain-gradient model of elastic medium with the following constitutive equations. Strain
energy density W is given by [5, 35]

W =
1

2
e : C : e +

1

2
∇e

...A
...∇e, (2)

e =
1

2

(
∇u + (∇u)T

)
,

where C = Cijklii⊗ ij ⊗ ik⊗ il and Einstein’s summation convention is used, A = Aijklmnii⊗ ij ⊗ ik⊗
il⊗im⊗in are the fourth- and six-order tensors of elastic moduli, respectively, ik, k = 1, 2, 3, are vectors
of Cartesian orthonormal basis, ⊗ stands for diadic product, e is the strain tensor, the superscript “T”

means the transpose operation, the “:” and “
...” stand for scalar (inner) product of two second-order

and two third-order tensors, and ∇ is the 3D nabla operator defined as follows: ∇u = ∂ui
∂xj

ii⊗ ij , where

xj are Cartesian coordinates in the basis ik, k = 1, 2, 3. The kinetic energy density is given by

T =
1

2
ρu̇ · u̇ +

1

2
∇u̇ : κ : ∇u̇, (3)

where ρ is the mass density, κ = κijklii ⊗ ij ⊗ ik ⊗ il is the positive definite forth-order micro-inertia
tensor, and overdot stands for the derivative with respect to time t.
It is worth to note that the strain gradient elasticity found many applications, see, for example, the
models of beam lattices and fabrics proposed in [22,37–40].
For derivation of governing equations, we use the variational principle for functional of action. Func-
tional of action is defined as follows

L =

∫ T

0

∫
V

(T −W ) dV dt (4)

Here V is a volume occupied by the second gradient medium and ∂V is the boundary of V .
The variational equation δL = 0 results in the following motion equation

ρü−∇ · (κ : ∇ü) = ∇ · (σ −∇ · τ ), (5)
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where ü is the acceleration, the tensors σ and τ are defined by

σ = C : e, τ = A
...∇e,

which are the second-order stress tensor and third-order hyperstress tensor, respectively.
In what follows, we use this for the constitutive law for an isotropic strain gradient solid [35]

Cijkl = λδijδkl + µ (δikδjl + δilδjk) , (6)

Aijklmn = a1 (δijδklδmn + δijδkmδln + δijδknδlm + δinδjkδlm) + a2 (δijδknδlm) ,

+ a3 (δikδjlδmn + δikδjmδln + δilδjkδmn + δimδjkδln) + a4 (δilδjmδkn + δimδjlδkn) , (7)

+ a5 (δilδjnδkm + δimδjnδkl + δinδjlδkm + δinδjmδkl) ,

κijkl = κ1δijδkl + κ2δikδjl + k3δilδjk, (8)

where δij is the Kronecker symbol, λ, µ, a1, a2, a3, a4, and a5 are elastic moduli, whereas κ1, κ2 and
κ3 are the microinertia parameters.
It should be noticed that, while the constitutive equation is equivalent, the coefficients here defined
are not the same as in [5] and consequently in [28]. As already noticed in [28], the simplified form
proposed in [41] does not allow for the existence of SH waves, and thus the full form is needed.

2.2 Gurtin-Murdoch model of the surface elasticity

Within the Gurtin–Murdoch approach [1, 36] in the bulk, we have classic constitutive equations of an
isotropic solid

W = µe : e +
1

2
λ(tr e)2, (9)

σ ≡ ∂W
∂e

= 2µe + λ I tr e, (10)

where W is the strain energy density, λ and µ are Lamé moduli, σ is the stress tensor, e is the strain
tensor. The kinetic energy density is given by

K =
1

2
ρu̇ · u̇, (11)

where ρ is the mass volume density.
Additionally, we introduce the surface strain energy density Ws and surface stress tensor s are defined
as follows [1]

Ws = µsε : ε +
1

2
λs(tr ε)2,

s ≡ ∂Ws

∂ε
= µsε + λsP(tr ε), (12)

ε =
1

2

(
P · (∇su) + (∇su)T ·P

)
,

where λs and µs are the surface elastic moduli called also surface Lamé moduli, tr is the trace operator,
∇s is the surface nabla operator, P ≡ I− n⊗ n is the surface unit second-order tensor, n is the unit
vector of outer normal to ∂V , the symbol ⊗ designates the diadic product of two vectors and ε is the
infinitesimal surface strain tensor. In addition, we take into account the mass density associated with
the surface where surface stresses are defined. This assumption results in the following formula for
surface kinetic energy density [36]

Ks =
1

2
mu̇ · u̇

∣∣
x∈∂V , (13)
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where m is the surface mass density and ∂V is the boundary of V .
Motion and natural boundary equations can be derived using the least action principle with the
functional

L =

∫ T

0

∫
V

(K −W) dV dt+

∫ T

0

∫
∂V

(Ks −Ws) da dt. (14)

3 Anti-plane surface waves in an elastic half-space

Let us consider stationary waves of an elastic half-space x1 ≤ 0. In what follows we use the Cartesian
coordinates x1, x2 and x3 with the basis ik, k = 1, 2, 3.

3.1 Kinematics

For the anti-plane motion, the vector of displacement takes the form [24]

u = u(x1, x2, t)i3. (15)

Here x2 is the direction of the wave propagation, whereas x3 is the direction of displacements. From
(15), it follows that

∇u = u,αi3 ⊗ iα = i3 ⊗∇u, ∇ · u = 0,

e =
1

2
(∇u⊗ i3 + i3 ⊗∇u), ∇e =

1

2
(i3 ⊗∇∇u+∇u,αi3 ⊗ iα)

Hereafter, we used the notation u,α = ∂u
∂xα

, and Greek indices take values 1, or 2. ∇·u is the divergence
of u.
Under assumption that a steady state has been reached, we may search displacement of the form

u = U(x1) exp [i(kx2 − ωt)] , (16)

where k is the wavenumber, ω is the circular velocity, and i =
√
−1.

3.2 Strain gradient elasticity

The motion equations (5) reduces to

ρü− κ∆ü = µ(1− `2∆)∆u, (17)

where ∆u = u,11 +u,22 is the two-dimensional Laplace operator and where we introduced the following
characteristic length

`2 =
a3 + a4 + a5

µ
. (18)

The boundary conditions take the form [25]

µ[`2u,11 + a3u,22] = 0, (19)

µ
[(
a3 − 2`2

)
u,221 − `2u,111 + u,1

]
+ κü,1 = 0 (20)

where a3 = a3/µ and κ = κ2.
Substituting (16) into (17), we obtain the ordinary differential equation with respect to U

−ω2
[
ρ− κ(∂2 − k2)

]
U = µ

[
1− `2(∂2 − k2)

]
(∂2 − k2)U, (21)

where for brevity we use the notation ∂ = ∂/∂x1. We find the decaying at x1 → −∞ solution of (21)

U(x1) = C1 exp(η+x1) + C2 exp(η−x1), (22)
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where

η± =

√
k2 − k2±, k

2

± =
µ− κω2 ±

√
(µ− κω2)2 + 4µ`2ρω2

2µ`2
(23)

and C1 and C2 are integration constants. In previous formulas, k+ and k− correspond to the wavenum-
bers of an antiplane wave in the bulk. More specifically, k− is the propagative root and k+ is the
vanishing root. As a result, the displacement is given by

u = [C1e
η+x1 + C2e

η−x1 ] exp [i(kx2 − ωt)] . (24)

Substituting this form of the solution into the boundary conditions (19), we obtain the following system

A
[
C1

C2

]
=

[
0
0

]
, (25)

where

A =

(
η2+`

2µ− a3k2µ η2−`
2µ− a3k2µ

η+
(
µ
(
a3k

2 + `2
(
η2+ − 2k2

)
− 1
)

+ κω2
)

η−
(
µ
(
a3k

2 + `2
(
η2− − 2k2

)
− 1
)

+ κω2
) ) . (26)

For that the system admit a non-vanishing solution, the determinant of A must be zero. Thus, the
dispersion equation for surface waves will be computed numerically by finding the roots of

det(A) = 0, (27)

that correspond to surface waves propagating towards the direction i2 (with k, η+ and η− reals and
positives).
In the numerical section, the results will be presented with respect to the phase velocity of such surface
waves, i.e. c = ω/k.

3.3 Surface elasticity

For the anti-plane shear deformation (15), the motion equations and the boundary conditions reduce
to

ρü = µ∆u, (28)

−mü+ µsu,22 = µu,1. (29)

Substituting (16) into (28), we obtain the ordinary differential equation with respect to U[
µ(∂2 − k2) + ρω2

]
U = 0. (30)

Assuming that the displacement decays exponentially with distance from the half-space surface, we
find the solution of (30)

U = U0 exp

[√
k2 − ω2/c2Tx1

]
,

where U0 is an amplitude and cT =
√

µ
ρ is the phase velocity of shear waves in the bulk. As a result,

we obtain the expression for an anti-plane surface wave of the form

u = U0 exp

[√
k2 − ω2/c2Tx1

]
exp [i(kx2 − ωt)] . (31)

Substituting (31) into (29), we obtain the dispersion equation [25]

DS(ω, k) ≡ mω2 − µsk2 − µ

√
k2 − ω2

c2T
= 0. (32)
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µ (Pa) ρ (kg/m3) ` (m) κ (kg/m) a33 (m2)
34.6×106 195 170×10−6 136×10−6 5.8×10−9

Table 1: Parameters of the strain gradient model

µ (Pa) ρ (kg/m3) µs (Pa m) m (kg/m2)
34.6×106 195 52.6 0.2

Table 2: Parameters of the surface energy model

The latter equation transforms to

c2 =
µs
m

+
µ

m

1

|k|

√
1− c2

c2T
(33)

with solution of the form

|k| =
µ
√

1− c2

cT 2

m(c2 − c2S)
, (34)

where cS =
√
µs/m is the shear wave velocity in the thin film associated with the Gurtin–Murdoch

model. Obviously, the wavenumber k is real if and only if

c ≤ cT , c > cS . (35)

The last equation means that the surface antiplane waves exist if the surface film is softer than material
in the bulk as for the Love waves [24].

4 Numerical results and comparison

In this section some numerical results are presented. The parameters used in the computation are listed
in Tables 1 and 2. The parameters have been chosen so that the limit values of the phase velocity for
k = 0 and k → ∞ are the same for both models. Concerning the strain gradient model, this choice
of parameters corresponds to normal dispersion (i.e. the phase velocity decreases when increasing the
frequency).

4.1 Dispersion relations

We start the analysis by the description of the dispersion relations of surface waves, that are depicted
in Fig. 1. As expected, the two models share the same phase velocities cT and cS , respectively for
k = 0 and k → +∞. These limit values are represented by a black dotted line for cS and a black
dashed line for cT . From the same figure, it can be observed that the strain gradient model (black
solid line) is decreasing faster towards the limit value cS than the surface energy model (gray solid
line). Using a different combination of material properties produces different results, but the overall
behaviour is qualitatively the same. The choice of the parameters have been done by fitting the curve
for low values of k (i.e. very long wavelengths).

4.2 Decay rate

With the aim of comparing the surface wave solutions, it is also interesting to see how rapidly the
perturbation is decaying with the depth. To this end, in Fig. 2, the amplitude of the solution U(x1)
is plotted in function of the depth and of the wavenumber for the strain gradient model (left) and
the surface energy model (right). As it can be observed, for a given wavenumber, the solution for the
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Figure 1: Dispersion relations for strain gradient model (black) and surface energy model (grey). The
dashed line represents the phase velocity cT , the dotted line the velocity cS

surface energy model is always decaying more rapidly. In order to better compare these results, in
Figure 4 we plotted the depth for which the amplitude is divided by two, in function of the wavenumber.
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Figure 2: Decaying of the solutions with respect to depth for the strain gradient (left) and the surface
energy (right) models.

It can be also remarked that for very low wavenumbers, i.e. for very long wavelengths, the amplitude
is almost constant with depth. This means that, even if the surface wave exists for every value of k
(i.e. the amplitude of the perturbation is going to zero for x1 → −∞), there is a range of wavenumbers
for which the amplitude is decaying at infinity very slowly. Analyzing solution (23) and (31), it can
be observed that this happens when the velocity of the surface wave approaches the phase velocity in
the bulk and the root corresponding to the vanishing part of the perturbation is almost zero. For the
surface energy model, given that the phase velocity of the bulk does not depend on the frequency, this
happens only in the vicinity k = 0, where the two phase velocities match. However, this is not the
case for the strain gradient model. Indeed, the plot of dispersion relations of both antiplane bulk and
surface waves in Fig. 3, shows that the two curves almost superpose up to a given value of the wave
number k, in this numerical case 2000 [1/m], and then they start to diverge. As shown in equation
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(23), this causes the root η− to be almost vanishing. In formulas, we have

k ' k− ⇒ η− ' 0. (36)

This means that the dispersion in the bulk has an impact on the decaying rate of the surface waves,
for the strain gradient model.
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Figure 3: Plot of the phase velocity in function of the wave number for antiplane bulk waves (gray
dashed) and surface waves (black solid).
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Figure 4: Plot of the depth for which the displacement is divided by two for the strain gradient (black
solid) and the surface energy (gray solid) models.

5 Conclusion

We consider the propagation of surface waves in an elastic halfspace regarding the both theory of
surface elasticity by Gurtin-Murdoch and the Mindlin’s strain gradient elasticity. We demonstrate
that the both theories give similar qualitative results for the phase velocities and for the displacement
amplitudes. Nevertheless, there are some quantitative differences in the dispersion curves, the both
theories are in a good coincidence for the limiting cases of long waves (k → 0) and short waves
(k → ∞). There is a range of wavenumbers where the difference in the phase velocities is more
significant. Moreover, analyzing the decaying of the displacements with the depth, we can see, that
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the displacements obtained within the surface elasticity decaying much faster than one derived using
the strain gradient elasticity. So, the surface elasticity model produces antiplane waves which are
more localized near the surface whereas within the strain gradient elasticity we have more penetrating
solutions. This difference seems to be natural. Indeed, from the physical point of view the surface
elasticity introduces the changes in material properties just on the surface whereas the strain gradient
elasticity describes the microstructure of material in the bulk. Considering short waves limit (k →∞)
one should be aware of influence of grains and subgrains, dislocations and other defects presented in
the real material microstructure. So, in this case discrete models may be more efficient, such as used
in the lattice dynamics [42].
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