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On the Nonlinear Effects of Magnetoacoustic Perturbations
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Nonlinear effects of planar magnetosound perturbations in a plasma are discussed. Plasma is non-adiabatic due
to optically thin radiation and external heating. For these reasons, thermal instability of a plasma may appear which
makes it acoustically active. The plasma is assumed to be initially homogeneous ideal gas with infinite electrical
conductivity permeated by a straight magnetic field which is orthogonal to the trajectories of gas particles. The
instantaneous dynamic equations which describe nonlinear effects of intense sound in quasi-isentropic plasma, are
derived. Nonlinear interaction of periodic and aperiodic magnetoacoustic perturbations with the non-wave modes,
are discussed. The conclusions concern dissipative or active behavior of magnetoacoustic perturbations which is
determined by the kind of the heating-cooling function.
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1. Introduction

The study of stable and unstable magnetohydrody-
namic (MHD) perturbations of different spacial scales in
a plasma are of the great importance. Thermal insta-
bility is observed in dynamics of astrophysical plasmas
of different scales, including interstellar clouds and so-
lar prominence formation. It is important in fluid flows
in tokamaks. Non-adiabaticity along with the external
heating of a plasma makes it acoustically active under
some conditions [1]. That means that magnetoacoustic
perturbations intensify in the course of propagation. This
phenomenon relates to some kind of anomalous thermo-
dynamical relaxation and following it dispersion. Relax-
ation of thermodynamic processes often leads to the sim-
ilar properties of sound in fluids. We may mention gases
with excited vibrational degrees of molecules and chem-
ically reacting gases which thermal balance depends on
some heat-loss function. This function includes in gen-
eral external heating and cooling due to radiation and
other reasons. In a plasma, this function may include a
part responsible for the radiation cooling. An external
source of energy causes deviation of the gas flow from
isentropic, along with mechanical and thermal attenua-
tion. Namely the isentropic instability is a reason for
the acoustic waves to amplify in the course of propaga-
tion [2]. The irreversible processes and following them
acoustical activity of a medium are of major interest in
many applications concerning the solar chromosphere, in-
terstellar gases and planetary nebulae. The nonlinear
dynamics of magnetoacoustic waves in a thermally ac-
tive and dissipative plasma has been studied analytically
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by Chin and co-authors in Ref. [3]. Authors of Ref. [3]
have derived the generic nonlinear evolutionary equation
which describes perturbations in active medium and have
concluded about possibility of self-organization of MHD
disturbances. In particular, it has been discovered that
the formation of shock waves depends strongly on the
type of the heating-cooling function. Discontinuities in
the waveforms in a plasma may be supressed or form
faster. The slow magnetoacoustic shock autowaves were
described theoretically. Their magnitude is completely
prescribed by the thermodynamic properties of equilib-
rium plasma and hence are independent on the initial or
boundary conditions [4]. The effects of thermal radia-
tion on the shock wave were considered in details also
in Refs [5, 6]. Flows over other relaxing media reveal
the analogous features which are described by the simi-
lar equations [7].

The nonlinear interaction of magnetohydrodynamic
waves of different kinds has been considered by numerous
authors [8–10]. As for the nonlinear interaction of MHD
waves with the non-wave modes, the subject is much less
investigated. One may expect that the magnetoacoustic
heating and streaming reveal anomalous behavior in the
acoustically active plasma. That happens to all acous-
tically active media independently on the physical rea-
son of acoustical activity [7, 11]. This study considers
magnetoacoustic heating in a plasma with the generic
heating-cooling function. This is enhancement of the
entropy mode which follows propagation of sound in a
nonlinear flow with attenuation of any kind [12, 13]. As
far as the authors know, magnetoacoustic heating is still
unresolved issue in magnetic hydrodynamics. With re-
gard to external heating or cooling, the nonlinear cou-
pling of sound and the entropy mode is possible due to
dispersion and correspondent attenuation (or amplifica-
tion) of sound. The reason for that is dependence of the
heating-cooling function on the thermodynamic quanti-
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ties. We do not consider mechanical and thermal losses
of a plasma and its finite electrical conductivity. They
introduce additional attenuation and dispersion in a fluid
flow. Magnetoacoustic streaming and heating which are
associated with these mechanisms, have been studied by
one of the authors in Refs [14, 15]. In this study, we de-
rive the instantaneous dynamic equations responsible for
excitation of the entropy and magnetic modes by sound
and discuss them.

As for the nonlinear and dispersive distortions of the
MHD perturbations theirselves, they have been well-
understood analytically. Account for the second order
derivatives, and, as consequence, for the quadratic non-
linearity in the heating-cooling function, “introduces new
physics such as the existence of solitary waves” [1]. As
usual, we consider a weak nonlinearity in this study. That
means that the effects of nonlinearity may be obtained
as corrections to the linear results. This concerns the dy-
namic equations. Nevertheless, these corrections are cru-
cial in the description of nonlinear interactions. Nonlin-
ear correction in the dynamic equation for wave perturba-
tions may be also considered as a result of self-interaction
of sound. Even in the case of small nonlinearity, it ac-
cumulates in time and is responsible for formation of
shock fronts, enrichment of perturbations’ spectrum and
other manifestations of non-linear behavior. The effects
of boundaries of a plasma are not considered. All evalu-
ations are valid with accuracy up to quadratic nonlinear
terms, that is, up to terms proportional to the squared
Mach number, M2.

2. MHD modes of a planar flow

The system of PDE equations consists of continu-
ity equation, momentum equation, electrodynamic equa-
tions and energy balance equation

∂ρ

∂t
+∇ · (ρv) = 0,

ρ
dv

dt
= −∇p+ µ0(∇×H)×H,

∂H

∂t
= ∇× (v ×H), ∇ ·H = 0,

dp

dt
− γ p

ρ

dρ

dt
= (γ − 1)L(p, ρ), (2.1)

where v, H, p, and ρ are the plasma velocity, the mag-
netic field strength, pressure, density, respectively, and
µ0 is the magnetic permeability of free space. L(p, ρ) is
the heating-cooling function which disturbs adiabaticity
of fast perturbations in a plasma. Following Ref. [1], it is
assumed to be dependent on pressure and density. The
last equation in the set (2.1) relates to an ideal gas with
the caloric equation of state

e = CvT =
p

(γ − 1)ρ
,

where e denotes the internal energy of a gas, and γ =

Cp/Cv is the ratio of specific heats under constant pres-
sure and constant density.

We are interested in weakly nonlinear equations, as-
suming the magnetic field H = (0, 0, H(x, t)) orthog-
onal to the velocity of gas particles v = (v(x, t), 0, 0).
The starting point represents the leading-order equations
which follow from Eqs. (2.1):

∂ρ′

∂t
+ ρ0

∂v

∂x
= −ρ′ ∂v

∂x
− v ∂ρ

′

∂x
,

∂v

∂t
+

1

ρ0

∂p′

∂x
+

1

ρ0

∂h′

∂x
= −v ∂v

∂x
+
ρ′

ρ20

∂p′

∂x
+
ρ′

ρ20

∂h′

∂x
,

∂p′

∂t
+ c2ρ0

∂v

∂x
− (γ − 1)(Lpp

′ + Lρρ
′) =

−v ∂p
′

∂x
− γp′ ∂v

∂x
+ (γ − 1)(0.5Lppp

′2

+0.5Lρρρ
′2 + Lpρp

′ρ′),

∂h′

∂t
+ 2h0

∂v

∂x
= −v ∂h

′

∂x
− 2h′

∂v

∂x
, (2.2)

where h denotes the magnetic pressure,
h = µ0H

2/2,

and

Lp =
∂L

∂p
, Lρ =

∂L

∂ρ
, Lpp =

∂2L

∂p2
,

Lρρ =
∂2L

∂ρ2
, Lpρ =

∂2L

∂p∂ρ

are partial derivatives of the heating-cooling function
L(p, ρ) evaluated at equilibrium state (p0,ρ0). All vari-
ables represent a sum of unperturbed quantity, marked
by subscript 0 (v0 = 0), and a disturbance, which is
primed.

2.1. Modes in a linear flow. Case Lp 6= 0

As usual, establishment of the dispersion relations is
the primary procedure in linear flows of a fluid. The dis-
persion relations follow immediately from the linearized
Eqs. (2.2). All perturbations are thought as a sum of
planar waves proportional to exp(iω(k)t − ikx), where
k designates the wave number of any individual planar
wave:

f ′(x, t) =

∫ ∞
−∞

f̃(k) exp(iω(k)t− ikx)dk,

(f̃(k) exp(iω(k)t) = f̃(k, t) denotes the Fourier trans-
form of f ′(x, t), so as f̃(k, t) = 1

2π

∫∞
−∞ f(x, t)e ikxdx).

The dispersion relations in a planar flow of a magnetic
fluid reflect the solvability of Eq. (2.2). They take the
forms

ω1,2 = ±cmk −
i(γ − 1)

2c2m

(
c2Lp + Lρ

)
, ω3 = 0,
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ω4 =
i(γ − 1)

c2m

(
Lρ − (c2m − c2)Lp

)
, (2.3)

where

cm =
√
c2 + c2A, c =

√
γ
p

ρ
, cA =

√
2h/ρ

designate the magnetosonic speed, the sound speed in
an unmagnitized gas, and the Alfvén speed, respectively,
evaluated at the equilibrium state (p0, ρ0).

The first two roots ω1, ω2 relate to the magnetosonic
waves of different directions of propagation (so-called fast
MHD waves), the third root ω3 corresponds to the mag-
netic Alfvén mode in the flow where magnetic field is
perpendicular to the particles velocity, and the last one,
ω4, corresponds to the entropy mode. The dispersion
relations in Eqs. (2.3) are calculated with accuracy up
to terms proportional to the first powers of Lp, Lρ. We
arrive at the conclusion that the medium is acoustically
active under the condition

c2Lp + Lρ > 0,

which has been discovered in the studies of Nakariakov
and co-authors. In this case, MHD perturbations en-
hance in the course of propagation. The total pertur-
bation is represented by a sum of specific disturbances
which in fact form eigenvectors of correspondent matrix
operator:

v =

4∑
i=1

vi =
cm
ρ0
ρ1 −

(γ − 1)(c2Lp + Lρ)

2c2mρ0

∫
ρ1dx

−cm
ρ0
ρ2 −

(γ − 1)(c2Lp + Lρ)

2c2mρ0

∫
ρ2dx+

(γ − 1)(Lρ − (c2m − c2)Lp)
c2mρ0

∫
ρ4dx,

p′ =

4∑
i=1

pi = c2ρ1 −
(γ − 1)(c2Lp + Lρ)

cm

∫
ρ1dx

+c2ρ2 +
(γ − 1)(c2Lp + Lρ)

cm

∫
ρ2dx−

Lρ
Lp
ρ3

+(c2 − c2m)ρ4,

h′ =

4∑
i=1

hi = (c2m − c2)ρ1 + (c2m − c2)ρ2 +
Lρ
Lp
ρ3

+(c2m − c2)ρ4. (2.4)
Index in summation i denotes the ordering number of
specific mode. The entropy mode (i = 4) is isobaric in
the sense that summary pressure, which consists of ther-
modynamic and magnetic parts, keeps constant. This
is valid also for the Alfvén mode with ordering number
i = 3. In contrast to the newtonian flow, the entropy
mode possesses variations in pressure so that the corre-
spondent variations in temperature of the background as-
sociated with this mode, should be evaluated accurately.

The rows which distinguish excess densities correspond-
ing to third and fourth roots,

P3


ρ′

v

p′

h′

 = ρ3, P4


ρ′

v

p′

h′

 = ρ4,

take the forms:

P3 =


1 +

Lρ
(c2m−c2)Lp
0

0

− 1
c2m−c2

− Lρ
(c2m−c2)2Lp


T

,

P4 =


− Lρ

(c2m−c2)Lp

− (γ−1)ρ0(c2Lp+Lρ)
c4m

∫
dx

− 1
c2m

c2

c2m(c2m−c2)
+

Lρ
(c2m−c2)2Lp


T

.

They are evaluated with accuracy up to terms propor-
tional to the first powers of Lp and Lρ. The limits of in-
tegration depend on the physical context of a flow. When
P3, P4 apply at the linearized Eqs. (2.2), they reduce
all therms containing the foreign perturbations and yield
the linear dynamic equations which govern ρ3 and ρ4, re-
spectively. These equations contain the first order partial
derivatives with respect to time. In the following section,
we consider the non-linear interaction of magnetoacoustic
waves with the non-wave modes in the planar flow.

3. Nonlinear effects which associate with the
intense magnetoacoustic wave

Application of P3 and P4 at the system (2.2), which
includes quadratic nonlinear terms, leads to weakly non-
linear evolutionary equations with properly distributed
quadratic nonlinear terms. Usually, among all variety
of nonlinear terms, these pure magnetoacoustic are of
major importance. That corresponds to the intense per-
turbations in MHD waves as compared with those of the
non-wave modes at some temporal and spacial domains.

For definiteness, the first MHD mode, which propa-
gates in the positive direction of axis OX, will be con-
sidered. It relates to ω1 from Eqs. (2.3). For correct de-
scription of effects associating with quadratic nonlinear
terms, the linear relations should be corrected by means
of involving terms which make MHD wave isentropic in
the leading order [15]. The corrected links are as follows

ψ1,n =


ρ1
v1
p1
h1

+


c2m−c

2(γ−2)
4c4m

ρ0

0
c2(c2m(2γ−1)−c2(γ−2))

4c4m
ρ0

(c2m−c
2)(3c2m−c

2(γ−2))
4c2m

ρ0

 v21 .

In the absence of magnetic field and inflow of external en-
ergy, these corrections equal the well-known terms which
make the progressive the Riemann wave isentropic [12].
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The equation governing velocity in the first magnetoa-
coustic planar wave which propagates in the positive di-
rection of axis Ox, takes the form:

∂v1
∂t

+ cm
∂v1
∂x
− (γ − 1)

2c2m

(
c2Lp + Lρ

)
v1

+
3c2m + c2(γ − 2)

2c2m
v1
∂v1
∂x

= 0. (3.1)

Eq. (3.1) describes nonlinear propagation of the MHD
wave in a magnetic gas. It is similar to dynamic equa-
tions which describe wave perturbations in other media
which may be acoustically active [7]. Eq. (3.1) without
account for heating-cooling function has been firstly de-
rived and analyzed in the context of propagation of a
saw-tooth impulse in Ref. [16]. Eq. (3.1) may be readily
transformed into the leading-order pure nonlinear equa-
tion

∂V1
∂X
− 3c2m + c2(γ − 2)

2c4m
V1
∂V1
∂τ

= 0,

by means of new variables

V1 = v1 exp

(
− (γ − 1)

2c3m

(
c2Lp + Lρ

)
x

)
,

X = − 2c3m
(γ − 1)(c2Lp + Lρ)

×
(
1− exp

(
(γ − 1)

2c3m

(
c2Lp + Lρ

)
x

))
,

τ = t− x/c (3.2)
Eq. (3.2) may be solved by the method of characteristics.

The main conclusion is that the shock wave always
forms in acoustically active media and may not arise oth-
erwise due to attenuation [7]. Eq. (3.1) coincides with
that derived in Ref. [3]. Eq.(15) therein describes propa-
gation of magnetoacoustic perturbations for any direction
of the straight magnetic field and includes effects by ther-
mal conductivity and nonlinear term associated with the
heating-cooling function. Eq. (3.1) represents the partic-
ular case of Eq. (15) from Ref. [3] with θ = π/2, zero
thermal conduction and zero nonlinear term associated
with the heating-cooling function. Chin and co-authors
in Ref. [3] include heating and radiative cooling but con-
sider perturbations over constant background. The va-
lidity of this approach should be carefully investigated in
view of that the external source makes the background
temperature nonuniform. Namely, that follows from the
energy balance for the thermoconducting fluid in the zero
order. The non-uniformity of the background may es-
sentially affect the wave dynamics, especially at low fre-
quencies. This is the case when the characteristic length
of non-uniformity is of order or smaller than the wave
length.

By means of projecting Eqs. (2.1) into the different
subspaces which are designated by dispersion relations,
one readily obtains equations which describe dynamics of
ρ3 or ρ4. The rows P3 and P4 project the system onto rel-

ative dynamic equations, eliminating all foreign terms in
the linear part of the final equations. Among all variety
of quadratic nonlinear terms, only MHD terms belonging
to the first mode, will be kept. They form the "magne-
toacoustic forces" of the secondary modes. As the result
of application of P3, one arrives at the equation which
governs an excess density in the Alfvén mode:

∂ρ3
∂t

=
ρ0(γ − 1)

2c4m(c2m − c2)
(
c2(c2m − c2)Lp + c2mLρ

)
×
(
v21 +

∂v1
∂x

∫
v1dx

)
. (3.3)

For periodic magnetoacoustic perturbations, in the lead-
ing order,

v21 = −∂v1
∂x

∫
v1dx,

where top line denotes the temporal average over period
of the acoustic wave, and Eq. (3.3) possesses approxi-
mately zero right-hand acoustic source. Acoustic heating
is described by equation wich results when P4 applies at
the system Eqs. (2.2). We reproduce it averaged over the
sound period form in the case of nearly periodic magne-
toacoustic perturbations:

∂ρ4
∂t

+
(γ − 1)

c2m

(
Lρ − (c2m − c2)Lp

)
ρ4 =

ρ0(γ − 1)

4c6m

(
c4(3(γ − 2)Lp − 2c2mρ0Lpp)+

c2m(Lρ + 4γLρ − 2ρ0Lρρ)

+c2(3(γ − 2)Lρ + c2m(3Lp + 2γLp − 4ρ0Lpρ))
)
v21 , (3.4)

which rearranges in the case of approximately equal cm
and c into the following equation:

∂ρ4
∂t

+
(γ − 1)

c2m

(
Lρ − (c2m − c2)Lp

)
ρ4 ≡ I1 =

ρ0(γ − 1)

4c4
(
c2(5γ − 3)Lp + (7γ − 5)Lρ

−2c4ρ0Lpp − 4c2ρ0Lpρ − 2ρ0Lρρ
)
v21 ,

which is readily integrated with the result

ρ4 = exp

(
− (γ − 1)

c2m

(
Lρ − (c2m − c2)Lp

)
t

)
×
∫ t

0

exp

(
(γ − 1)

c2m

(
Lρ − (c2m − c2)Lp

)
t′
)
I1(x, t

′)dt′.

This solution corresponds to zero initial ρ4. As for the
acoustic streaming, it appears in flows exceeding one
dimension. This is the bulk motion of a fluid caused
by nonlinear loss in momentum of sound. The acous-
tic source of acoustic streaming follows from the mo-
mentum equation and depends on the type of attenu-
ation. The projecting of the momentum equation be-
comes simpler in the case of quasi-planar flow. Let the
velocity of a planar flow includes two components: v =
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(vx(x, y, t), vy(x, y, t), 0). It is perpendicular to magnetic
field H = (0, 0, Hz(x, y, t)). The acoustic beam propa-
gates for definiteness in the positive direction of axis x
and weakly diverges in the transversal direction. The
magnetoacoustic force of streaming is in fact quadratic
acoustic source that makes the longitudinal velocity of
the vortex flow to increase in time. The averaged over
the sound period equation, takes the form:

∂vx,vort
∂t

= Fm,s = −
(γ − 1)

ρ20c
4c2m

(
c2Lp + Lρ

)
p21. (3.5)

In acoustically active plasma, Fm,s is negative and, con-
sequently, the direction of streamlines turns about as it
happens to other acoustically active gases.

3.1. The heating-cooling function which depends
exclusively on temperature, L(T )

It is useful to consider the case when the heating-
cooling function depends exclusively on temperature,
L(T ). Making use of equalities

Lp =
LT

CV (γ − 1)ρ0
, Lρ = −

c2LT
CV (γ − 1)γρ0

,

Lpp =
LTT

C2
V (γ − 1)2ρ20

,

Lpρ = −
CV (γ − 1)γLT + c2LTT

C2
V (γ − 1)2γρ20

,

Lρρ =
c2(2CV (γ − 1)γLT + c2LTT )

C2
V (γ − 1)2γ2ρ20

,

where
dL

dT
≡ LT ,

d2L

dT 2
≡ LTT , (3.6)

one may readily rearrange Eq. (3.3) into the dynamic
equation
∂ρ3
∂t

= −c
2(−c2m(γ − 1) + γc2)LT

2γc4m(c2m − c2)CV

(
v21 +

∂v1
∂x

∫
v1dx

)
,

which equals approximately zero on average for nearly
periodic sound. Variation in temperature T3which spec-
ifies the Alfvén mode, equals zero:

T3 =
p3

CV (γ − 1)ρ0
− p0ρ3
CV (γ − 1)ρ20

=

1

CV (γ − 1)ρ0

(
p3 −

c2

γ
ρ3

)
= 0

in accordance to relations of ρ3 and p3 established by
Eqs. (2.4) and equalities Eqs. (3.6). If LT > 0, a gas is
acoustically active. Sound enhances in a medium taking
energy from the background. That may be readily con-
cluded from the acoustic dispersion relations, Eqs. (2.3):

ω1,2 = ±cmk −
i(γ − 1)

2c2m

(
c2Lp + Lρ

)
=

±cmk −
i(γ − 1)c2

2CV γρ0c2m
LT .

The equation for the excitation of the entropy mode fol-

lows from making use of P4. We reproduce its averaged
form for the periodic MHD perturbations:

∂ρ4
∂t
− c2 + γ(c2m − c2)

γc4mCV ρ0
LT ρ4 = I2 ≡

c2(γ − 1)

4γ2c6mC
2
V

(
c2mCV γ(5 + 2γ)LT + c2(3CV (γ − 2)γLT

−2c2mLTT )
)
v21 , (3.7)

In the case of small difference between c and cm (that is,
for weak magnetic strength),

I2 =
γ − 1

4γ2c2C2
V

(
CV (5γ − 1)γLT − 2c2LTT

)
v21 .

The second-order derivative is not of importance, if

|LTT | �
(5γ − 1)γCV

2c2
|LT | =

γ2(5γ − 1)

2(γ − 1)T0
|LT |.

All terms should be evaluated at unperturbed thermody-
namic state. The function γ2(5γ−1)

2(γ−1) achieves minimum,
approximately 14.6 at γ = 1.46. Eq. (3.7) is readily inte-
grated with the result

ρ4 = exp

(
c2 + γ(c2m − c2)LT

γc4mCV ρ0
t

)
×
∫ t

0

exp

(
−c

2 + γ(c2m − c2)LT
γc4mCV ρ0

t′
)
I2(x, t

′)dt′.

This solution corresponds to zero initial ρ4. It estab-
lishes negative production of excess density and positive
production of excess temperature associating with the
entropy mode in unit time, if LT < 0. These excess
quantities are related as

T4 = −c
2 + γ(c2m − c2)
γ(γ − 1)CV ρ0

ρ4. (3.8)

LT > 0 corresponds to acoustically active gases and pro-
duction of positive excess density specifying the entropy
mode. That reflects decrease in the background temper-
ature. The excess quantities of the entropy mode may
considerably exceed the excess quantities which associate
with the third Alfvén mode due to the factor c2m − c2 in
the link between p4 and ρ4.

4. The case Lp = 0

If only Lρ differs from zero, both non-wave modes
should be re-determined, as well as correspondent pro-
jectors. The dispersion relations take the limiting form
Eq. (2.3) for Lp = 0, the links of perturbations in the
fourth entropy mode also is a limiting case of these given
by Eqs. (2.4), but the Alfvén mode is specified by the
relations which are not the limiting case:

v3(x, t) = ρ3(x, t) = 0, h3(x, t) = −p3(x, t).

The projecting rows which distinguish p3 and ρ4, take
the forms:
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P3,p =


c2m − c2

0

0

−1


T

, P4 =


1

− (γ−1)ρLρ
c4m

∫
dx

− 1
c2m

− 1
c2m


T

.

Applying of projectors result in the following leading-
order dynamic equations:

∂p3
∂t

=
(c2m − c2)(γ − 1)ρ0Lρ(v

2
1 + ∂v1/∂x

∫
v1dx)

2c4m
,

∂ρ4
∂t

+
(γ − 1)Lρ

c2m
ρ′4 =

(γ − 1)(7γ − 5)ρ0Lρ
4c4

v21 . (4.1)

These equations are instantaneous. They both are eas-
ily integrated, with the solution of the second one in the
form

ρ4 =
(γ − 1)(7γ − 5)ρ0Lρ

4c4
exp

(
− (γ − 1)Lρ

c2m
t

)
×
∫ t

0

exp

(
(γ − 1)Lρ

c2m
t′
)
v1(x, t

′)2dt′

which corresponds zero initial ρ4. In the normal pump-
ing of energy, Lρ < 0 and excess temperature specifying
the fourth mode, is positive and enlarges in time. The
excess quantities of density and temperature are related
in accordance to Eq. (3.8).

5. Concluding remarks

This study brings out some features of excitation of
the non-wave modes in the field of intense sound in the
magnetic fluid. The balance of energy is described by
the heating-cooling function L which in general depends
on pressure and density of a gas. The linear features
of flows in open systems are well-understood. That con-
cerns acoustical activity under some conditions which de-
pend on the first partial derivatives of L over pressure p
and density ρ. The recent studies consider also influ-
ence of the second partial derivatives of L in connection
with dynamics of MHD waves. As far as the authors
know, nonlinear interaction of intense sound with non-
wave modes in a plasma with input inflow of energy were
not studied.

We have considered particular cases of the heating-
cooling function:
1) Lp =

∂L(p,ρ)
∂p 6= 0;

2) L depends exclusively on temperature;
3) Lp =

∂L(p,ρ)
∂p = 0.

Conditions of acoustical activity are established in all
cases. Weakly nonlinear governing equations of the non-
wave modes are derived which take into account acoustic
sources. They are valid for periodic and aperiodic sound
independently on the spectrum of magnetoacoustic dis-
turbances. Instantaneous Eqs. (3.4), (4.1) are the main
results of the study. They specify dynamics of an excess
density in the entropy mode in the field of sound. As
for the vortex flow which is induced in the field of in-
tense sound, it is written on in the averaged form and is

valid for all three particular cases of the heating-cooling
function. This is Eq. (3.5). If L depends exclusively
on temperature, c2Lp + Lρ = c2LT /(γρ0CV ), and all
second-order derivatives of L(p, ρ) are easily expressed in
terms of dL

dT and d2L
dT 2 . This particular case is considered

in Sec.3.1. Both magnetoacoustic heating and stream-
ing manifest the non-uniformity of the background pa-
rameters of a plasma, that is, thermal lenses and bulk
flows which follow attenuation or amplification of sound.
These inhomogeneities in turn have impact on the sound
propagation. Therefore, they may be of especial interest
in the plasma’s applications. As for the magnetic Alfvén
mode, its production is insignificant, at least in the case
of periodic or almost periodic MHD perturbations. The
case Lp = 0 corresponds to the isochoric Alfvén mode,
and the case L(T ) specifies isotermal Alfvén mode.

The magnetoacoustic forces of the secondary non-wave
modes are proportional to the sound intensity and de-
pend on the magnetic strength. In general, properties of
nonlinear flow in a plasma are very similar to other flows
of gases which may be acoustically active, though the
physical reasons for acoustical activity are various. The
reason for acoustical activity of a plasma is determined
by the kind of heating-cooling function, that is, by ex-
ternal inflow of energy which disturbs the adiabaticity of
quick perturbations. There are no restrictions concern-
ing strength of the magnetic field in this study. Mag-
netoacoustic perturbations may be periodic or not and
may include waves of all wave numbers. The authors
apply the method of projecting of initial system of con-
servation equations into the system of coupling equations
for interacting modes independently on their initial spec-
trum. The results of this study may be addressed to a hot
atomic plasma with temperature greater than 104K and
a cold molecular gas with temperature less than 103K
and to different kinds of the function L(p, ρ) which de-
scribes effects of non-adiabaticity. It may take form of
constant heating per unit of mass (this is the case of
Lp = 0, if losses due to radiation are left out of account)
or heating specific for coronal current dissipation (this is
the case of Lρ = 0) in the high-temperature gas. In the
cold molecular gas, the external heating occurs mainly
due to grain photoelectrons and cosmic rays [17]. This
is the case of Lp = 0. Generally, the radiation func-
tion also contributes in L. That has impact on partial
derivatives of L with respect to its arguments. In partic-
ular, the optically thin hot plasma radiates proportion-
ally to ρ2−ηpη [18]. The slow variations of perturbations
in the non-wave modes may be measured remotely, and
the kind of heating-cooling function in a plasma may be
established analytically. This may be of importance in
many applications. The results of this study may be
applied in predictions of slow perturbations in tempera-
ture and density of plasma which follow magnitoacoustic
wave, and in the inverse problems which associate with
specification of magnetoacoustic perturbations, including
aperiodic and pulses.
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