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Abstract In this paper we account for the research e�orts that have been started, for some among us, already

since 2003, and aimed to the design of a class of exotic architectured, optimized (meta) materials. At the �rst stage

of these e�orts, as it often happens, the research was based on the results of mathematical investigations. The

problem to be solved was stated as follows: determine the material (micro)structure governed by those equations

that specify a desired behavior. Addressing this problem has led to the synthesis of second gradient materials. In

the second stage, it has been necessary to develop numerical integration schemes and the corresponding codes for

solving, in physically relevant cases, the chosen equations. Finally, it has been necessary to physically construct

the theoretically synthesized microstructures. This has been possible by means of the recent developments in

rapid prototyping technologies, which allow for the fabrication of some complex (micro)structures considered, up

to now, to be simply some mathematical dreams. We show here a panorama of the results of our e�orts i) in

designing pantographic meta-materials, ii) in exploiting the modern technology of rapid prototyping, and iii) in

the mechanical testing of many real prototypes. Among the key �ndings that have been obtained there are the

following ones: pantographic meta-materials i) undergo very large deformations while remaining in the elastic

regime, ii) are very tough in resisting to damage phenomena, iii) exhibit robust macroscopic mechanical behavior

with respect to minor changes in their microstructure and micromechanical properties, iv) have superior strength

to weight ratio, v) have predictable damage behavior, and vi) possess physical properties that are critically dictated

by their geometry at the microlevel.

Introduction

Like every other human activity, the design, manufacturing and testing of prototypes of novel ma-
terials having a complex and purpose-tailored (micro)structure need the organized e�orts of many
specialists having a large scope of competence. Therefore, the present work needed the collaboration
of many scientists, each one with his/her own speci�c competence. The order of the authors of this
paper has been formed with a simple criterion: it is related to the length of the time period that
has seen their involvement in the described joint research e�orts and, therefore, does not express
any evaluation of the importance of each contribution.

Let us note that, in this paper, no speci�c length scale is attached to the word �micro.� Specif-
ically, with its use it is meant that at one or at multiple smaller (with respect to the unique
macroscale corresponding to that at which phenomena are observed) length scales the material is
made of complex microstructures: they consist in the organization of the distribution of matter and
its (possibly varying) physical properties.

The aim of this paper is to account, in a unique panoramic view, for the research e�orts that we
have started (at least the �rst ones among us) since 2003 and that has produced, in our opinion, some
interesting results. The aim of the investigations was more speci�cally i) to design novel and exotic
architectured metamaterials based on a mathematical understanding of the related mechanical
problems and on suitably designed numerical simulations, ii) to build the designed prototypes by
using 3D printing technology, iii) to test with sensitive apparatuses the so-built prototypes, iv)
to elaborate the obtained data with modern image correlation techniques v) to produce a careful
model �tting of the experimental data by means of the systematic use of numerical simulations and
vi) to compare the proposed models with experimental evidence.

At the �rst stage of the research e�ort, as it often happens, the problem was approached from
a theoretical point of view. The mathematical models, which were initially introduced, belong
to the class of generalized continua: the introduced independent kinematic �elds include not only
the displacement �eld but, eventually, also microstretch and/or microrotation �elds. The particular
class of second gradient continua was more speci�cally considered: in these media, the strain energy
depends on the displacement gradient and on its second gradient. The reasons of their name is
therefore clear: in second gradient continua the strain energy may depend on the second gradient
of displacement. Second gradient continua can be regarded as media endowed with a tensorial
microstructure in which a constraint is applied: it requires that the microstructure tensor be equal
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Pantographic metamaterials 5

to the placement gradient. The problem to be solved was: given a desired behavior, to �nd at �rst the
evolution equations modeling such a behavior and then to characterize the material (micro)structure
governed by the chosen equations.

In the second stage it was necessary to develop numerical integration schemes and the corre-
sponding codes for solving, in physically relevant cases, the equations chosen to describe the desired
behavior. Finally, it was necessary to build the microstructures. This was possible by means of the
recent developments of rapid prototyping technologies, which allows for the fabrication of those
which, up to now, were simply mathematical dreams.

In this paper we show the results of our e�orts in designing pantographic metamaterials, in
the mechanical testing of real prototypes, and evidence is provided on their exotic behavior. With
the latest advancements (e.g. 3D-printing technology and, more generally, of rapid prototyping
techniques), the small scale production of materials with complex geometries has become more
a�ordable than ever [1�4]. The exploitation of these new technologies has made possible the devel-
opment in the last few years of materials with very di�erent sub-structures.

One of the research goals whose achievement has been sped-up by rapid prototyping is to
determine and study new microstructures that, at a well-speci�ed macroscopic scale, exhibit a
behavior that can be described by non-standard mathematical models like generalized continuum
theories. Many of these theories, that today are being called �generalized� (as opposed to �classical�
theories), were formulated before or together with so-called �classical� theories and then lost [5,
6]. It is possible to state that some of these theories were already known at least two centuries
ago [7,8]. Pantographic structures (Fig. 1) have been proposed as a meta-material [9], which is well
described by second gradient continuum theories [10�12].

Fig. 1 Example of pantographic structure [13]

1 Modelling and experiments in elastic regime

The theoretical interest in pantographic structures derives from the fact that, in order to describe
their exotic phenomenology, one has to utilize higher gradient continuum theories [14,15] or micro-
mophic theories [16,17] with the related problem of homogenization [18] and of di�erent strategies
for numerical integration [19,20].
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6 Francesco dell'Isola et al.

1.1 Homogenization of periodic truss modular structures

Throughout the history of Mechanics, several multiscale procedures have been developed in order
to relate macromodels with micromodels, the �rst attempts tracing back to Maxwell and de Saint-
Venant [21]. An approach that has proven to be e�ective is based on the postulate of a macroscopic
and a microscopic model and of a kinematic correspondence between the deformations de�ned
within the two models. Successively, it is postulated that the power expended in corresponding
motions coincides. In this way it is possible to obtain the coe�cients of the constitutive equations
of the macromodel in terms of properties of the building blocks constituting the microscopic model.
Thus, in this case, the macromodel is not the result of the homogenization process but is, instead,
assumed a priori. Formal asymptotic expansion can help to encompass this di�culty and a micro-
scopic model made up of linear Euler beams leads to a simple macroscopic second gradient model
of a 1D planar beam [11]. The structure that is considered at the microlevel is the so-called panto-
graphic structure (Fig. 2). It is assumed that the considered pantographic microstructure is made
up of a very large number of small modules and the limit behavior when such a number tends to
in�nity, i.e. the homogenized macromodel, is studied. Using the technique of Gamma-convergence,
it is proven that the homogenized model is the postulated second gradient model [11]. Successively,
a modi�ed (Warren-type) pantographic structure is proposed as micro-model in order to get for
the �rst time a third gradient planar beam model (Fig. 3), whose general properties were already
studied by Mindlin and Tiersten [22], and Dillon and Perzyna [23]. Such structures possess other
�oppy modes (i.e. placements for which the strain energy vanishes) than, trivially, rigid motions.
The pantographic beam does not store any energy when undergoing uniform extension, while the
Warren-type pantographic beam does not store any energy when undergoing uniform �exure.

Fig. 2 Pantographic microstructure considered in Ref. [11].

Fig. 3 Warren-type pantographic microstructure [11].

In Ref. [24], formal asymptotic expansion procedures, already employed [13,11], are systemat-
ically considered in the framework of linear elasticity in order to determine the e�ective behavior
of periodic structures made of welded elastic bars. Noting that �exural and torsional sti�nesses of
isotropic homogeneous elastic bars are much smaller than the extensional one entails an asymptotic
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Pantographic metamaterials 7

rescaling of sti�nesses giving rise to interesting macromodels. In Ref. [24] di�erent examples of two
dimensional or three dimensional microstructures that lead to generalized 1D, 2D or 3D continua
like Timoshenko beam, Mindlin-Reissner plate, strain gradient, Cosserat, or micromorphic continua
are provided.

Reference [25], in the spirit of pantographic fabrics, addresses one of the main challenges in
the modern theory of materials: the determination of those microstructures that produce, at the
macrolevel, a class of metamaterials whose elastic range is many orders of magnitude wider than
the one exhibited by �conventional� materials. With pantographic microstructures, which are made
of �long� microbeams, it is possible to obtain metamaterials whose elastic range spans up to an
elongation exceeding 30%. It is shown that the same behavior can be obtained by means of an
internal microstructure based on a king post pattern (Fig. 4). This solution shows many advantages,
namely, it only involves microbeams; all beams are only undergoing extension or contraction; all
internal constraints are terminal pivots. While the elastic strain energy can be determined as
easily as in the case of a long-beam microstructure, the proposed design seems to have remarkable
advantages: it seems to be more damage resistant and, therefore, to be able to have a wider elastic
range; it can be obtained with the same three-dimensional printing technology; it seems to be
less subject to compression buckling. The following analyses were carried out: (i) the derivation of
Hencky-type discrete models for king post trusses, (ii) the application of an e�ective integration
scheme to a class of relevant deformation tests for the proposed metamaterial and (iii) the numerical
determination of an equivalent second gradient continuum model.

Fig. 4 King post pantographic lattice: geometry (a), pantographic rods (in black), king post rods (in red and
green), auxiliary rods (in cyan) (b) and king post geometric parameters (c).

1.2 Pipkin elastic plate model with inextensible �bers

Starting from a number of papers by Pipkin et al. [26�33], 2D continua consisting of two orthogonal
families of inextensible �bers were considered [34] and an adaptation to the case of pantographic
structures has been presented [10,35]. First, a 2D continuum, whose reference shape is given by the
rectangular domain Ω ⊂ R2 with the tallest side three times longer than the shorter one, has been
considered. Considering only planar motions, the current shape of Ω is described by the suitably
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8 Francesco dell'Isola et al.

regular macro-placement χ : Ω → R2, with (X1, X2)
χ7→ (x1, x2). An orthogonal frame of reference

(O, ξ1, ξ2), whose orientation is the same of the inextensible �bers in the reference con�guration
and whose coordinates are dimensionless, is introduced. Accordingly, we have

ξ1 :=
1

l
(X1 −X2) +

1

2
, ξ2 :=

1

l
(X1 +X2) +

1

2
. (1)

A graphical depiction of the introduced quantities is given in Fig. 5. A pair (D1, D2) of orthonormal
vectors, the basis associated with the frame of reference (O, ξ1, ξ2), is further introduced. The two
vectors D1 and D2 are tangent to the two families of �bers in the reference con�guration. The
inextensibility constraint can be encoded in the following way: a curve β is inextensible for a
placement χ if, for every part α of β, χ(α) has the same length of α.

Fig. 5 Material (Lagrangian) coordinates adapted to inextensible �ber con�guration [10].

By de�nition d1 and d2 are considered to be the push-forward vectors, in the current con�g-
uration, of the vectors D1 and D2, respectively, i.e. dα = FDα, α = 1, 2, where F = ∇χ. The
inextensibility constraint implies that ‖d1(ξ1, ξ2)‖ = ‖d2(ξ1, ξ2)‖ = 1 for all (ξ1, ξ2) such that χ
is locally continuously di�erentiable. In the celebrated Rivlin paper [36], it is stated that when χ
is twice continuously di�erentiable on an open simply linearly connected subset ∆ of Ω, the �ber
inextensibility assumption allows the following representation formula

χ∆(ξ1, ξ2) = χ∆1 (ξ1) + χ∆2 (ξ2) (2)

to be found for the restriction to ∆ of the placement. If µ∆1 (ξ1) and ν∆1 (ξ1) denote the projections
of χ∆1 (ξ1) on D1 and D2, respectively, and ν∆2 (ξ2) and µ∆2 (ξ2) the projections of χ∆2 (ξ1) on D1

and D2, respectively, then

χ∆1 (ξ1) = µ∆1 (ξ1)D1 + ν∆1 (ξ1)D2 and χ∆2 (ξ2) = ν∆2 (ξ2)D1 + µ∆2 (ξ2)D2 (3)

The map χ is assumed to be piece-wise twice continuously di�erentiable. It is worth noting that
the matrix representation of F on the subset ∆ and for the frame of reference de�ned by D1 and
D2 is

[F∆](D1,D2) =

[
µ∆1,1(ξ1) ν

∆
2,2(ξ2)

ν∆1,1(ξ1) µ
∆
2,2(ξ2)

]
(4)
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and that the functions χ∆α (ξα) (α = 1, 2) are determined up to two scalar constants C1 and
C2, i.e. if the decomposition (2) holds with the representation (3), then the following alternative
representation holds

χ∆1 (ξ1) =
(
µ∆1 (ξ1) + C1

)
D1 +

(
ν∆1 (ξ1) + C2

)
D2

χ∆2 (ξ2) =
(
ν∆2 (ξ2)− C1

)
D1 +

(
µ∆2 (ξ2)− C2

)
D2 (5)

The inextensibility constraint, together with the assumption that the map χ be piecewise C2,
implies that there exist two quantities ϑ∆1 (ξ1) and ϑ∆2 (ξ2) such that

d∆1 = cosϑ1(ξ1)D1 + sinϑ1(ξ1)D2 and d∆2 = sinϑ2(ξ2)D1 + cosϑ2(ξ2)D2 (6)

The above statement stands since d∆1 and d∆2 belong to S2 = {x ∈ R2 : ‖x‖ = 1}.
Let Σ1 and Σ2 denote the left and right short sides, respectively, of the boundary ∂Ω of Ω.

The following boundary conditions are considered:

1. vanishing displacement on Σ1;
2. non-vanishing displacement u0 on Σ2.

Because of �ber inextensibility, the boundary conditions on Σ1 and Σ2 determine the placement
�eld not just at the boundary, but also in some regions of the interior of Ω [34] , i.e. on the regions
∆00 and ∆33 of Fig. 6.

Fig. 6 Domain pattern induced by the boundary conditions [10].

Hence, the space of admissible placements for the Pipkin continuum under study is uniquely
determined by the continuous piecewise twice continuously di�erentiable �elds µ1(ξ1) and µ2(ξ2). In
particular, given the boundary conditions i.e. µ(ξ) is known on ∆00 and ∆33 (for ξα ∈ [0, 1]∪ [3, 4]),
we are interested in determining µα(ξα) only for ξα ∈ [1, 3] . By looking at the ordinary di�erential
equations

dµα(ξα)

dξα
= cosϑα(ξ), α = 1, 2 (7)

which derive from Equation (13) and (6). Providing an integration constant through the continuity
condition µα(1) = 1 at point (1, 1) uniquely de�nes the space of admissible placements for the
Pipkin continuum by means of the �elds ϑ1(ξ1) and ϑ2(ξ2).

In �ber-inextensible 2D Pipkin continua it is customary to introduce the shear deformation γ
as a strain measure. The shear deformation is de�ned as the scalar product of the �ber directions in
the deformed con�guration and, reminding the inextensibility assumption and Equation (6), reads

γ(ξ1, ξ2) := d1 · d2 = cos
(π
2
− ϑ1(ξ1)− ϑ2(ξ2)

)
= sin (ϑ1(ξ1) + ϑ2(ξ2)) (8)

The following kinematic constraint should be enforced

−π
2
< ϑ1 + ϑ2 <

π

2
( =⇒ −1 < γ < 1) (9)
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10 Francesco dell'Isola et al.

if the case ϑ1 + ϑ2 = ±π2 , which stands for overlapping �bers is to be avoided. Now that the
space of �elds ϑ1(ξ1) and ϑ2(ξ2) uniquely describe admissible placements, the strain energy density

W (ϑ1, ϑ2,
dϑ1

ξ1
,
dϑ2

ξ2
) is introduced. It is assumed to have the form

W (ϑ1, ϑ2,
dϑ1

ξ1
,
dϑ2

ξ2
) = αg(f(γ)) + βg(‖∇f(γ)‖) (10)

with g(x) = 1
2x

2. Di�erent functions f have been studied [10,35], among which:

S f(γ) = γ
Q f(γ) = arcsin γ
T f(γ) = tan(arcsin γ)

Henceforth the case α = 1, β = 0 is referred to as �rst gradient (1g), and α = 0, β = 1 as second

gradient (2g). Numerical results show that �nal con�gurations obtained by using second gradient
energies are smoother than those with the �rst gradient approach. In the following, numerical
results will be reported for standard bias extension, shear and rotation tests, which con�rm such
a statement. Among all experiment, the bias test has been extensively analyzed. In a standard
bias extension test, u01 = u02 := u0. Then a new property has to be enforced on the placement
function χ, which holds true for the bias extension test, while not, e.g., for the shear tests that will
be considered later on. Only placements functions that are symmetric with respect to the X1 axis
can be considered. With regard to the reference frame (O, ξ1, ξ2), this means that given a point P
of coordinates (ξ, η) and its symmetric (with respect to X1) PS whose coordinates are (η, ξ), the
conditions

d1(P ) ·Dα = d2(PS) ·D3−α α = 1, 2 (11)

must be satis�ed. They imply that ν1,1(ξ) = ν2,2(ξ) and µ1,1(ξ) = µ2,2(ξ) and in turn, given the
boundary conditions, ν1(ξ) = ν2(ξ) := ν(ξ) and µ1(ξ) = µ2(ξ) := µ(ξ). It is thus possible to state
that in a standard bias test the space of admissible placements for the Pipkin continuum is uniquely
determined by the continuous piecewise twice continuously di�erentiable �eld µ(ξ). Since µ(ξ) is
known on ∆00 and ∆33, i.e. for ξ ∈ [0, 1] ∪ [3, 4], we are interested in determining µ(ξ) only for
ξ ∈ [1, 3]. By analyzing ordinary di�erential equations

dµα(ξ)

dξ
= cosϑα(ξ), α = 1, 2 (12)

it is concluded that ϑ1(ξ) = ϑ2(ξ) := ϑ(ξ) with ϑ(ξ) a (possibly discontinuous) piecewise continu-
ously di�erentiable �eld. Numerical results are shown in Figs. 7 and 8. Figure 7 provides a general
overview of the qualitative di�erences among di�erent choices of α, β and of the function f in
Equation (10). In Fig. 8, a comparison between �nal shapes of the rectangular sample is reported
when modelled with 1gT and 2gT strain energy densities. It is possible to notice that �nal shapes
are much smoother when a second gradient model is employed, as strong variations of the �eld
variable are penalized in the energy.
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Pantographic metamaterials 11

Fig. 7 Bias extension test. Resultant (normal) forces on the short side (computed by means of Castigliano's
�rst theorem) versus vertical component of prescribed displacement: (a) �rst gradient energy models, (b) second
gradient energy models.

Fig. 8 Bias extension test. Reference and deformed con�gurations for the �rst gradient 1gT (left) and second
gradient 2gT (right) models.

Let us now turn to reporting shear tests. Thus, the symmetry assumptions, which were pre-
viously introduced when dealing with the standard bias extension test, are no longer considered.
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12 Francesco dell'Isola et al.

When modelling the shear test, the condition u01 = −u02 holds. The results are shown in Figs. 9
and 10. In particular, Fig. 9 gives an overview of the qualitative di�erences among di�erent choices
of α, β and of the function f de�ned in Equation (10). The non-monotonicity of the 1gS and 2gS
models is not physically grounded. Besides, in Fig. 10 comparisons between �nal shapes of the
rectangular samples, modelled with 1gT and 2gT strain energy density, are reported. Again, it is
possible to notice that �nal shapes are much smoother when a second gradient model is employed.

Fig. 9 Shear test. Resultant (shear) forces on the short side (computed by means of Castigliano's �rst theorem)
versus vertical component of prescribed displacement: (a) �rst gradient energy models, (b) second gradient energy
models.

Fig. 10 Shear test. Reference and deformed con�gurations for the �rst gradient 1gT (left) and second gradient
2gT (right) models.
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Pantographic metamaterials 13

1.3 Discrete Hencky-type elastic plate model

A discrete approach has been introduced for pantographic structures [13], and subsequently stud-
ied [37,38]. Modelling assumptions for the micromodel are based on physically grounded consider-
ations about the real microstructure of pantographic sheets and apply to the case of large deforma-
tions. In particular, trying to comply with reported experimental evidences [13,10], the extension
of �bers is accounted for by connecting adjacent material particles with extensional springs. More-
over, at each node of the lattice, rotational springs, which are deformed when the angle spanned
by two contiguous extensional springs is changed, are introduced. To account for the fact that such
materials show two privileged material directions, a Lagrangian Cartesian orthonormal coordinate
system is introduced. Its associated basis of unit vectors is (D1, D2) made of two orthonormal
vectors that represent the directions of the families of �bers constituting the pantographic struc-
ture in the reference con�guration. In such con�guration the lattice body points are located at the
positions

Pi,j = (iε, jε), i = 0, 1, ..., N and j = 0, 1, ...,M (13)

and pi,j denotes the current con�guration position of the body point placed at Pi,j in the reference
con�guration. The body points at the nodes Pi,j are connected by extensional springs along each
one of the coordinate lines (Fig. 11) and their deformation energies depend on the distances between
adjacent contiguous points in the current con�guration, i.e. on the distance between pi,j and pi,j+1

for the �bers parallel to D1 in the reference con�guration, and on the distance between pi,j and
pi+1,j for the �bers parallel to D2 in the reference con�guration. The �rst type of extensional
spring is characterized by the rigidity k1i,j and the second kind by k2i,j . Such extensional rigidities
are related to the extensional behavior, respectively, of the two families of �bers. As mentioned
before, at each node there are also three rotational springs whose deformation energies depend
respectively on the angles:

1. ϑ1
i,j formed by the vectors pi−1,j − pi,j and pi+1,j − pi,j ,

2. ϑ2
i,j formed by the vectors pi,j−1 − pi,j and pi,j+1 − pi,j ,

3. ϑ3
i,j formed by the vectors pi,j+1 − pi,j and pi+1,j − pi,j .

The postulated strain energy for the microscopic Lagrangian discrete system having its con�gura-
tion speci�ed by the set of parameters {pi,j} reads

U({pi,j}) =
∑
j

∑
i

k1i,j
2

(‖pi+1,j − pi,j‖ − ε)2 +
∑
j

∑
i

b1i,j(cosϑ
1
i,j + 1)+

+
∑
j

∑
i

k2i,j
2

(‖pi,j+1 − pi,j‖ − ε)2 +
∑
j

∑
i

b2i,j(cosϑ
2
i,j + 1)+ (14)

+
∑
j

∑
i

b3i,j
2

∣∣∣ϑ3
i,j −

π

2

∣∣∣ξ

On the one hand, the rigidities b1i,j and b2i,j are related, respectively, to the bending behavior of
the two families of �bers. The rigidities b3i,j , on the other hand, are associated with the torsional
sti�ness of the pivots connecting the two families of �bers, ξ being a parameter that is equal to 2
for a standard linear case.
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14 Francesco dell'Isola et al.

Fig. 11 Micromodel of a pantographic sheet with a detail of the three rotational springs [13]

In subsequent papers [37,38], the discrete (elastic) quasi-static Hencky-type spring model, made
of extensional and rotational (i.e. torsional) springs is solved at each iteration by energy minimiza-
tion. Even if the model does not contemplate external forces, it would be very easy to consider
the discrete analogous forces leading, after a homogenization like the one presented later on, to
external bulk forces and double forces. In Fig. 12 the equilibrium shape resulting from a standard
bias extension test simulation using the strain energy (16) is shown, along with colors indicating
the magnitude of internal forces on extensional springs computed in the current con�guration,
and whose expression is given in Ref. [38]. In the same manner, in Fig. 13, the equilibrium shape
resulting from a shear test simulation is shown.

Fig. 12 Bias extension test simulation using the micromodel when M = 20 and N = 60: reference con�guration
(gray), current shape and color bar of the internal forces on extensional springs [38].
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Pantographic metamaterials 15

Fig. 13 Shear-extension test simulation using the micromodel: reference con�guration (gray), current shape and
color bar of the internal forces on extensional springs for M = 10 and N = 30 [38].

1.4 À la Piola homogenized elastic plate model

Considering the discrete Hencky-type micromodel presented above, a 2D continuum macromodel
has been derived by means of micro-macro transitions. Expanding in truncated Taylor series the
kinematic map [13] the micro-placement �eld of material particles at the nodes of the referential
lattice is computed by means of the values, in such nodes, of a regular macro-placement and its �rst
gradient. Such a map determines a unique micro-motion once a macro-motion is given. The micro-
macro transition is obtained by equating the micro-strain energy with the macroscopic counterpart,
thus obtaining a macroscopic Lagrangian surface density of strain energy in terms of the constitutive
coe�cients appearing in the postulated expression of the micro-strain energy. Numerical simulations
with both discrete and homogenized models show that the homogenized model is representative of
the microscopic response [37,38]. Following the notation introduced above, we now consider a 2D
continuum whose reference shape is given by a rectangular domain Ω = [0, Nε] × [0,Mε] ⊂ R2.
Very often, it is assumed that N = 3M , which is the standard relation between the width and
height of a fabric specimen for experimental and numerical tests. By assuming planar motions, the
current shape of Ω is described by regular macro-placement χ : Ω → R2. The kinematic map
providing the micro-macro identi�cation is the so-called Piola ansatz and we accordingly choose
pi,j = χ(Pi,j) ∀i = 1, ..., N, ∀j = 1, ...,M . Assuming that χ(·) is at least twice di�erentiable at
Pi,j , the following 2nd-order approximations are obtained

‖pi+1,j − pi,j‖ = ‖χ(Pi+1,j)− χ(Pi,j)‖ w ε‖F (Pi,j)D1 +
ε

2
∇F (Pi,j)|D1 ⊗D1‖

‖pi,j+1 − pi,j‖ = ‖χ(Pi,j+1)− χ(Pi,j)‖ w ε‖F (Pi,j)D2 +
ε

2
∇F (Pi,j)|D2 ⊗D2‖ (15)

where F is the deformation gradient ∇χ. The reader is referred to the original papers [37,38,
13] for further details. Equations (15) have been used for the homogenization procedure of two
addends of Equation (14). In order to address the other three terms, the cosines of the angles ϑαi,j
(α = 1, 2) and ϑ3

i,j are derived as functions of the macro-placement χ. Using analogous Taylor
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16 Francesco dell'Isola et al.

expansions as those in Equation (15) neglecting o(ε2) terms, and writing all quantities in terms of
the displacement χ, the strain energy of the micromodel becomes

U({pi,j}) =
∑
j

∑
i

∑
α

kαi,j
2
ε2(‖F (Pi,j)Dα +

ε

2
∇F (Pi,j)|Dα ⊗Dα‖ − 1)2

+
∑
j

∑
i

∑
α

bαi,j

[
‖∇F (Pi,j)|Dα ⊗Dα‖2

‖Fi,jDα‖2
−
(
F (Pi,j)Dα · ∇F (Pi,j)|Dα ⊗Dα

‖Fi,jDα‖2

)2
]
ε2

2

+
∑
j

∑
i

b3i,j
2

∣∣∣∣arccos( F (Pi,j)D1 · F (Pi,j)D2

‖F (Pi,j)D1‖ · ‖F (Pi,j)D2‖

)
− π

2

∣∣∣∣ξ ,
(16)

Rescaling the rigidities as
kαi,j = Kαe ; bαi,j = Kαb ; b3i,j = Kpε2 (17)

and letting ε→ 0, the strain energy of the macroscopic system reduces to

U(χ(·)) =
ˆ
Ω

∑
α

Kαe
2
‖FDα − 1‖2dS+

+

ˆ
Ω

∑
α

Kαb
2

[
‖∇F |Dα ⊗Dα‖2

‖FDα‖2
−
(
FDα · ∇F |Dα ⊗Dα

‖FDα‖2

)2
]
dS+

+

ˆ
Ω

Kp
2

∣∣∣∣arccos( FD1 · FD2

‖FD1‖ · ‖FD2‖

)
− π

2

∣∣∣∣ξ dS.
(18)

It is noteworthy that the shear strain introduced in the considered macromodel is di�erent from
that de�ned in the Pipkin continuum model (see Equation (8)). In Fig. 15 equilibrium shapes and
their corresponding shear strains are compared for di�erent (pure) shear test simulations (refer
to problem 2 above) using the strain energy (18). Reference [18] has �rst addressed the homog-
enization à la Piola of pantographic fabrics in a linear setting, proving that the homogenization
of pantographic fabrics gives rise to second gradient continua. Several numerical simulations show
the presence of (internal) boundary layers, a hallmark of second gradient theories. In Fig. 14, nu-
merical simulation of the bias extension test are shown. Colors indicate the shear strain relative
to the initial �ber axes (left) and the strain energy density (right) [13]. In Fig. 16, color maps of
the strain energy density for standard bias extension test (left) and combined rotation-compression
test (right) of a rectangular linear elastic specimen pantographic fabrics with holes are shown.

Fig. 14 Numerical simulation of the bias extension test. Colors indicate the shear strain relative to the initial
�ber axes (left) and the strain energy density (right) [13].
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Pantographic metamaterials 17

Fig. 15 Equilibrium shape and strain energy density when a shear displacement is prescribed [13].

Fig. 16 Color maps of the strain energy density for standard bias extension test (left) and combined rotation-
compression test (right) of rectangular linear elastic specimen pantographic fabrics with rectangular holes.

The well-posedness of linearized equilibrium equations deriving from the stationarity of the
energy functional (18), which is valid in the neighborhood of a stress free con�guration for panto-
graphic sheets, cannot be immediately studied by using the results available in the literature. It
has been proven that the standard strategy involving the use of Poincaré inequality, Lax-Milgram
Theorem, and coercivity of bilinear strain energy form also apply in the context of linear elastic
pantographic sheets [39]. The key idea is the exploitation of an unusual energy space, where the
solutions relative to well-posed boundary conditions are looked for. It is observed that the energy
space of linear pantographic sheets, i.e. the space of functions ful�lling boundary conditions for
which the strain energy is meaningful, is included in a special class of Sobolev spaces, the so-called
Anisotropic Sobolev Space. The de�nition of Anisotropic Sobolev Space was conceived on purely
logical grounds by Sergei M. Nikol'skii, and has to be used in order to apply the abstract Hilbertian
setting of solution strategy. Thus, in order to address the well-posedness of the planar linearized
equilibrium problem for homogenized pantographic lattices, (i) a class of subsets of anisotropic
Sobolev space is introduced as the most suitable energy space relative to assigned boundary condi-
tions; (ii) it is proved that the considered strain energy density is coercive and positive de�nite in
such energy space; (iii) the set of placements for which the strain energy is vanishing (the so-called
�oppy modes) must strictly include rigid motions; (iv) the restrictions on displacement boundary
conditions that ensure the existence and uniqueness of linear static problems are determined.
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18 Francesco dell'Isola et al.

1.5 Numerical identi�cation of homogenized model

In Ref. [37], the parameters Kαa , Kαb and Kp appearing in the strain energy are assumed to be
independent of the position and family of beams they are related to and the strain energy density
of the homogenized model (18). The parameter identi�cation is numerical, which means that the
constitutive parameters Ke, Kb and Kp of the homogenized model are calibrated by means of
several numerical computations performed with the 3D Cauchy model of isotropic and homogeneous
elastic materials undergoing arbitrarily large strains. Several bias extension test simulations [40]
using both the standard Cauchy model and the higher-gradient model, for several displacements
prescribed on the shorter side of the specimen, are performed. For each simulation, the overall stored
energy and two representative deformations at speci�c points are evaluated. The two representative
deformations are chosen to be the angles ψC and ψV , evaluated at the probed points shown in
Fig. 17, i.e. at the center C of the specimen and at the corner V of the �quasi-rigid� triangle near
a base of the specimen.

CV

Fig. 17 The two control angles employed in the identi�cation procedure.

The material parameters of the macromodel Ke, Kb and Kp are estimated by minimizing the
squared errors for the overall stored energy and the two angles ψC , ψV , when computed both
with the homogenized and Cauchy models. The two angles ψC , ψV have been chosen among other
possible control quantities because each of them is strongly related to one of the last two energy
terms (18) only dependent only on one parameter each. The energy involved in the distortion angle
at the center is mostly governed by the parameter Kp, while the distortion angle at the triangle
vertex depends for the most part on the bending energy related to Kb, thus allowing to easily
�nd the minimum of the squared error for the two angles by separately tuning Ke and Kb. The
last parameter Ke is derived by considering the whole stored energy. In Figs. 18 and 19(left), the
total energy and the angles ψC and ψV used for �tting the second gradient model are shown as
the prescribed displacement in the bias extension test is varying. In Fig. 19 (right), a comparison
between the total reaction force of the micromodel and the one evaluated with the macromodel is
plotted versus the prescribed displacement. This quantity was computed by means of Castigliano's
�rst theorem. Figure 20 shows that for the Cauchy model a non-negligible amount of energy is stored
for con�gurations that are not accounted for in the coarser second gradient model. The main reason
is that the Cauchy model has a richer kinematics than the homogenized one. Figure 19(right)
con�rms this statement that at large displacements, which are likely to be those where strain
energies due to the richer kinematics of the re�ned model start to gain signi�cance.
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Pantographic metamaterials 19

Fig. 18 Comparison of the total energy between the Cauchy model (points) and the second gradient model (solid
line).

Fig. 19 Comparisons between the Cauchy model (points) and the regression with the second gradient model
(solid line). (a) Angle at the center ψC (blue line) and angle at the corner ψV (green line) on the left; (b) total
reaction force.
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20 Francesco dell'Isola et al.

Fig. 20 3D deformation details; the colors in the zooms indicate qualitatively the stored elastic energy density
for the 3D Cauchy model.

1.6 Elastic surface models

In Ref. [41], the formulation of a model for pantographic sheets, which is regarded as elastic surfaces
embedded in a three dimensional Euclidean space, has been �rst presented. In order to account
for the geodesic (thus generalizing the classical plate theory) and out-of-plane bending of �bers,
the model exhibits an associated second-gradient areal strain energy density, which depends on the
�rst and second gradients of the deformation. Accounting for the fact that �bers are arranged in
two material directions a Lagrangian Cartesian orthonormal coordinate system, whose associated
basis of unit vectors is (D1, D2), is introduced in the reference con�guration. We now consider a
2D continuum, whose reference shape is the rectangular domain B ⊂ R2. As customary, D1 and
D2 are de�ned as the push-forward vectors in the current con�guration of the vectors D1 and D2

respectively, i.e. Dα = FDα, α = 1, 2. In the sequel �ber stretches ‖Dα‖ are denoted as λ and µ

F = D1 ⊗D1 +D2 ⊗D2 = λD̃1 ⊗D1 + µD̃2 ⊗D2 (19)

where D̃α = Dα
‖Dα‖ are the unit vectors associated with Dα. Such vectors are used to de�ne the �ber

shear strain γ as sin γ = D̃1 · D̃2 [13,41]. The shear strain introduced in this model is di�erent from
that de�ned in the Pipkin continuum model [10,35,34]. From Equation (19) the right Cauchy-Green
tensor reads

C = FTF = λ2D1 ⊗D1 + µ2D2 ⊗D2 + λµ sin γ (D1 ⊗D2 +D2 ⊗D1) . (20)

and
Jn = FD1 × FD2 = D1 ×D2 (21)

with n the unit normal of the deformed surface �eld, and J = λµ| cos γ| the local areal dilation due
to the deformation. In [41] the following representation formula is proven

∇∇χ = (g1 +K1n)⊗D1⊗D1 +(g2 +K2n)⊗D2⊗D2 +(Γ + Tn)⊗ (D1 ⊗D2 +D2 ⊗D1) (22)
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Pantographic metamaterials 21

with

g1 = λη1p+ (D1 · ∇λ) D̃1; g2 = µη2q + (D2 · ∇µ) D̃2 (23)

Γ = (D1 · ∇µ) D̃2 + λµφ1q = (D2 · ∇λ) D̃1 + λµφ2p (24)

q = n× D̃2; p = n× D̃1 (25)

K1 = λ2κ1; K2 = µ2κ2; T = λµτ. (26)

The quantities η1 and η2 in (23) are the geodesic curvatures of the deformed �bers, φ1 and φ2

appearing in (24) are the so-called Tchebychev curvatures, κ1 and κ2 appearing in (26) are the
normal curvatures of the deformed �bers and τ measures the twist of the deformed surface. In [41]
explicit expressions for geodesic and Tchebychev curvatures are provided and we have

Jη1 = D1 · ∇(µ sin γ)−D2 · ∇λ
Jη2 = D1 · ∇(µ)−D2 · ∇(λ sin γ)
Jφ1 = Jη2 + λD2 · ∇(sin γ)
Jφ2 = Jη1 + µD1 · ∇(sin γ).

Furthermore, a strain energy density function, which depends on the �rst and second gradients
of the deformation and incorporating the orthotropic symmetry conferred by the reference �ber
arrangement, is proposed in [42]

W = w(λ, µ, J) +
1

2

(
A1|g1|2 +A2|g2|2 +AΓ |Γ |2 + k1K

2
1 + k2K

2
2 + kTK

2
T

)
(27)

where A1, A2, AΓ , k1, k2, kT are constitutive constants. In Fig. 21 numerical simulation of torsion
of a square sheet using the elastic surface model presented above is shown. Using the above model,
many �ber reference curvatures have been considered (e.g. sinusoidal, spiral, parabolic �bers) and,
for parabolic �bers, experiments (Fig. 22) and model (Fig. 23) both show that, after a critical
loading, out-of-plane buckling occurs during bias extension, because the transverse (curved) beams
in the middle of the specimen undergo buckling induced by the shortening of the middle width of
the specimen.
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22 Francesco dell'Isola et al.

Fig. 21 Numerical simulation of torsion of a square sheet (θ = 60°) using the elastic surface model presented
above. Colors represent qualitatively the out-of-plane component of the displacement u3.

Fig. 22 Bias extension test on parabolic pantographic fabric. Out-of-plane buckling is observed after critical
loading.

Fig. 23 Simulation of bias extension test on parabolic pantographic fabrics. Out-of-plane buckling is observed
after a critical loading. Deformed con�guration and qualitative out of plane displacement.
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Pantographic metamaterials 23

A 2D continuum model embedded in a 3D space has been also proposed [43] where, relying on a
variational framework, the following strain energy density is proposed

π=
1

2

{
Ke

[(
ε1
)2

+
(
ε2
)2]

+Ksγ
2+ (28)

+Kt

[(
κ11

)2
+
(
κ21

)2]
+Kn

[(
κ12

)2
+
(
κ22

)2]
+Kg

[(
κ13

)2
+
(
κ23

)2]}
It corresponds to a system of two orthogonal continuous families �1� and �2� of straight shear-
undeformable beams arranged along the coordinate axes in the reference con�guration and resem-
bling the pantographic microstructure. The �bers of family α are parallel to the direction êα. The
contributions 1

2Ke
(
ε1
)2

and 1
2Ke

(
ε2
)2

stand for the elongation of �bers belonging to, respectively,
the families �1� and �2.� The strain measure εα, with α = 1, 2, is de�ned as

εα =

∥∥∥∥ ∂ χ∂Xα

∥∥∥∥− 1 (29)

and Ke ∈ [0,∞) is the corresponding sti�ness, which is assumed to be the same for both families
of �bers. The contribution Ksγ2 is accounting for the shear deformation of the sheet, i.e. it is due
to the relative rotation of two orthogonal intersecting �bers. It represents the strain energy stored
in the pivot because of its torsion of angle γ. The strain measure γ ∈ [−π2 ,

π
2 ], also referred to as

the shear angle, is de�ned as

γ = arcsin

∂ χ
∂X1
· ∂ χ∂X2∥∥∥ ∂ χ∂X1

∥∥∥ ∥∥∥ ∂ χ∂X2

∥∥∥ (30)

and Ks,m andQ are positive constitutive parameters. The terms 1
2

[
Kt
(
κ11
)2

+Kn
(
κ12
)2

+Kg
(
κ13
)2]

and 1
2

[
Kt
(
κ21
)2

+Kn
(
κ22
)2

+Kg
(
κ23
)2]

are due to twist, normal bending and geodesic bending

of beams belonging, respectively, to families �1� and �2� of �bers. The strain measures κα1 , κ
α
2 , κ

α
3

are the coordinates, in the augmented levorotatory reference Cartesian frame, of the axial vector
corresponding to the skew tensor Wα = (Rα)T ∂Rα

∂Xα
, which is the so-called current curvature ten-

sor. The orthogonal tensor Rα transforms the augmented levorotatory reference Cartesian frame
vectors into the following ordered triplet: i) the unitary vector tangent to the deformed coordi-
nate line α; ii) the unitary vector normal to the previous one and lying in the plane tangent to
the deformed surface; iii) the unitary vector normal to the plane tangent to the deformed surface.
Explicit (lengthy) derivations can be found in Ref. [43].

It is worth noting that i) since the beams are assumed to be shear-undeformable ii) both R1

and R2 transform the third vector ê3 of the augmented levorotatory reference Cartesian frame into
the same vector, iii) assuming that principal inertia axes of the cross-sections for the two families
�1� and �2� of beams in the undeformed con�guration are considered to be respectively (ê2, ê3) and
(−ê1, ê3), the cross-sections of the beams belonging to the two families �1� and �2� are eigen inertia
vectors in the deformed con�guration the unitary vectors of points ii) and iii) above and, hence,
they share the second principal inertia axis at point iii) above. Such vector can be interpreted also
as the current axis of the elastic cylindrical pivot. This means that deformation modes of the pivots
other than their torsion are kinematically excluded in this model, i.e. the pivots are assumed to
remain orthogonal to both �bers in the current con�guration and only their torsion contributes to
the strain energy. Further, κα1 , κ

α
2 , κ

α
3 can also be interpreted as geodesic torsion, normal curvature

and geodesic curvature of the deformed surface multiplied respectively by ‖ ∂ χ∂Xα
‖, since Xα is not

a unitary speed parameterization. Last, the �bers intersecting in one point cannot detach or have
a relative displacement, since their motion is described by the same placement function (this is
not a so-called mixture model). Using the above model shear test simulations have been performed
reporting the occurrence of out-of-plane buckling (Fig. 24).
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24 Francesco dell'Isola et al.

Fig. 24 Shear test. Qualitative buckled shapes of the �rst two bifurcation modes. Colors indicate values of the
out-of-plane displacement. (a) First and (b) second buckling modes.

1.7 Analytical identi�cation of elastic plate models

Let us consider a 2-dimensional body, whose points can be put in a bijective correspondence with
a closed subset B of the Euclidean space R2. The set B represents the shape of the body in the
reference (undeformed) con�guration. A Cartesian coordinate system (O, (ê1, ê2)) is introduced,
with X = (X1, X2) the coordinates of the generic point in the Euclidean space R2. Working in a
Lagrangian framework, a placement function χ : B0 → R2 such that the image x = χ (X) of X
through χ is the current position of point X. The displacement �eld u : B0 → R2 is de�ned as
u (X) = χ (X)−X. The placement, or equivalently the displacement, is the independent kinematic
descriptor of the system. The image B = χ (B) of B through χ is the current shape of the body. Let
F = ∇Xχ be the gradient (with respect to the Lagrangian coordinate X) of the placement function
χ. The tensor F belongs to Lin+, the group of second order tensors with positive determinant
i.e. orientation preserving. An objective strain measure G =

[
FTF − I

]
/2 (Green-Lagrange strain

tensor) is then de�ned. Henceforth, the subscriptX will be omitted in∇X and each space derivative
will be considered a material derivative. When the strain energy density Û (G,∇G) is considered
to be depending quadratically upon the deformation tensor G and its gradient ∇G, the following
representation formula applies [44]

Ûstrain =
1

2
εTC3×3ε+

1

2
ηTA6×6η (31)

with

ε =
(
G11 G22

√
2G12

)T
(32)

and

η =
(
G11,1 G22,1

√
2G12,2 G22,2 G11,2

√
2G12,1

)T
(33)

In order to account for anisotropy of the material, we must assume invariance of the strain
energy density under the action, on the Cartesian coordinate system O, (ê1, ê2) labelling points
of the reference con�guration, of some symmetry group S of transformations, which could be any
subgroup of Orth. When the symmetry group is the dihedral group D4 (orthotropic material) we
have the following representations for the matrices C3×3 and A6×6

CD4
3×3 =

 c11 c12 0
c12 c22 0
0 0 c33

 (34)
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and

AD4
6×6 =

(
AD4

3×3 0

0 AD4
3×3

)
(35)

with c11 and c12 in CD4
3×3 corresponding to the two Lamé coe�cients

AD4
3×3 =

a11 a12 a13a12 a22 a23
a13 a23 a33

 (36)

In Refs. [45�47] compatible identi�cations of the constitutive parameters appearing in Equa-
tion (31) have been carried out, thus completely characterizing the set of constitutive parameters
in terms of the �ber base material parameters (i.e. Young's modulus), of the �ber cross-section
parameters (i.e. area and moment of inertia), and of the distance between the nearest pivots. In
particular, the constitutive parameters have been identi�ed in the small strain case |∇u| � 1,
modeling �bers as (geometrically linear) Euler-Bernoulli beams and pivots as rotational (elastic)
springs with a quadratic potential in the relative rotation (torsion of pivots) angle between �bers
belonging to two di�erent families. The following expressions for the matrices CD4

3×3 and AD4
3×3 are

the outcome of the investigation [47]

CD4
3×3 =

 EA
d 0 0

0 EA
d 0

0 0 2kR

 (37)

AD4
3×3 =

EI

d

 0 0 0

0 1 −
√
2

0 −
√
2 2

 (38)

with E, A and I being, respectively, the Young's modulus, the cross-sectional area and the inertia
moment of the cross-section of beams, and d being the spacing between adjacent beams. Finally,
kR is the equivalent elastic torsional sti�ness of the cylindrical pivots. The shear strain relative to
the directions v and w is de�ned as (with −π2 < γ < π

2 )

sin γ = cos
(π
2
− γ

)
=

Fv · Fw
‖Fv‖ ‖Fw‖ =

wTFTFv

‖Fv‖ ‖Fw‖ =
wT (2G+ I) v

‖Fv‖ ‖Fw‖ . (39)

In the present case w = ê1 and v = ê2. Thus, assuming that −π2 ≤ γ ≤
π
2

γ = arcsin

 2G12√
(1 + u1,1)

2 + u22,1

√
(1 + u2,2)

2 + u21,2

 . (40)

In the case of small strains, i.e. geometrically linear case |∇u| � 1

γ ' arcsin (u1,2 + u2,1) ' u1,2 + u2,1. (41)

Equation (31) yields the following remarkable expression for the strain energy density

Ûstrain =
1

2
kR (u1,2 + u2,1)

2︸ ︷︷ ︸
shear (pivot torsion) contribution

+
EA

2d

(
u21,1 + u22,2

)
︸ ︷︷ ︸
extension of �bers

+
EI

2d

(
u21,22 + u22,11

)
︸ ︷︷ ︸
bending of �bers

(42)

In Ref. [45], numerical solutions using the strain energy density (42) are presented for a circular
pantographic specimen and three exemplary problems: bias extension, shear, and rotation tests
(Fig. 25).
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26 Francesco dell'Isola et al.

(a) (b) (c)

Fig. 25 Circular pantographic specimen. Qualitative color maps of the strain energy density for: bias extension
test (a), shear test (b), rotation test (c).

In Ref. [48], two pantographic sheets with an aspect ratio 3:1 are considered, having i) the
same �ber directions and ii) a part of their common sides interconnected by terminal clamping
constraints, i.e. the displacements in the interconnected regions are point-wise equal for the two
pantographic sheets. In the region corresponding to the cut separating the two sheets, no kinematic
constraint is assumed for their relative displacement and the results shown in Fig. 26 are obtained
for a standard bias extension test. Pantographic sheets without any internal cut are considered as
well, see Fig. 27, where Eulerian representations of the strain energy densities are given for two
non-standard bias extension tests and in presence (absence) of the shear energy contribution. In
particular in the �rst (higher) two plots in Fig. 27 the left side of the specimen has been clamped
and the other sides are free, while the vertices of the right side are displaced along the direction of
the longer sides. Instead, in the lower two plots, the left side of the specimen has been clamped and
the lower half of the right side has been displaced along the direction of the longer sides, while the
remaining boundaries are free. Second gradient energies allow for external actions on 2D continua
not only on edges, but also on vertices, as vertex boundary conditions and vertex-forces.

Fig. 26 E�ect of a cut inside a sheet. Eulerian representation of the elastically stored energy density for a sheet
with lower shear sti�ness (left) and for a sheet with higher shear sti�ness (right), both subject to a standard bias
extension test.
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Pantographic metamaterials 27

Fig. 27 Non-standard bias extension test: Eulerian representation (including deformed shape and deformed
sampled material lines) of the strain energy density for a sheet whose expression does not include the shear
contribution (left) and for a sheet whose strain energy includes the shear contribution (right).

1.8 Wave propagation in discrete arrangements of Euler beams

In Ref. [49], a model for studying the dynamics of pantographic fabrics has been introduced and
subsequently employed [50,51]. Pantographic rectangular �long� wave-guides are studied and time-
dependent boundary displacements inducing the onset of travelling waves are considered. In this
model the two families of orthogonal �bers are regarded as two families of 1D orthogonal straight
continua arranged in a rectangle in the reference con�guration. Each continuum Ci has a standard
linearized Euler elastic potential given by

Ui =
1

2

ˆ
Ci
kM

(
u′′(s)

)2
+ kN

(
w′(s)

)2
ds (43)

with s an abscissa introduced on each Ci, kM the bending sti�ness, kN the axial sti�ness, u and w,
respectively, the transverse and axial displacements. Dots in Fig. 28(left) indicate the presence of
frictionless hinges that do not interrupt the continuity of the beams. The displacement prescribed
on the structure is an impulse function I = u0 ∗ sech [τ(t− t0)], with τ being a parameter a�ecting
the duration of the pulse (Fig. 28(right)).
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28 Francesco dell'Isola et al.

Fig. 28 Reference con�guration (left) and time history of the impulse (right).

In Fig. 29(left) plots of the deformed shape of a pantographic strip during the propagation of
a wave generated by a vertical impulse, uniformly applied on the upper side of the specimen while
its lower side remains clamped, are shown. Colors represent the magnitude of the total rotation of
the cross section of the beams. In Fig. 29(right) plots of the deformed shape of a pantographic strip
during the propagation of a wave, generated by a double impulse applied at the middle height of
the specimen, are shown, along with colors representing the magnitude of the total rotation of the
cross section of the beams. By double impulse we mean a couple of displacements, having the same
orientation but opposite directions, oriented in one of the two orthogonal characteristic directions
of the pantographic sheet. Such displacements are prescribed on two points at the opposite ends of
two adjacent beams, i.e consecutive beams belonging to the same orthogonal family of 1D continua,
and their amplitude over time is shown in Fig. 28.

(a) (b)

Fig. 29 Qualitative displacement plot of a wave propagating after a prescribed vertical displacement on the
upper side (left). Wave propagating after double impulse (right).

Such a double impulse corresponds, in the continuous homogenized limit case, to a double
force, i.e. to a pair of forces with null resultant and moment. Since such a kind of forces can not
be included in a �rst gradient continuum theory, in order to capture with a continuum model the
dynamic features shown in Fig. 28, one has to move to second gradient theories. Figure 30 shows
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that the energy of the system remains substantially con�ned in the upper half of the wave-guide and
propagation of waves beyond the discontinuity is negligible. Therefore, such type of discontinued
pantographic structures induces damping.

Fig. 30 Qualitative displacement of wave propagation in two identical lattices connected by an array of vertical
beams.

2 Damage and failure in pantographic fabrics

So far the study of damage mechanisms in pantographic fabrics has been addressed from a mod-
elling standpoint [52,53]. Further experimental data can be found [10,54]. In Ref. [52], in the
aforementioned discrete quasi-static Hencky spring model (Section 1.3) a simple irreversible rup-
ture mechanisms is considered for the springs. A spring is ruptured if its strain level exceeds (upper
threshold) or is less than (lower threshold) a certain (constant) threshold. In particular, the cri-
terion for rupture of a spring at iteration t, which discriminates whether that spring has to be
removed from the computations at iteration t+ 1 or not, is based on (constant) thresholds for the
relative elongation of extensional springs like, e.g., (‖pi+1,j − pi,j‖ − ε) (upper and lower thresholds
are employed for this deformation measure). Upper thresholds for the relative rotation of adjacent
springs belonging to the same �ber like, e.g.,

(
cosϑ1

i,j + 1
)
and for the relative rotation of adjacent

springs belonging to di�erent �bers like
∣∣ϑ3
i,j − π

2

∣∣ are contemplated but are not considered. Indeed,
since the analyzed pantographic sheet is made out of a ductile material (polyamide), damage is
governed by �ber breakage due to excessive extension, rather than �ber breakage due to excessive
bending or pivot failure due to torsion.

This is an experimental evidence [10], where displacement-controlled uniaxial bias extension
tests (Fig. 31) were performed on three di�erent polyamide specimens and the �rst failure event
was observed at the corners of the specimen, where elongation of �bers is the highest.

Fig. 31 Force versus prescribed displacement for a uniaxial bias extension test. (a) Sample before �rst beam
breakage (i.e. breakdown onset); (b) upper-left corner beam breakage; (c)-(f) further �ber breakage.
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30 Francesco dell'Isola et al.

This evidence is con�rmed, through a di�erent test [52] (see Fig. 32), since �ber elongation is the
highest at the lower-left and upper-right corners. When the sample is made out of a brittle material,
damage is governed by excessive shear strains (i.e. torsion of pivots) that, in the displacement-
controlled uniaxial bias extension test, reaches its maximum near the two internal vertices of the
quasi-rigidly deforming triangles.

(a) (b)

Fig. 32 (a) Reference con�guration (λ = 0), (b) damage onset (λ = 0.976) of a shear test.

In Ref. [52], a slow-rate (15 mm/min) uniform horizontal displacement on the top of the speci-
men is prescribed. The prescribed horizontal displacement u and the corresponding non-dimensional
displacement λ are the prescribed quantities. First �ber breakage is observed for a horizontal
displacement u = 139.96 mm (Fig. 32), which corresponds to a non-dimensional displacement
λ = 0.976. By comparing Figs. 32 and 34, the model correctly predicts the location of �ber break-
age. The �generalized� (because of the introduction of damage) numerical model �ts well the force-
displacement curve throughout the experiment, up to the onset of �ber breakage (Fig. 33).

Fig. 33 Force (N) vs non-dimensional displacement for the shear test of a pantographic sheet up to the onset
of �ber breakage. The black curve is the experimental data, and the red curve has been obtained via numerical
simulation.
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Fig. 34 Deformed con�guration at the onset of damage. The broken �ber is colored in black and it is pointed by
the green arrow.

In Ref. [53], pivot damage due to shear, i.e. �bers detaching due to friction in pivots, is taken
into account, thereby allowing for sliding between the two families of �bers. Thus, the nonlinear
homogenized quasi-static model for the discrete system in Fig. 11 (for more details about the
homogenization procedure the reader is referred to Ref. [13] is modi�ed by introducing, in the
spirit of mixture theory, two independent placement functions χ1 and χ2 (the placement functions
of body points belonging to horizontal and vertical �bers, respectively) de�ned on the same reference
domain and, accordingly, considering the following nonlinear (elastic) strain energy to be minimized
at each iteration

ˆ
B0

∑
α=1,2

Kα
e

2
‖Fαêα − 1‖2︸ ︷︷ ︸

extension of horiz. and vert. �bers

+

ˆ
B0

Kp
2

∣∣∣∣arccos( F 1ê1 · F 2ê2
‖F 1ê1‖ · ‖F 2ê2‖

)
− π

2

∣∣∣∣ξ︸ ︷︷ ︸
shear (pivots torsion) contribution

+ (44)

ˆ
B0

∑
α=1,2

Kα
b

2

[
‖∇Fα|êα ⊗ êα‖2

‖Fαêα‖2
−
(
Fαêα · ∇Fα|êα ⊗ êα

‖Fαêα‖2

)2
]

︸ ︷︷ ︸
bending of horiz. and vert. �bers

+

ˆ
B0

Kint
2
‖χ1 − χ2‖2︸ ︷︷ ︸

relative sliding of the two layers

.(45)

In Ref. [53] relative sliding of two families) evolves following a criterion based on thresholds for
the relative distance δ = ‖χ1 − χ2‖ between χ1 and χ2 (e.g., the �tted Kint in Fig. 35.

Fig. 35 Dependence of the resistance to sliding Kint on δ.
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32 Francesco dell'Isola et al.

A numerical example where an aluminum specimen is subject to uniaxial bias extension is shown.
Constitutive parameters Kα

e , K
α
b , Kp and Kint were �tted using experimental data (Fig. 36),

showing a very good agreement. The experiment is studied only up to the �rst rupture (i.e. as long
as Kint > 0 ∀X ∈ B0). For the discrete model [52], and in turn for the continuum homogenized
model [53] (as for their respective purely elastic counterparts), it is straightforward to implement
the case of non-orthogonal initially straight �bers [55].

Fig. 36 Force vs. applied displacement for a uniaxial bias extension test of an aluminum pantographic sheet.
The black curve is the experimental measurement and the red obtained via numerical simulation.

Further, the two models have been extensively tested when dealing with pure (nonlinear) elas-
ticity, and they show a nearly perfect agreement with experimental results. In Fig. 37(b), the onset
of damage is observed at the upper-left corner beam only. This is due to undesired asymmetries in
the experimental setup (e.g. specimen, loading, clamping).

Fig. 37 A sample subject to uniaxial bias extension. (a) sample before the �rst beam breakage (i.e. breakdown
onset); (b) upper-left corner beam rupture; (c)�(f) rupture of further �bers.

3 Feasibility of digital image correlation analyses

Up to now, the only kinematic data that were reported were prescribed macro-displacements or
discrete measurements (e.g. control angles, see Fig. 17). In the future is is desirable to have a richer
experimental data base to calibrate and validate in a more extensive way the discussed models.
In the following, the feasibility of performing displacement �eld measurements on pantographic
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samples is assessed. Since very large displacement levels occur, digital image correlation (DIC [56,
57]) has been selected. In the case study reported hereafter, a series of 42 pictures was acquired with
an 8-bit digitization, and 1944× 2592-pixel de�nition camera. Gray level images are reconstructed
by a binning of two processes to account for Bayer (color) �lter. They are subsequently cropped,
so that their �nal de�nition is 1147 × 261 pixels. For DIC purposes, the upper and lower parts of
the grips were speckled (Fig. 38). In addition, the hinges of the pantographic sheet were marked
in black, and a red background was used in order to create high contrast with the white color of
pantographic sheet.

(a)

(b)

(c)

Fig. 38 Gray level images of the pantograph in the reference con�guration (a), last analyzed deformed con�gu-
ration (b), and at failure (c).

The analysis of the motions of the pantographic sheets can be performed at di�erent scales.
The most logical, yet the most di�cult, would have been to have a geometric description �tting
the actual shape of the pantographic fabric and measure the displacements at the corresponding
discretization level (i.e., as in the 3D Cauchy model, see Fig. 20). One challenge is to measure
surface displacements with such �ne meshes since each element will very few pixels. This would
clearly require regularizations to be considered [58]. Integrated approaches may also be considered
in which the displacement �elds are derived thanks to numerical simulations [59]. Another option
would be consider the kinematics of beams (e.g. with Euler-Bernoulli kinematics). DIC analyses
may then be easier since the number of degrees of freedom could be signi�cantly reduced [60]. In the
present case, this would have meant having an explicit description of all the struts composing the
pantographic fabric. Another path consists in measuring macroscopic motions via so-called local or
global DIC [61]. Since the �nal aim of such analyses is their comparison with numerical simulations,
the displacement �elds will be expressed in the same language of the results obtained by numerical
simulations, namely, with �nite element bases. Global DIC with 3-noded triangles and with linear
interpolation functions is here considered (i.e. T3-DIC). Since the mesh is not compatible with
the pantograph mesostructure, mechanical regularization will be used to enable the DIC code to
converge (i.e. RT3-DIC [58]). In order to avoid any signi�cant bias, the regularization length is
identical to the element length (i.e. 25 pixels in the present case). Figure 39(a) shows the region
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of interest (ROI) that extends over the whole pantographic sheet and over part of the speckled
grips. This setting allows the RT3-DIC code to converge �rst in the grips and then in the central
part of the pantographic sheet, where most of the deformation takes place. In the present case,
the convergence criterion was set to 10−5 pixel for the norm of the mean displacement corrections.
This very low value could be achieved thanks to the employed regularization strategy.

(a)

(b)

Fig. 39 (a) Region of interest (red box) analyzed via RT3-DIC. (b) Finite element mesh with 25-pixel T3
elements.

Figure 40 shows the results of the RT3-DIC analysis of the 5th loading step. First, the gray level
residuals are being checked (Fig. 40(a)). They correspond to the gray level di�erences between that
in the picture in the reference con�guration and that in the deformed con�guration corrected by
the measured displacement �eld. If perfect match were achieved, this di�erence would only contain
acquisition noise. This is not observed in the present case, since there still are some stigmata
of the pantographic sheet geometry. It con�rms that a continuous kinematic basis made of 3-
noded triangles cannot fully capture the present kinematics. However, the deviations remain very
small. Consequently, the displacement �elds shown in Fig. 40(b-c) are deemed trustworthy at
the macroscale. The transverse displacement �eld ux shows that there is a huge contraction in
comparison with the longitudinal motions uy. This is due to the geometry of the pantographic
sheet. This observation translates into the nominal strain components reported in Fig. 40(d-f). In
the present case, they are computed from the deformation gradient, which is constant along an
element. Thus the �pixelization� of the strain maps is due to the underlying mesh used in the RT3-
DIC calculations. The central part of the pantographic structure contracts more in the transverse
direction (εxx) than its longitudinal expansion (εyy). This phenomenon is accompanied with more
moderate shear (εxy).
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(a) (b)

(c) (d)

(e) (f)

Fig. 40 Correlation results for the 5th loading step: (a) gray level residuals, (b) ux and (c) uy displacement �elds
(expressed in pixels). (d) εxx, (e) εyy (f) εxy nominal strain �elds.

In Fig. 41 the same �elds are shown. The gray level residuals only slightly degrade in compar-
ison with the previous loading step (Fig. 41(a)). The pattern of the transverse and longitudinal
displacement �elds is very similar with higher overall levels. The same observation applies for the
strain �elds. The deformation mode remains unchanged. It is worth observing that all strain levels
in the grips remain close to zero, which is to be expected. This is a further validation of the present
results.

(a) (b)

(c) (d)

(e) (f)

Fig. 41 Correlation results for the 10th loading step: (a) gray level residuals, (b) ux and (c) uy displacement
�elds (expressed in pixels). (d) εxx, (e) εyy (f) εxy nominal strain �elds.
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The last load level prior to damage inception (i.e. �rst strut failure) is reported in Figure e.
In that case the gray level residuals (Fig. 42 (a)) are signi�cantly higher than the previous two
cases (Figs. 40(a) and 41(a)). The chosen kinematics is no longer able to properly describe, in
a continuous way, the actual kinematics of the central region of the pantographic structure. For
the parts of the pantographic sheet closer to the grips and the grips themselves, the registration
quality is signi�cantly better. This result validates the choice of including part of the speckled grips
in the analysis. For this last step, the highly deformed region has grown toward both ends of the
pantographic sheet, which can be understood by the fact that when struts touch each other, the
deformation mechanism moves away from these zones.

(a) (b)

(c) (d)

(e) (f)

Fig. 42 Correlation results for the 30th loading step: (a) gray level residuals, (b) ux and (c) uy displacement
�elds (expressed in pixels). (d) εxx, (e) εyy (f) εxy nominal strain �elds.

The DIC results reported herein show that such analyses can be run on pantographic structures.
Prior to damage inception, longitudinal nominal strains of the order of 50% and transverse strains
as high as 90% were achieved. Such levels could be measured thanks to the sample preparation
followed herein. Namely, the grips of the pantographic sheet were speckled. In the future, it is
likely that speckled pantographic structures should be analyzed in order to make the DIC analyses
easier. It was also shown that a continuous displacement basis was only partly capturing the actual
kinematics of the experiment. This calls for more advanced registration techniques that would be
consistent with the particular geometry of the pantographic structures and their speci�c kinematics.

4 Conclusion and outlook

Pantographic fabrics proved to be a very interesting subject of study, involving the work of, at
least, (Computational) Mechanicians (modelling), Experimentalists (experiments), Numerical An-
alysts (model solving), Data Analysts (image correlation), Mathematicians (well-posedness and
Γ -convergence) and many other researchers and professionals. We believe that what has been pre-
sented in this survey can thus be considered our manifesto about how commitment from di�erent
groups of researchers should be directed for the study of metamaterials and, more generally, for the
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study of every scienti�c subject. Mechanics, as any other natural Science, cannot proceed without
a continuous interplay between experimental evidence and theoretical modelling.

However, this is just a �rst simple step toward the study of more complex structures and
experiments. A famous quote by Hilbert states that �the art of doing mathematics consists in �nding

that special case which contains all the germs of generality.� This statement can be extended to
every scienti�c discipline, including those that have been applied in the studies presented in this
survey, and that pantographic fabrics can be considered as one of the simplest example leading
to treat non-standard problems in mechanics of materials and its related disciplines. In this sense,
pantographic structures provide the minimal setting for the study of relevant issues in Mechanics.
The solution of a general problem is easier to face once that of its particular cases has been
addressed, as, very often, particular cases help to understand better the real nature of the problem.
Currently, new tests and structures are being studied, along with their technological realization
challenges, like the three-point test shown in Fig. 43(a) and the pantographic sheet with �perfect�
pivots, i.e. hinges that do not oppose to variations of the shear angle between two intersecting
�bers, shown in Fig. 43(b).

(a) (b)

Fig. 43 (a) Three-point �exural test on a 3D pantographic specimen. (b) Pantographic sheet with �perfect�
hinges.
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