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Abstract—A new greedy multipoint model-order reduction
algorithm for fast frequency-domain finite element method sim-
ulations of electromagnetic problems is proposed. The location
of the expansion points and the size of the projection basis are
determined based on a rigorous error estimator. Compared to
previous multipoint methods, the quality of the error estimator is
significantly improved by ensuring the orthogonality of the pro-
jection basis vectors at each stage of the model-order reduction
algorithm. Numerical studies show that the new algorithm yields
compact and highly accurate reduced-order models.

Index Terms—model-order reduction, a posteriori error esti-
mator, finite element method.

I. INTRODUCTION

In recent years, extensive research has aimed to increase
the efficiency of Finite Element Method (FEM) frequency-
domain simulations. One approach to speeding up frequency
sweeps involves projecting the original system of equations
onto a low-order space, thus producing so-called reduced-order
models (ROMs). Such models approximate the frequency
response of the original system, but at lower numerical cost.

To create a ROM, a set of field solutions (snapshots) at many
frequency points is collected, a singular-value decomposition
(SVD) is applied to remove the redundancy from the set
of vectors, and finally the Galerkin projection onto a low-
order subspace is used [1], [2]. This approach may still be
time consuming, as it requires many factorizations of a large
system matrix. This is avoided in techniques that make use of
the moment-matching property of Krylov subspace methods
[3]-[5], but at the cost of larger projection bases, which be-
comes a problem when the frequency band grows. To address
this issue, multipoint model-order reduction approaches have
been proposed in [6]-[8], where the moments of the transfer
functions are matched at many expansion (frequency) points.
In automated greedy multipoint model-order reduction (GM-
MOR) [8], the subsequent expansion points, as well as the
number of block moments in each of the points, are selected
automatically based on an a posteriori error estimator [9].
However, in this case, the subsequent block moments added to
the basis are not orthogonalized with respect to the previous
ones. This leads to a severe loss of orthogonality of the vectors,
significantly deteriorating the quality of the error estimator. In
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effect, high-accuracy reduced-order models cannot be gener-
ated and the resulting projection basis is unnecessarily large.
Moreover, input parameters, such as the number of frequency
sub-ranges, as well as the maximum number of block moments
in each of the sub-ranges have to be selected arbitrarily, which
makes the GM-MOR approach non-automated.

This problem is addressed in the present paper. A fully
automated reliable greedy multipoint model-order reduction
(RGM-MOR) approach is presented. The subsequent block
moments added to the projection basis are orthogonalized
by means of the Modified Gram-Schmidt method and SVD.
Moreover, the size of a projection basis is kept as small as
possible, thanks to a compression technique. Although the
orthogonalization and compression process slightly increases
the computational time, a significant improvement in perfor-
mance can be observed in projection basis size, accuracy
of the error estimator, and reliability of the whole reduction
process, compared to the GM-MOR technique. The improved
quality of the error estimator has a significant effect on the
size and accuracy of the reduced order models. Compared to
GM-MOR, the new algorithm yields more compact and more
accurate models, allowing wideband reduced-order models to
be constructed automatically with an accuracy a few orders of
magnitude higher than was previously possible.

II. THEORY

The N-dimensional Finite Element discretization of a
Helmholtz equation for a dielectric-loaded, lossy structure €2
excited through P ports with M; modes at i-th port results in
the following second-order input—output system of equations:

(I 4+ sG + s2C)E(s) =sBI, U=BTE(s), ()

where I', G, C € CN*N are system matrices, s = jw/c, I, and
U are the vectors of amplitude of the normalized currents and
voltages, respectively, B € CV*M denotes a normalized port
selection matrix, F(s) € CN*M is a matrix of unknown FE
coefficients, and M is the total number of excitation modes.
The reduced-order model, which approximates the properties
of the FEM system (1) can be obtained by means of one of
the standard MOR approaches [1], [5], [10]:

(T + sG, 4+ s°C)E.(s) = sB.I, U=BTE.(s), (2

where I, = QTTQ, G, = QTGQ,C, = QTCQ,. B, = Q"B
are reduced system matrices, Q € CN*M js the orthonormal
projection matrix, and ¢ denotes the reduced order, where
qM < N. If the reduced-order model is to be accurate over
a wide frequency band and is to be created in an automated
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and computationally efficient way, a greedy multipoint model-
order reduction technique (GM-MOR) [8] is a suitable ap-
proach for generating a projection basis Q).

In GM-MOR, the following input parameters need to be
specified: the lower and upper frequency limits fiin, fmax, the
target error tolerance tol, the number of frequency subranges
Ng, the subrange size A = (fmax — fmin)/Ns, the maximum
number of block moments at a single frequency NJ2ome™s “and
the maximum number of block moments in (), ¢max.

GM-MOR begins by generating the vectors of the projection
basis ) at the initial frequency point f = (fiax + fmin)/2-
Subsequent block moments of the projection basis are gen-
erated by means of SAPOR [5]. This process is performed
until the number of block moments reaches NJOMens op the
maximum value of the estimated error reaches the value tol in
the frequency subrange [f — A/2, f + A/2], where the error
estimator is defined as follows:

Es(s) = maxi_yl{m[%(bf)be - (bf)TI‘QET — sz(bf)TCQET
—s(0) b ()" QE, — s(b))"GQE,]/12sm(b))bi [}, (3)

where b} is the I-th mode at the i-th port, 7; is the impedance
at the i-th port (see [8] for details), and E, is obtained by
means of (2). Note that all computations in (3) are performed
on low-order matrices, so the error is estimated rapidly.

Algorithm 1: RGM-MOR - the main loop

Require: fmin, fmax, tol, Qmax, C,G, T"and B
1: Set: f = (fmin + fmax)/2, A= fmax - fminy QG = [], ,] = 17

q = 0, Npioer
2: while Ey.x > tol AND no. columns of Q¢ < Gmax do
[QG7 q, } = SPARAMSAPOR(qa fa A, QG7 tol, Nrr:;:nems’ )
SVD(Qc);
BASISCOMPRESSION(Qg);
UPDATEMATRICES(Qg, *)
[Emax; fEmw] = ESTERROR( fumin, fmax, *);
Set the new expansion point f = fg,..,j=7+1
9: if j == 1 then A = FINDSUBRANGESIZE(tol, -)
10: end while

11: return C,, G, I'; and B,

B A

Next, the reduction error is estimated for the whole fre-
quency bandwidth by means of the error estimator (3). If the
maximum value of the estimated error (F,x) is below tol,
or if the number of block moments in ()¢ reaches ¢max, the
reduction procedure halts. Otherwise, the frequency point at
which the estimated error has its maximum value is chosen
as a next expansion point for the projection basis generation.
Finally, the redundant vectors are removed from the projection
basis by means of singular value decomposition (SVD).

The main shortcoming of the GM-MOR algorithm is that
the subsequent block moments added to the basis are not
orthogonalized with respect to the previous blocks, computed
in previous expansion points. This neglect leads almost always
to a severe loss of orthogonality of the basis (), especially
when the high precision of the reduced model is required.
In effect, the system of equations (2) is ill-conditioned and,
because of this, the quality of the error estimator deteriorates
and its prediction starts to differ significantly from the actual
error—the error estimator predicts an error much larger than

the actual value of the error. Since the automation of the GM-
MOR relies on the estimated error, too high values of the
error estimator result in an unnecessarily large projection basis
being generated by GM-MOR. What is more, the values of
the input parameters: Ng and N2OMens have to be selected
for each case separately, based on the frequency bandwidth
of interest and properties of the analyzed structure. As can
be seen in [8], this selection has a significant impact on GM-
MOR performance in terms of the reduction runtime and the
reduced-model size. For wide-band frequency analysis of lossy
structures it is rather recommended to perform a reduction
process with a few block moments computed in each of the
many frequency sub-ranges (high value of Ng and low value
of Npoments) whereas for the narrow-band analysis rather a
single-point reduction should be utilized (Ng = 1 and a high
value of NEoments) However, the process of selecting Ng and
NEoments is not automated. Therefore, the GM-MOR should
be regarded as an expert-tool, rather than a fully-automatic
black-box reduction algorithm.

The above shortcomings of GM-MOR are addressed in
the next subsection, resulting in the novel Reliable Greedy
Multipoint Model-Order Reduction Algorithm (RGM-MOR).

Algorithm 2: SPARAMSAPOR: Single-point block SAPOR

Require: ¢, f, A, Qg, tol, Nm™ BT B BTCQqs, BTGQq,
BTTQq¢
For so = j2m f compute Q1, P;.
g+ q+1,Qgq=0Q1
MODIFIEDGRAMSCHMIDT(Qq,q)
UPDATEMATRICES(Qaq,q; *)
[Ell.,(;;)“ } = ESTERROR(f - A/27 f + A/27 )
Seti=1
while EX%, > tol AND i < Nmome™s do

For so = j27 f compute Qi+y1, Piy1.
90 g+ q+1 Qaq= Qi+
10: MODIFIEDGRAMS CHMIDT(QG,q)
11: UPDATEMATRICES(Qg,q, *)
12: [EX.,] = ESTERROR(f — A/2, f +A/2,")
13: Seti<i+1
14: end while
15: return Qc, ¢, BTCQa, BTGQe and BTT Qe

AN

A. Reliable Greedy Multipoint Model-Order Reduction

The main steps involved in the Reliable Greedy Multipoint
Model-Order Reduction (RGM-MOR) are summarized in the
pseudocode presented in Algorithm 1 (the main loop) and
Algorithm 2 (the SPARAMSAPOR procedure). Compared to
GM-MOR [8] the new algorithm involves:

1) A global orthogonal projection basis: which is denoted
as Q¢. Individual block moments (Q¢ ) are generated by
means of the SAPOR approach executed for the specified
expansion points (f). The global basis allows one to perform
local orthogonalization.

2) Local orthogonalization: As opposed to GM-MOR,
each block moment ()¢, is orthogonalized (steps 3 and
10 in Algorithm 2) with respect to the previous blocks
Qg1 -.-Qg,q—1 by means of the Modified Gram—Schmidt
procedure [11]. The orthogonalization steps are followed
by the UPDATEMATRICES procedure (steps 4 and 11), in


http://mostwiedzy.pl

A\ MOST

which the matrices used in (2) and (3 —BTCQ¢a, BTGQq¢,
B'rQqg, G,, C,, T,, B,—are updated to account for the
addition of the subsequent block moment (g, . Next, in
steps 5 and 12, the error is estimated in the frequency sub-
range (f — A/2, f + A/2). Since the projection basis Q¢ is
orthonormal, the system of equations (2) is well-conditioned
(unlike in GM-MOR) and the estimated error is well correlated
with the actual error.

3) Global orthogonalization and basis compression: Since
the global basis Q¢ is composed of a few bases obtained
in different expansion points, it may become very large and
may contain vectors that are not needed to span the solution.
In order to keep the size of the projection basis as small
as possible and preserve the reduced-model from being ill-
conditioned, we propose to orthogonalize and compress the
basis in each iteration of the main loop, prior to the global
error estimation process. In step 4 of the main loop, singular
value decomposition (SVD) is performed on the projection
basis (Q¢) and only the vectors, which correspond to the
singular values greater than 10712 are retained. In effect, the
orthogonality of Q¢ is close to the machine-precision level.

Next (step 5), the basis is compressed by means of Proper
Orthogonal Decomposition of the reduced order model. To
this end we construct the matrix, which contains all solution
vectors (snapshots) of the reduced model in sy, so, ..., Sk and
perform SVD, in order to remove the redundancy from the
basis:

Wgr = SVD([E,(s1), Er(s2), ..., Er(sk)]). (G))
The compressed basis is obtained as follows:

Qg = QcWk. (5)

The global orthogonalization and basis compression process
are performed prior to the global error estimator evaluation.
Although this change slightly increases the computational
time, as the projection of the FE matrices has to be performed
anew (Algorithm 1, step 6), it guarantees that equation (2) used
in the error estimator (step 7) is well-conditioned. As a result,
the error estimator follows the actual error more accurately
than in the case of GM-MOR. This well-conditioned error
estimator is used both as a halting criterion and as an indicator
for selecting the next expansion point for generating the
projection basis.

4) Automatic selection of the width of the frequency sub-
range: In the first iteration of the main loop, when the
number of block moments in Q¢ reaches Npome™s the error
is estimated in the whole frequency band (A = fiax — fmin)-
Next, the value of A for the subsequent expansion points is
selected in step 9. It is set as a width of a frequency range
around the expansion point, in which the error estimator is
below the tol value. As the effect, the Ng parameter (used in
GM-MOR) is no longer needed and the A parameter is chosen
automatically.

III. NUMERICAL RESULTS

In order to validate the accuracy and efficiency of the pro-
posed reduction technique (RGM-MOR) with respect to GM-
MOR [8] we have considered two numerical tests implemented
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Fig. 1: a) Dielectric resonator antenna [12], b) Bandstop
resonator filter [8]
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Fig. 2: Comparison of the maximum value of the actual and
estimated S7; errors as a function of ¢ for the DRA structure.
Negative slope of the curves occurring when the error drops
is due to basis compression (step 5 in Algorithm 1).

in MATLAB. The first test deals with the dielectric resonant
antenna (DRA) structure, whose geometry is described in
Fig. 1a). FEM discretization resulted in a system of equations
with 124,860 variables. In order to validate the multipoint
reduction scheme, a wide frequency-band analysis from 2 to
10 GHz has been employed. The target accuracy has been
set to tol = 10710, whereas the frequency subrange size
has been determined automatically: A = 1.14 GHz. Figure
2 shows a comparison of the maximum values of the actual
and estimated S7; errors as a function of the reduced order q.
In RGM-MOR, the estimated error is well correlated with the
actual error, and it can thus be effectively used as a halting
criterion. Based on the error estimate computed with a new
algorithm (red curve: maximum estimated error), it is seen that
for tol = 10719, the RGM-MOR process halts for ¢ = 152,
which took 947 s, with the RAM memory usage: 12.5 GB.
On the other hand the maximum value of the error estimator
in GM-MOR (black curve: maximum estimated error) never
reaches the target accuracy (tol = 107!0), due to the loss
of orthogonality of Q. This means that, in this case, GM-
MOR is unable to produce the reduced model with the error
tolerance set to 10719 To assess the quality of the basis
generated by each algorithm, we may also look at the actual
error (this corresponds to a hypothetical situation in which we
have access to the actual erro—which in reality is not known
a priori—and can use it to determine the size of the basis that
causes the actual error to drop below a tol level). It can be
seen that RGM-MOR generates much more compact reduced
order model than GM-MOR—152 vectors suffice to obtain
the actual error at the tol level with RGM-MOR, while 225
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Fig. 3: Actual and estimated errors obtained by GM-MOR and
RGM-MOR for ¢ = 42 (filter case)

vectors are needed with GM-MOR.

The second test considers a bandstop dielectric resonator
filter Fig. 1b). The scattering parameters (S1; and So1) were
computed at 400 frequency points in the range 4-8 GHz
using an FEM system of equations with 101,264 variables.
The error tolerance was set to: tol = 10710, whereas the
frequency subrange size has been determined automatically:
A = 1.33 GHz. The RGM-MOR reduction process halts once
the error estimator reaches the tol value (¢ = 33), which
took 70 s, with the RAM memory usage: 3.75 GB. With GM-
MOR, the error estimator does not reach the tol value, even
for ¢ = 90, due to the loss of orthogonality of the basis Qg.
As in the first test, we can also look at the size of the basis
needed to create the reduced order model by considering the
number of vectors that cause the actual error to drop below
threshold. For RGM-MOR, only ¢ = 27 is needed to obtain
the actual error at the tol level, whereas ¢ = 32 is needed with
GM-MOR. This again confirms that more compact models are
obtained with the proposed algorithm.

Figure 3 shows the actual errors obtained by GM-MOR and
RGM-MOR, with the estimated errors for ¢ = 42. In both
cases the actual error is almost at the machine precision level,
however in the first case the maximum value of the estimated
error is above 107, while in the second case the estimated
error is well correlated with its actual value.

In order to investigate the performance of GM-MOR and
RGM-MOR in terms of the computational time, we have ana-
lyzed the same two structures, however the tol level has been
set to 10~* (which is in range of the GM-MOR algorithm).
In the first case (DRA antenna) the reduction process takes
679 s and 689 s, for GM-MOR and RGM-MOR, respectively,
whereas for the bandstop filter it takes 49 s and 39 s. It can
be seen that for the high level of the tol parameter, both
approaches are comparable.

Finally, we have investigated the orthogonality of the projec-
tion basis obtained using GM-MOR and RGM-MOR. Figure 4
illustrates the measure ||(QL - Qg — I)||2 for each of the
reduction orders ¢, where ||-||2 denotes the 2-norm of a matrix.
For the orthonormal basis, this measure should be at the
machine precision level: (e = 2.2 x 10716 in MATLAB). It is
clear that, after the initial phase, the projection basis obtained
using GM-MOR completely loses orthogonality, whereas with
RGM-MOR, the projection basis remains orthogonal even for

N
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Fig. 4: Orthogonality of the projection basis obtained using
GM-MOR and RGM-MOR

high values of q.

IV. CONCLUSION

This paper has proposed a fully automated reliable greedy
multipoint model-order reduction (RGM-MOR) approach
based on a moment-matching method applied at many ex-
pansion points in the frequency band of interest. The number
of frequency sub-ranges is selected automatically. Subsequent
block moments added to the projection basis are enforced to be
orthogonal and compressed and this significantly improves the
quality of the error estimator and in effect the proposed RGM-
MOR process yields compact and highly accurate ROMs.
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