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Building upon the results of R. Augusiak et al. [Phys. Rev. Lett. 115, 030404 (2015)] we develop a general
approach to the generation of genuinely entangled multipartite states of any number of parties from genuinely
entangled states of a fixed number of parties, in particular, the bipartite entangled ones. In our approach, certain
isometries whose output subspaces are either symmetric or genuinely entangled in some multipartite Hilbert
spaces are applied to local subsystems of bipartite entangled or multipartite genuinely entangled quantum states.
To prove that entanglement of the resulting states is indeed genuine we then introduce criteria allowing us to
decide it efficiently. The construction is then exploited to provide examples of multipartite states that are genuinely
entangled but not genuinely nonlocal, giving further illustration for the inequivalence between entanglement and
nonlocality in the multiparticle scenario. It is also shown how to construct genuinely entangled states which are
unsteerable across certain bipartite cuts.
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I. INTRODUCTION

Quantum entanglement is a fascinating feature of composite
physical systems. It not only shows that quantum physics
drastically departs from classical physics, but, over the years,
has also been turned into a key resource for a whole range
of applications such as quantum teleportation [1] or quantum
cryptography [2]. It may also give rise to yet another, stronger
feature of composite quantum systems, which is Bell nonlocal-
ity [3]. Thus, detection and characterization of entanglement
in composite quantum systems remains the central, but still
unsolved, problem in quantum information theory [4].

With the development of experimental methods of generat-
ing, controlling, and manipulating quantum states consisting
of more than two particles (see, e.g., Refs. [5,6]), the problem
of entanglement detection and characterization has recently
gained much importance. In comparison to the bipartite case,
here this problem is complicated significantly by the fact
that the multiparty scenario supports a whole variety of
different types of entanglement (see Refs. [7–9] for various
notions developed to grasp the richness of entanglement in
the multiparty scenario). It turns out that of the broad variety
of types of entanglement the most desirable one from the
application point of view is the so-called genuine multipartite
entanglement [10–12]. Roughly speaking, a state characterized
by this type of entanglement is one in which all particles
all entangled with each other; more formally, according to
the operational definitions of separability, it is a state which
cannot be created from scratch only using local operations
and classical communication by spatially separated parties
(the so-called LOCC paradigm). In recent years we have thus
witnessed a considerable effort towards providing theoreti-
cal constructions of genuinely entangled states as well as

experimental realizations of various interesting states (see, e.g.,
Ref. [5]).

Our aim with this contribution is to shed light on this
complex problem from a slightly different angle. Building
upon our recent work [13], we provide a general method for
constructing genuinely entangled N -partite states with any N

from K-partite genuinely entangled states with K < N . In the
particular, and at the same time the most interesting, case of
K = 2 this method can be used to embed the known classes of
entangled bipartite states to the multiparty case in such a way
that the resulting state is genuinely entangled. Our construction
consists of applying certain isometries whose output subspaces
are either symmetric or genuinely entangled in multipartite
Hilbert spaces to the local subsystems of the initial bipartite or
K-partite density matrices. A key ingredient of our approach is
certain entanglement criteria that we derive here which allow
one to check whether a given multipartite state is genuinely
entangled.

Then, following Ref. [13], we show how this construction
can be harnessed to obtain examples of genuinely entangled
N -partite states that are not genuinely nonlocal with respect
to the Svetlichny and the recent operational definitions of
nonlocality [14,15]. We thus obtain further examples of mul-
tipartite states illustrating the statement made in Ref. [13]
that entanglement and nonlocality are inequivalent notions
in the multipartite scenario (see also Ref. [16] for genuinely
multipartite entangled states with fully local models). Finally,
we show that these concepts can also be applied to the notion
of steering in the multipartite case. In particular, we present
examples of genuinely entangled states which are unsteerable
across certain bipartitions.

The paper is organized as follows. In Sec. II we introduce
some background information that is used throughout the
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whole paper. In Sec. III we present our construction along with
entanglement conditions and examples of genuinely entangled
states obtained from the construction. In Sec. IV we show
in a detailed way how our approach can be used to design
genuinely entangled states for any number of parties that are
not genuinely nonlocal. We then discuss an application of these
concepts to steering in the multipartite scenario. We conclude
in Sec. V.

II. PRELIMINARIES

This section sets up the scenario and introduces the relevant
notation and terminology from the area of multipartite entan-
glement. The notions of (non)locality and (un)steerability in
the relevant multipartite scenarios will be discussed in Sec. IV.

Consider N -parties A1, . . . ,AN := A [for small N they will
be denoted A (Alice), B (Bob), etc.] holding an N–partite
quantum state described by the density matrix ρA acting on
Hd,N := (Cd )⊗N , i.e., ρA ∈ B((Cd )⊗N ), where B(H) denotes
the set of bounded linear operators acting on H.

A division of the parties into K nonempty disjoint groups
Si (the number of elements in Si will be denoted by |Si |)
such that S1 ∪ . . . ∪ SK = A is called a K-partition, denoted
by S1|S2| · · · |SK or simply SK ; when K = 2 such division is
called a bipartition and denoted simply by S|S̄, where S̄ is
the complement of S in A. The set of all K-partitions will be
denoted by $K .

Any K-partition induces a natural K-partition of Hd,N into
the corresponding subsystems, i.e., H = ⊗K

p=1 HSp
with HSp

being the Hilbert space corresponding to the parties from the
set Sp.

Now, a state is called K-separable with respect to some
K-partition S1|S2| · · · |SK if it is a convex combination of
pure states from Hd,N that are product with respect to this
K-partition, i.e.,

ρSK
=
∑

i

pi

∣∣ψi
S1

〉〈
ψi

S1

∣∣⊗ ∣∣ψi
S2

〉〈
ψi

S2

∣∣⊗ . . . ⊗ ∣∣ψi
SK

〉〈
ψi

SK

∣∣,
(1)

where |ψi
Sj

〉 are pure states belonging to the Hilbert space

corresponding to the group Sj , i.e., |ψi
Sj

〉 ∈ HSj
. Then, we

simply call an N -partite state ρA K-separable if it is a
convex combination of quantum states that are K-separable
across various K-partitions, which mathematically can be
expressed as

ρA =
∑

SK∈$K

qSK
ρSK

, (2)

where {qSK
} is a probability distribution, whereas ρSK

are
mixed states separable with respect to a particular K-partition
SK ; i.e., they admit the decomposition (1). In the particular
case of K = 2 one speaks about the biseparability of states.
Importantly, any (K + 1)-separable state is also K-separable.

At one end of the above classification there are states that
are N -separable (K = N case); we call them fully separable
because no entanglement whatsoever is present in such states.
At the other end, one has genuine multipartite entangled
(GME) states which are those that do not decompose into
any probabilistic mixture of states that admit any form of

separability, even biseparable ones. In short, GME states are
those which are not biseparable.

In what follows particular attention will be devoted to
certain subspaces. The first one is the symmetric subspace
of Hd,N , denoted Sym((Cd )⊗N ). It consists of vectors that
are invariant under permutation of any pair of parties and its
dimension is

(
N+d−1

d−1

)
, which for qubits simplifies to N + 1.

It is worth mentioning that in the particular case of H2,N ,
Sym((C2)⊗N ) is spanned by the so-called symmetric Dicke
states |DN,k〉 which are normalized symmetrizations of the
simple kets |{N,k}〉 consisting of k ones and N − k zeros, i.e.,

|DN,k〉 = 1√(
N

k

) Symm(|0 . . . 01 . . . 1〉), (3)

where Symm stands for the said symmetrization. For further
benefit, let us also note that Sym((C2)⊗N ) contains either fully
product vectors |e〉⊗N with |e〉 ∈ C2 or genuinely entangled
ones. A word about the terminology regarding symmetric
subspaces used in the rest of the paper is in order: when we
say that a subspace is symmetric we mean that either it is
the symmetric subspace, Sym((Cd )⊗N ), itself or it is simply a
subspace of the latter.

We will then consider subspaces consisting solely of mul-
tiparty states that are genuinely multipartite entangled. Such
subspaces, which can naturally be called genuinely entangled
subspaces (GESs), were first mentioned in Ref. [17]; however,
since then, they have been barely studied in the literature.
A well-known example of a genuinely entangled subspace
is the antisymmetric subspace in Hd,N for d � N . It is
spanned by entangled vectors that acquire the minus sign under
permutation of any pair of parties and its dimension is

(
d

N

)
.

A recent effort towards characterization of such genuinely
entangled subspaces has been reported in Ref. [18]. Let us
finally note that GESs belong to a larger class of subspaces
called completely entangled subspaces (CESs) [17,19–21],
which only contain entangled vectors, however, not necessarily
genuinely entangled. Consequently, a GES is also a CES;
however, the opposite implication does not hold in general.

Projections onto the subspaces discussed above will be
denoted by P

sym
Si

and P
ges
Si

, accordingly, with a subscript
indicating subsystems they act on.

III. GENERATING N-PARTITE GME STATES FROM
K -PARTITE GME STATES WITH K < N

The aim of this section is to introduce, building upon the
results of Ref. [13], a simple method of generating N -partite
genuinely entangled states from K-partite GME states with
K < N . In the particular case of K = 2 the method allows
for an extension of bipartite entangled states to GME states
of any number of parties. In further parts, this method will be
employed to construct new examples of genuinely entangled
multiparty states that are not genuinely multiparty nonlocal,
and also use it to provide examples of GME states that are
unsteerable with respect to certain cuts.

A. Entanglement conditions

Our construction of GME states relies heavily on entan-
glement conditions, which are generalizations of the criterion
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formulated in [13]. For completeness, we recall it along with
its proof below. The latter requires a lemma about a certain
property of product vectors with symmetric subsystems. The
proof is given in the Appendix.

Lemma 1 [13]. Let |ψ〉 ∈ Hd,N be a pure state which is
product with respect to a certain bipartition T |T̄ . If P

sym
S |ψ〉 =

|ψ〉 where S is a subset of A having nontrivial overlaps with T

and T̄ , i.e., S ∩ T �= ∅ and S ∩ T̄ �= ∅, then |ψ〉 is also product
with respect to the bipartition S|S̄.

We can now give the announced condition from [13].
Fact 1 [13]. Let ρA be an N -partite state acting on Hd,N

such that with respect to a certain K-partition S1|S2| · · · |SK ,
its subsystems corresponding to Sk’s are supported on the
symmetric subspaces, i.e.,

P
sym
S1

⊗ · · · ⊗ P
sym
SK

ρAP
sym
S1

⊗ · · · ⊗ P
sym
SK

= ρA. (4)

Then, if ρA is not GME, it takes the biseparable form

ρA =
∑
T |T̄

pT |T̄ ρ
sep
T |T̄ , (5)

where the sum runs over all bipartitions T |T̄ for which T and
T̄ are unions of the sets Sk and ρ

sep
T |T̄ ’s are separable across T |T̄ .

Proof. Since ρ is not GME it admits the biseparable (K = 2)
decomposition (2). Assume then that in this decomposition
there is a biseparable state �T |T̄ where T , and, in consequence,
also T̄ , are not unions of the sets Sk . Obviously, such �T |T̄
admits the decomposition (1) in which there only appear pure
states that are products with respect to T |T̄ , but not with respect
to sets that are unions of Sk , by the assumption above.

Let |ψT 〉|φT̄ 〉 be any of such product states. Now, since
T is not a union of Sk’s, there exists at least one set among
the latter whose overlap with both T and T̄ is nonempty.
Further, for at least one such set, say Sim , either the state |ψT 〉
is not product with respect to the bipartition (T ∩ Sim )|[T \
(T ∩ Sim )] or |φT̄ 〉 is not product with respect to the bipartition
(T̄ ∩ Sim )|[T̄ \ (T̄ ∩ Sim )], as otherwise |ψT 〉|φT̄ 〉 would be
product with respect to unions of the setsSk . This, via Lemma 1,
implies that the condition P

sym
Sim

|ψ〉 = |ψ〉 cannot be satisfied,
which, in turn, contradicts (4). This completes the proof. �

Two remarks are in order here. First, if K = 2, i.e., the
state ρA can be regarded as having two subsystems S and
S̄ defined on the symmetric subspaces of the corresponding
Hilbert spaces, then Eq. (5) simplifies to

ρA =
∑

i

pi�
i
S ⊗ �̄i

S̄
; (6)

that is, the state ρA is simply separable across the bipartition
S|S̄. Second, a straightforward corollary of this fact is a
condition for a multipartite state to be genuinely entangled.

Corollary 1 [13]. If ρ satisfies (4) and does not admit the
decomposition (5), then it is genuinely multipartite entangled.
In particular, for K = 2, if ρ is entangled across the bipartition
S|S̄, then it is GME.

This gives a simple method of checking whether a state
is genuinely entangled: once we know that ρ has the sym-
metry (4), one has to check only some of the bipartitions to
confirm that ρ is GME. The existence of this symmetry may
be given in advance or verified with a direct computation.

We now move on to derive generalizations of the above
fact. For this purpose, let us note that the key property of the
symmetric subspaces that enabled us to prove Fact 1 is that
they only consist of either fully product vectors or multipartite
states that are genuinely entangled (see, e.g., Refs. [22,23]).
This observation can be further exploited to extend Fact 1 to
other types of subspaces. Precisely, as we demonstrate below,
the symmetric subspaces in (4) can be replaced by arbitrary
genuinely entangled subspaces of HSi

.
For pedagogical reasons we begin with the case of K = 2

and consider a certain bipartition S|S̄ of the Hilbert space
Hd,N = HS ⊗ HS̄ (|S| + |S̄| = N ). Let us then distinguish
two genuinely entangled subspaces of the Hilbert spaces
corresponding to the groups S and S̄, Vges ⊂ Hd,|S| and V ′

ges ⊂
Hd,|S̄|, with the projections P

ges
S̄

and P
ges
S̄

, respectively. The
following holds true.

Fact 2. Let ρA be an N -partite state acting onHd,N such that
there exist a bipartition S|S̄ for which the following condition
holds,

P
ges
S ⊗ P

ges
S̄

ρAP
ges
S ⊗ P

ges
S̄

= ρA. (7)

If ρA is not GME, then it is separable across the bipartition
S|S̄.

Proof. The fact that ρA is not GME implies that it can be
written as a convex combination of states that are biseparable
across various bipartitions. Assume then that in this decom-
position there is a state that is biseparable across a bipartition
T |T̄ different from S|S̄ (and that it is not separable across
S|S̄). It is not difficult to see that the range of this state
contains product vectors |ψT |T̄ 〉 = |φT 〉|ϕT̄ 〉 which obey the
symmetry (7), meaning that

P
ges
X |ψT |T̄ 〉 = |ψT |T̄ 〉 (X = S,S̄). (8)

Let us now use the fact that the separability cut of |ψT |T̄ 〉
belongs to S or S̄; otherwise these must be the same bipar-
titions. For concreteness we assume the latter to be S. Then,
by tracing out the S̄ part of |φT 〉|ϕT̄ 〉 we obtain a mixed state
�S acting on the Hilbert space corresponding to the group S,
which is biseparable. This contradicts the fact that, according
to (8), P

ges
S �SP

ges
S = �S , meaning that �S must be genuinely

multipartite entangled. �
We thus obtain another separability condition:
Corollary 2. If a multipartite ρA is entangled across a given

bipartition S|S̄ and satisfies (7), then it is GME.
It is not difficult to realize that Fact 2 can also be formulated

more generally, just as Fact 1, for any K-partition with
arbitrary K .

Moreover, Fact 1 and Fact 2 with its discussed extension
can be combined into a more general statement, in which
for every subset Si of the parties, the related subspace of the
corresponding Hilbert space can either be genuinely entangled
or symmetric. Namely, the following holds.

Fact 3. Let ρA be an N -partite state acting onHd,N such that
there exists a K-partition S1| . . . |SK of the parties for which
the following holds true,

PS1 ⊗ . . . ⊗ PSK
ρA PS1 ⊗ . . . ⊗ PSK

= ρA, (9)
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where PSi
stands for a projector onto a symmetric or genuinely

entangled subspace of the Hilbert space corresponding to the
group Si .

Then, if ρA is not GME, it can be written as in Eq. (5) with
T being sums of the sets Si .

Proof. The proof follows similar lines of reasoning as that of
Fact 2. Since ρA is not GME it admits the decomposition into
a convex combination of biseparable states (5). Assume then
that in this decomposition there is a biseparable state ρT |T̄ for
which T is not a union of some of the sets S1, . . . ,SK . Clearly,
this ρT |T̄ can be written as the following convex combination,

ρT =
∑

i

qi

∣∣ψi
T

〉〈
ψi

T

∣∣⊗ ∣∣φi
T̄

〉〈
φi

T̄

∣∣, (10)

in which at least one of the pure states |ψi
T 〉|φi

T̄
〉 is not product

with respect to unions of the sets Sk .
Let us then consider one such state and denote it simply by

|ψT 〉|φT̄ 〉. Due to the fact that T is not a union of Sk’s there are
sets Si1 , . . . ,Sil (l � 1; it is possible that there is only one such
state), which have nonempty overlaps with both T and T .

Let us denote by Vi subspaces with respective projection
PSi

. We now need to consider two cases: (i) at least one of the
subspaces Vi1 , . . . ,Vil is genuinely entangled; (ii) all of them
are symmetric.

In the case (i), the fact that one of Vi1 , . . . ,Vil , say Vim ,
is genuinely entangled contradicts the condition (9). This
is because the marginal density matrix ρSim

of |ψT 〉|φT̄ 〉
corresponding to the subset Sim is certainly separable across the
bipartition [T ∩ Sim]|[T̄ ∩ Sim ], while the condition (9) implies
that PSim

ρSim
PSim

= ρSim
, meaning that it must be supported on

a genuinely entangled subspace.
As to the case (ii), we note that among the sets Si1 , . . . ,Sil

there must be at least one, call it Sim , for which either
the state |ψT 〉 is not product with respect to the bipartition
(T ∩ Sim )|[T \ (T ∩ Sim )] or |φT̄ 〉 is not product with respect
to the bipartition (T̄ ∩ Sim )|[T̄ \ (T̄ ∩ Sim )]. This, via Lemma
1, implies that the condition P

sym
Sim

|ψT 〉|φT̄ 〉 = |ψT 〉|φT̄ 〉 can-
not be satisfied which contradicts (4). This completes the
proof. �

The above fact, with Facts 1 and 2 as special cases, is
one of the main results of the present paper. It is the key
ingredient of the construction of novel examples of states that
are genuinely entangled but not genuinely nonlocal presented
in the upcoming section.

Note that we could easily generalize the fact to the case of
subspaces which contain either genuinely entangled states or
fully product ones. As noted earlier, the symmetric subspace
bears this feature, but clearly it is not the unique one possessing
this property.

B. The construction

Having the above observations at hand, we can now pass
to the announced construction of multipartite genuinely entan-
gled states.

We begin with the simplest, yet probably the most inter-
esting case of bipartite states (K = 2) extended to N -partite
ones.

Consider a bipartite state ρAB acting on Hd,2 and a pair of
positive (P) trace preserving (TP) maps1

�A : B(Hd,1) → B(V1), �B : B(Hd,1) → B(V2), (11)

where V1 ⊆ Hd,|S| and V2 ⊆ Hd ′,|S̄| are some subspaces be-
longing to |S|-partite and |S̄|-partite Hilbert spaces of dimen-
sions d and d ′, respectively, and |S| + |S̄| = N > 2. In general,
the dimensions can be different; for clarity, however, in further
parts of the paper we concentrate on the case d = d ′. Of course,
one could also consider a more general case with the local
dimensions differing within each Hilbert space; nevertheless,
such generalization is rather straightforward, and it would
unnecessarily complicate the considerations without providing
any additional significant insight. We thus do not consider it
here. We intentionally begin with a quite general class of PTP
maps, as this will be useful later; however, by imposing further
constraints on them we will recover the class of maps that can
be used in our construction.

Let us now assume that the simultaneous action of both �A

and �B on the respective subsystems of the state ρAB results
in a positive operator, i.e., (�A ⊗ �B)(ρAB) � 0, and consider
the resulting N -partite quantum state

σA = (�A ⊗ �B)(ρAB). (12)

Note here that we allow for the situation that one of the sets
S or S̄ contains only one element, meaning that the output
Hilbert space of this map is single-partite, and the state ρAB is
not expanded on this subsystem.

Finally, we will need to assume that (i) both PTP maps
�A and �B are invertible, which means that there exist
�−1

A : B(V1) → B(Hd,1) and �−1
B : B(V2) → B(Hd,1) such

that �−1
X (�X(Z)) = Z for any Z and with X = A,B, and (ii)

both inverses are positive too. This is a strong assumption as
it is known that PTP maps have positive inverses in the above
sense iff they are isometric conjugations, i.e., �X(·) = V (·)V †

with V satisfying V †V = 1d , or transpositions (see Corollary
6.2 of Ref. [24]). In what follows, for obvious reasons, we only
focus on the first type of mappings and on many occasions call
them shortly isometries.

With all this at hand we can now state our second of the
main results, which is a generalization of the one proven in
Ref. [13].

Theorem 3. Consider a bipartite entangled state ρAB acting
on H2,d and two subspaces V1 ⊆ H|S|,d ′ and V2 ⊆ H|S̄|,d ′ in
some |S|- and |S̄|-partite Hilbert spaces of local dimension d ′
such that |S| + |S̄| = N > 2. Each subspace is assumed to be
either symmetric or genuinely entangled in the corresponding
Hilbert space. Then, the N -partite state (12) with �A and �B

being isometric mappings is GME.
Proof. Let us assume the contrary, i.e., that σA is not GME.

Due to the fact that the output subspaces of the positive maps
�i are either symmetric or genuinely entangled, Fact 3 tells us
that σ must be separable across the bipartition S|S̄, i.e.,

σA = (�A ⊗ �B)(ρAB) =
∑

i

qiρ
i
S ⊗ ρi

S̄
. (13)

1A linear map � : B(H) → B(K) is positive if when applied to a
positive operator it returns a positive operator.
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Since �A and �B are invertible, we can express the state
ρAB as

ρAB =
∑

i

qi�
−1
A

(
ρi

S

)⊗ �−1
B

(
ρi

S̄

)
. (14)

Since �−1
X (X = A,B) are positive too, this leads to a contra-

diction with the assumption that ρAB is entangled. �
It turns out that this statement can be generalized to K > 2;

i.e., as the initial state we can use K-partite states that are
genuinely entangled. We have the following.

Theorem 4. Let ρA1...AK
be a K-partite GME state. Consider

a collection of isometries:

� : B(HAi
) → B(Vi) (i = 1, . . . ,K), (15)

where each Vi is assumed to be either a symmetric or a gen-
uinely entangled subspace of the |Si |-partite subspace HSi

=
H|Si |,d ′ = (Cd ′

)⊗|Si | (|S1| + · · · + |SK | = N ) corresponding to
the group of parties Si .

Then, the state

σA = (�1 ⊗ . . . ⊗ �K )
(
ρA1...AK

)
(16)

is GME.
Proof. Assume that the resulting state σA is not GME. Due

to the fact that the output subspaces of the positive maps �i are
either symmetric or genuinely entangled, Fact 3 tells us that
σA must be a convex combination of states that are separable
across certain bipartitions T |T̄ , where T are unions of the sets
Si [see Eq. (5)]. Then, since all maps �i are isometries, this
would mean that the “initial” state ρA1...AK

is not GME, which
contradicts the assumption of the theorem. �

We thus have a quite general construction of N -partite GME
states from K-partite GME ones with K < N . Below, we
demonstrate how the method works in practice, constructing
a few examples of noisy multipartite states that are genuinely
entangled.

C. Examples

Let us now illustrate our method by applying it to a few
paradigmatic classes of states.

Example 1. Let us begin with an example considered already
in Ref. [13] which concerns the well-known class of isotropic
states [25]:

ρiso(p) = p|φ+
d 〉〈φ+

d | + (1 − p)
1 ⊗ 1

d2
(0 � p � 1),

(17)

where |φ+
d 〉 = (1/

√
d)
∑d−1

i=0 |ii〉 is the maximally entangled
state of two qudits, while 1 is a d × d identity matrix. For
the maps �X we then take rank-one (i.e., with a single
Kraus operator) completely positive maps given as �A(·) =
VL(·)V †

L and �B (·) = VN−L(·)V †
N−L with VL being an isometry

defined as

VL|i〉 = |i〉⊗L, (18)

where {|i〉} is the computational basis in Cd . The output sub-
spaces of both channels are certain subspaces of Sym((Cd )⊗L)
and Sym((Cd )⊗(N−L)), respectively, and therefore our results
can be applied here. An application of the isometries (18) to

ρiso(p) results in the following class of N -qudit states,

ρN (p) = p|GHZ(+)
d,N 〉〈GHZ(+)

d,N | + (1 − p)
Pd,L ⊗ Pd,N−L

d2
,

(19)

with |GHZ(+)
d,N 〉 = (1/

√
d)
∑d−1

i=0 |i〉⊗N being the well-known

d-level GHZ state andPd,L = ∑d−1
i=0 |i〉〈i|⊗L. The states ρN (p)

are GME for any p for which the isotropic states are entangled,
i.e., p > 1/(d + 1).

We now present a different extension of the isotropic state
being an illustration to Theorem 3. With this aim consider
the n qubit GES from Ref. [18] spanned by the unnormalized
vectors:

|0〉
n∑

k=2

|(2n−k + j )2〉 − |1〉|(j )2〉, j = 0,1, . . . ,2n−2 − 1,

(20)

where (·)2 is the (n − 1) digit binary representation of a number.
Assume that an orthonormal basis for this GES is {|φj 〉}2n−2−1

j=0 .
Set now d = 2n−2 and consider the following isometries with
the output in the GES:

Vn|j 〉 = |φj 〉, 0 � j � 2n−2 − 1. (21)

Applying locally such isometries to A and B of (17) gives the
following 2n qubit state:

ρ̂2n(p) = p|	+
GES〉〈	+

GES| + (1 − p)
PGES ⊗ PGES

22n−4
, (22)

where |	+
GES〉 = (1/

√
2n−2 − 1)

∑2n−2−1
j=0 |φj 〉|φj 〉 andPGES =∑2n−2−1

j=0 |φj 〉〈φj | is the projection on the GES under scrutiny.
Reasoning as above, we have that ρ̂2n(p) is GME for p >

1/(2n−2 − 1).
As an example consider the case n = 3. Then, the GES is

spanned by

|φ0〉 = 1√
3

(|001〉 + |010〉 − |100〉), (23)

|φ1〉 = 1√
6

(
3

2
|001〉+|010〉−1

2
|011〉−3

2
|100〉+1

2
|101〉

)
.

(24)

Example 2. Building on the above example we can construct a
more general class of GME states. Consider any pure entangled
state of two qudits written in the Schmidt form as

|ψμ〉 =
d−1∑
i=0

√
μi |ii〉 (25)

with μ being a vector consisting of the Schmidt coefficients
μi > 0, and consider its mixture with white noise

ρμ(p) = p|ψμ〉〈ψμ| + (1 − p)
1 ⊗ 1

d2
(0 � p � 1). (26)

It is known that this state is entangled iff [26]

p � psep
μ ≡ 1

d2θ + 1
(27)
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with θ = maxi �=j {√μiμj }. The application of �A and �B

introduced in the previous example to the corresponding
subsystems of ρμ(p) leads us to the following quite general
class of N -partite states:

ρN,μ(p) = p|ψN,μ〉〈ψN,μ| + (1 − p)
Pd,L ⊗ Pd,N−L

d2

(0 � p � 1), (28)

where |ψN,μ〉 is the so-called N -qudit Schmidt state, i.e., a
generalization of the N -qudit GHZ state given by

|ψN,μ〉 =
d−1∑
i=0

√
μi |i〉⊗N . (29)

We thus obtain a quite general class of N -qudit states which are
mixtures of the Schmidt states and some particular type of noise
whose entanglement is straightforward to characterize via our
results: they are genuinely entangled iff the condition (27) is
satisfied.

Example 3. The above choice of the isometry VL is probably
the simplest one that one could think of. Now, our aim
is to provide a less direct example, in particular one that
maps bipartite qudit states into multipartite qubit ones. Let
us consider a particular two-qudit pure state (25) of the form

|ϕ〉 = 1√( 2N

d−1

) d−1∑
i=0

√(
N

i

)(
N

d − 1 − i

)
|ii〉, (30)

and, again, its mixture with white noise as given in Eq. (28).
Let us then consider the following isometries,

VN |i〉= |DN,i〉 V ′
N |i〉=|DN,d−1−i〉 (i = 0, . . . ,d − 1),

(31)

which map the standard basis in Cd to N -qubit symmetric
Dicke states with N = d − 1. After applying them to |ϕ〉 one
obtains the following N -qubit pure state,

VN ⊗ V ′
N |ϕ〉 =

1√( 2N

d−1

) d−1∑
i=0

√(
N

i

)(
N

d − 1 − i

)
|DN,i〉|DN,d−1−i〉,

(32)

which with a bit of algebra can be shown to be simply the 2N -
qubit state with d − 1 excitations |D2N,d−1〉; this is because
the factors appearing under the sum are normalization factors
of the Dicke states |DN,i〉 and |DN,d−1−i〉, and thus (32) is a
normalized sum of all 2N -qubit kets containing d − 1 ones and
d − 1 zeros, which is nothing but the Dicke state |D2N,d−1〉.

When applied to the mixture of |ϕ〉 and the white noise, these
isometries give rise to the following 2N -qubit noisy Dicke state
given by

ρ2N (p) = p|D2N,d−1〉〈D2N,d−1| + (1 − p)
P

sym
d−1 ⊗ P

sym
d−1

d2
,

(33)

where P
sym
d−1 stands for the projection onto the symmetric

subspace of the (d − 1)-qubit Hilbert space. As before we can
easily decide on the values of p for which this state is genuinely

entangled. From Eq. (27) it follows that the state ρ2N (p) is
genuinely entangled for p > 1/(d2θev/odd + 1) with

θev = 1(2(d−1)
d−1

)(d − 1

� d−1
2 �
)(

d − 1

� d−1
2 �
)

(34)

for even d, and

θodd = 1(2(d−1)
d−1

)(d − 1
d−1

2

)√(
d − 1

d−3
2

)(
d − 1

d+1
2

)
(35)

for odd d.
Let us note that with a little bit more effort one can

analogously construct a mixture of an N -qubit Dicke state
with an arbitrary number of excitations k = 0, . . . ,N and some
noise of the above type that is genuinely entangled.

Example 4. For the last example of an application of the
method to bipartite states consider another particular two-qubit
Bell diagonal state (the isotropic state is also in this class):

ρBell(p) = p|φ+
2 〉〈φ+

2 | + (1 − p)|φ−
2 〉〈φ−

2 |, (36)

where |φ±
2 〉 = 1/

√
2(|00〉 ± |11〉). One can easily verify that

the state is entangled iff p �= 1/2. Using the isometry (18) with
any L, we extend this state to the mixture of two GHZ states
with opposite relative phases, i.e.,

σBell(p) = p|GHZ(+)
2,N 〉〈GHZ(+)

2,N |
+ (1 − p)|GHZ(−)

2,N 〉〈GHZ(−)
2,N |, (37)

where |GHZ(−)
2,N 〉 = 1/

√
2(|0〉⊗N − |1〉⊗N ). Clearly, the result-

ing state is entangled across the bipartite cut induced by the
isometries iff p �= 1/2, and, in consequence, this constitutes
the region in which it is also GME. Note that the subspace after
the extension, which is spanned by GHZ(+) and GHZ(−), falls
into both categories: it is symmetric and genuinely entangled.

Example 5. We now move to examples of multipartite states
and begin with the case K = 3. To that end, we consider the
following three-qubit density matrix introduced in Ref. [27]:

ρABC = 1

8
18 + 1

8

3∑
i=1

[
1

3
12 ⊗ σi ⊗ σi − 1

2
σi ⊗ 12 ⊗ σi

]
,

(38)

where σi for i = 1,2,3 are the standard Pauli matrices.
Let us then consider the isometries �i = VLi

(·)V †
Li

(i =
1,2,3), where Li are integers greater than one and VL is
introduced above. When applied to the subsystems of the state
ρABC , they give the following N -qubit state:

σA ≡ �1 ⊗ �2 ⊗ �3(ρABC)

= 1

8
PL1,2 ⊗ PL2,2 ⊗ PL3,2

+1

8

3∑
i=1

[
1

3
PL1,2 ⊗ �L2,i ⊗ �L3,i − 1

2
�L1,i ⊗ PL2,2 ⊗ �L3,i

]
,

(39)

where PL,2 are defined above and �L,i = VLσiV
†
L with i =

1,2,3 are Pauli matrices embedded in the L-qubit Hilbert
space. As discussed in Ref. [27], the state ρABC is genuinely
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entangled, and thus by virtue of Fact 3, the state σA is genuinely
entangled too.

Example 6. Here, we give yet another illustration of the
method in the case of a multipartite state as a departure one. In
particular, we consider a K-qubit mixed state with the support
in the subspace spanned by the the W state,

|W2,K〉 = 1√
K

(|10 . . . 00〉 + |01 . . . 00〉 + · · · + |00 . . . 01〉),

(40)

and its “complement,”

|Ŵ2,K〉 = 1√
K

(|01 . . . 11〉 + |10 . . . 11〉 + · · · + |11 . . . 10〉)

= σ⊗K
x |W2,K〉. (41)

It is known that any incoherent mixture of these states,

ρA1A2...AK
= p|W2,K〉〈W2,K | + (1 − p)|Ŵ2,K〉〈Ŵ2,K |, (42)

is genuinely entangled for anyK [28]. Consider now isometries
V : C2 → (C2)⊗L acting as follows:

|0〉Ai
−→ |W2,L〉A(L)

i
, (43)

|1〉Ai
−→ |Ŵ2,L〉A(L)

i
, (44)

where A(L)
i := A(i−1)L+1 . . . AiL. As in Example 4, this isome-

try sends to a subspace which is both symmetric and genuinely
entangled. An application of V ⊗K to the state (42) results in a
genuinely entangled N -partite (N = LK) state:

σA =V ⊗KρA1A2...AK
(V †)⊗K

=p|(WŴ )2,N 〉〈(WŴ )2,N |A + (1 − p)|(ŴW )2,N 〉〈(ŴW )2,N |A,

(45)

where

|(WŴ )2,N 〉A = 1√
K

K∑
i=1

⎡⎢⎢⎢⎣|Ŵ2,L〉A(L)
i

⊗

⎛⎜⎜⎜⎝
K⊗

f =1
f �=i

|W2,L〉A(L)
f

⎞⎟⎟⎟⎠
⎤⎥⎥⎥⎦,

|(ŴW )2,N 〉A = 1√
K

K∑
i=1

⎡⎢⎢⎢⎣|W2,L〉A(L)
i

⊗

⎛⎜⎜⎜⎝
K⊗

f =1
f �=i

|Ŵ2,L〉A(L)
f

⎞⎟⎟⎟⎠
⎤⎥⎥⎥⎦.

(46)

Concluding this section we note an interesting feature of
the states constructed within our approach. Namely, their
entanglement properties do not depend on the number of
particles in the system; i.e., once the starting state is known
to be (genuinely) entangled, the resulting one is guaranteed to
be GME regardless of the number of parties after the extension.
This is in contrast to the situation occurring in the case of many
important classes of states not covered by the current approach,
e.g., the mixture of the GHZ state and the white noise (see
Ref. [29]).

IV. APPLICATION TO (UN)STEERABILITY AND
(NON)LOCALITY OF GME STATES

Importantly, apart from merely providing examples of
GME states, our construction can also be applied to provide
further instances of multipartite states that are not genuinely
multiparty nonlocal. We will also apply the method to present
unsteerability of GME states.

A. Multipartite nonlocality

Before being able to state our results we need some
preparation. Assume again that the parties share some state
ρA, but now on their share of this state, each party Ai performs
a measurement Mi with measurement operators denoted by
M (i)

ai
, where ai labels the outcomes. Recall that in order to form

a quantum measurement the operators M (i)
ai

must be positive
and sum up to the identity 1d . If these operators are supported
on orthogonal subspaces, i.e., M (i)

ai
M

(i)
a′

i
= δaia

′
i
M (i)

ai
, we call the

corresponding measurement projective (PM). Otherwise, it is
called a generalized measurement (GM; also called POVM).

These measurements on ρA give rise to the probability
distribution

p(a|M) := p(a1, . . . ,aN |M1, . . . ,MN )

= tr
[(

M (1)
a1

⊗ · · · ⊗ M (N)
aN

)
ρA
]
, (47)

where each p(a|M) denotes the probability of obtaining a :=
a1, . . . ,aN upon measuring M := M1, . . . ,MN .

In full analogy to the notion of K-separability let us then
imagine that for any choice of the measurements M1, . . . ,MN ,
the probability distribution p(a|M) admits the following con-
vex combination:

p(a|M)

=
∑

SK∈$K

pSK

∫

SK

dλ ωSK
(λ)p1

(
aS1

∣∣MS1 ,λ
)
. . .pK

(
aSK

∣∣MSK
,λ
)
.

(48)

Here the sum goes over all K-partitionsSK ∈ $K , pSK
and ωSK

are probability distributions parameterized by the K-partitions
SK ’s, and 
SK

’s are sets over which λ’s are distributed.
Moreover, pk(aSk

|MSk
), called a response function, is the

probability that the parties belonging to the set Sk obtain results
aSk

upon measuring MSk
.

Now, if we do not impose any conditions on the nature
of the response function pi(aSi

|MSi
) (quantum, nonsignaling,

etc.), except that they form a proper probability distribution,
i.e., they are nonnegative and sum up to one, Eq. (48) gives the
definition of K-locality of the state ρA due to Svetlichny [30].
Analogously to entanglement, if K = N we call ρA fully local,
while if K = 2 it is said to be bilocal. If we consider a certain
K-partition SK we omit the sum over the partitions in Eq. (48)
and talk about K-locality with respect to SK . States that are
local are also said to have a local hidden variable (LHV) model
(of the corresponding type) or simply a local model. Finally, if
p(a|M) is not bilocal for any choice of the measurements, then
we say that ρA is genuinely multipartite nonlocal (GMN).

The intuition behind Svetlichny’s definition is that the
correlations that are not fully local might still display locality
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if some parties are grouped together, in the sense that their
statistics can be described by global probability distributions
of any nature. In particular, they do not need to be quantum, i.e.,
obtainable via Born’s rule. It should be emphasized that within
this approach each party still has only access to their subsystem
of ρA, or, in other words, joint measurements of more than
one particle are not allowed. However, although at first sight
quite natural, the definition of Svetlichny has been shown to be
inconsistent with the operational interpretation of nonlocality
in multipartite systems [14,15]. One of the ways to fix this
problem is to impose that all response functions in (48) obey
the no-signaling principle. This gives one of the operational
definitions of K-locality proposed in [14,15]: ρA is K-local
if for any choice of the measurements the corresponding
probability distribution p(a|M) admits the form (48) in which
all response functions pk(aSk

|MSk
) are nonsignaling.

Although, as already said, the Svetlichny definition is not
consistent with the operational interpretation of nonlocality in
multipartite systems, we use it because it allows us to state our
results in a general way. Still, our construction is also capable
of providing states that are GME but not GMN even if the
above operational definition of nonlocality is used. Later, we
provide some illustrative examples.

Let us now get back to our construction and consider a
K-partite state ρA1...AK

, but this time we additionally assume
that it has a fully local model for generalized measurements.
An example of such a state for K = 2 would be the isotropic
states ρiso(p) defined in Eq. (17), or in the general multipartite
scenario the one constructed in Ref. [16]. Consider then an
arbitrary K-partition S1| · · · |SN of N parties and define a
collection of K maps

�i : B(HAi
) → B(HSi

), 1 � i � K, (49)

withHSi
= H|Si |,d ′ and |S1| + . . . + |SK | = N > K . As previ-

ously, we assume these maps to be trace-preserving; however,
instead of assuming that they are positive we impose their dual
maps �

†
i : B(H|Si |,d ′) → B(HAi

) to be positive on products of
positive operators (PPPO).2 The operations defined in Eq. (49)
will serve us to extend the state ρA1...AK

to an N -partite one
just as it was in the previous sections.

The following statement was made by Barrett in [31] and
later generalized in [13].

Theorem 5. Let ρA1...AK
be a state acting on Hd,K

that has a fully local model for generalized measure-
ments. Then, for any collection of trace-preserving maps
�i : B(HAi

) → B(HSi
) whose dual maps �

†
i are PPPO and

such that ⊗K
i=1�i(ρA1...AK

) � 0, the N -partite state σA =
⊗K

i=1�i(ρA1...AK
) is K-local with respect to the K-partition

S1| . . . |SK .
The proof of this statement can be found in the Supplemental

Material of Ref. [13]. Note that originally it was proven there
assuming that �i are all quantum channels, i.e., completely
positive trace–preserving maps; however, this assumption can
be relaxed as we do here, but remembering that we always need

2Recall that a linear map � : B((Cd )⊗N ) → B(Cd ) is termed pos-
itive on products of positive operators if �(P1 ⊗ . . . ⊗ PN ) � 0 for
any sequence of positive operators Pi [40].

to guarantee that ⊗K
i=1�i(ρA1...AK

) � 0. One also has to bear
in mind that the dual map of a trace-preserving positive map is
also positive and moreover unital, i.e., preserves the identity.

A combination of this fact with our construction of mul-
tipartite genuinely entangled states stated in Theorem 4 gives
rise to a method of generation of GME states that are not GMN.
Concretely, we have the following statement.

Theorem 6. Let ρA1...AK
be a K-partite quantum state

acting on Hd,K that has a fully local model for generalized
measurements. Let then �i : B(HAi

) → B(Vi) be a collection
of isometries with output subspaces Vi being either symmetric
or GES. Then, the N -partite state

σA = (�1 ⊗ . . . ⊗ �K )
(
ρA1...AK

)
(50)

is GME and K-local with respect to the K-partition induced
by �’s.

Proof. It is direct to see that the dual map of an isometry is
PPPO and therefore it follows from Theorem 5 that the state
σA has a K-local model for generalized measurements with
respect to the K-partition induced by the maps �i . Then, by
virtue of Theorem 4, the fact that ρA1...AK

is GME implies that
so is σA. �

Now, using the above result, we demonstrate that some
of the states introduced in Sec. III C are GME but not GMN
according to the Svetlichny definition of nonlocality because
they all have a bilocal model for generalized measurements.
Let us consider each example separately from this perspective.

Example 1. The class of N -qudit states from Eq. (19)
was already considered in Ref. [13] also in the context of
nonlocality. For completeness, let us recall these results.

It was proven in Ref. [32] that the isotropic states (17) admit
a local model for generalized measurements for any p obeying

p � pGM ≡ (3d − 1)(d − 1)d−1

(d + 1)dd
. (51)

Hence, the N -partite states ρN (p) [Eq. (19)] are genuinely
entangled but not genuinely nonlocal for any 1/(d + 1) < p �
pGM.

The same reasoning applies to the states ρ̂2n(p) with the
only difference now that d = 2n−2.

Example 2. Let us now pass to a more general class of
N -qudit states given in Eq. (28). It was shown in Ref. [32]
that the two-qudit mixed states (26) have a local model for
generalized measurements for

p � p̃GM ≡ pGM

(1 − pGM)(d − 1) + 1
, (52)

and thus, via our construction, the N -partite states are bilocal
according to the Svetlichny definition of nonlocality for the
same values of p. So, among all states ρN,μ(p) defined
by Eq. (28) and parametrized by the vector μ of Schmidt
coefficients, there are GME states that are bilocal if

p̃GM > 1/(d2θμ + 1), (53)

where, to recall, θμ = maxi �=j {√μiμj }. In fact, it is not
difficult to find such μ. In particular, due to the fact that
p̃GM � (3d − 1)/[4d(d + 1)], one sees that the condition (53)
is satisfied whenever θμ > (1/d2)[(4d2 + d + 1)/(3d − 1)]
and, clearly, entangled pure states |ψμ〉 for which this last
inequality is satisfied do exist.
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Let us finally mention that there are bipartite quantum
states admitting local models for generalized measurements
for larger values of p than (52) for which our construction can
be applied. As shown in Ref. [32] the following mixture,

ρ̃μ(p) = p|ψμ〉〈ψμ| + (1 − p)ρA ⊗ 1d

d
, (54)

where |ψμ〉 is a pure state defined in Eq. (25) and ρA is its
single-party marginal, has a local model for all measurements
for any p � pGM.

Example 3. Unfortunately for the class of states (33) the
condition (53) is not satisfied and therefore we cannot claim
his state to be an example of a GME state that is not GMN.

Example 4. The states (36) violate the CHSH inequality
and in consequence are nonlocal in the whole region of
entanglement [33]. In turn, the states (37) are not bilocal.

Example 5. As shown in Ref. [27] the tripartite state (38)
has a hybrid local model, i.e., for PMs on A and POVMs on B

and C. For this reason the GME state (39) cannot be claimed
to be 3-local for any kind of measurements. However, if we
keep the party A untouched, i.e., map it identically to itself
or unitarily conjugate it, we obtain a GME state which has a
3-local model for projective measurements on A and general
measurements for the rest of the parties. This possibility has
been already noted in [34].

Importantly, the original state can be extended to a qutrit-
qubit-qubit state which does have a local model for general
measurements still being genuinely entangled [35]. Such a state
then, after the application of the extending maps, will be 3-local
for all measurements.

Example 6. This state is known to be nonlocal for p �= 1/2.
The case p = 1/2 remains, to the best of our knowledge,
unsolved, although the results of Ref. [28] might indicate that
for this value of the parameter they are (fully) local.

Consequently, we provide more examples, over those pro-
vided in Ref. [13], of N -partite quantum states giving rise to
the inequivalence between entanglement and nonlocality in the
multiparty case.

This inequivalence persists if one considers operational
definitions of nonlocality formulated in Refs. [14]. For com-
pleteness, we recall the proof of this fact from Ref. [13].
Consider those entangled states that have a local model for
generalized measurements, meaning that

pρ(a,b|MA,MB) =
∫




dλ ω(λ)pρ(a|MA,λ)pρ(b|MB,λ)

(55)
holds for any MA and MB in which one of the response
functions, say the one on Bob’s side, is quantum; that is, it
can be written as pρ(b|MB,λ) = Tr[σλMb], where σλ is some
quantum state representing the hidden variable λ and {Mb} are
the measurement operators of the measurement MB . We have
added subscripts to the response functions to stress for which
states the model is considered. We then consider two isometries

�A→A1 : B(Cd ) → B(Cd ), �B→S̄ : B(Cd ) → B(V2).

(56)
The first one is trivial as its output space is the same as the
initial one (in fact it is just a unitary conjugation), whereas the
second one maps to some subspace V2 of an (N − 1)-partite

Hilbert space corresponding to parties A2,A2, . . . ,AN . Their
application to ρAB ∈ B(Cd ⊗ Cd ) gives us an N -partite state
σA = (�A→A1 ⊗ �B→S̄)(ρAB) which, according to Theorem
6, is GME and has a bilocal model (48) with respect to the
bipartition A1|A2 · · · AN obtained from the local model (56),
which we can explicitly write as

pσ (a|M)

=
∫




dλ ω(λ)pσ (a1|M̂1,λ)pσ (a2, . . . ,aN |M̂2, . . . ,M̂N ,λ),

(57)

where the response function of the party A1 is defined as
pσ (a1|M̂1,λ) = pρ(a1|MA,λ) with the measurement operators
of the measurement MA given by Ma = �

†
A1→A(M̂a), whereas

the response function corresponding to the parties A2, . . . ,AN

is defined as pσ (a2, . . . ,aN |M̂2, . . . ,M̂N ,λ) = p(a|MB,λ),
where a := a2, . . . ,aN and the measurement operators of the
measurement MB = {Ma}a are given by

Ma = �
†
S̄→B

(
M (2)

a2
⊗ . . . ⊗ M (N)

aN

)
. (58)

To show that the model is in agreement with the opera-
tional definitions of nonlocality, it suffices to show that the
response function pσ (a2, . . . ,aN |M̂2, . . . ,M̂N ,λ) obeys the
no-signaling principle. To this end, we exploit the fact that
Bob’s response function in the model (55) has a quantum
realization, meaning that

pσ (a2, . . . ,aN |M̂2, . . . ,M̂N ,λ)

= Tr[σλMa]

= Tr
[
σλ�

†
S̄→B

(
M (2)

a2
⊗ . . . ⊗ M (N)

aN

)]
= Tr

[
�B→S̄(σλ)

(
M (2)

a2
⊗ . . . ⊗ M (N)

aN

)]
. (59)

Due to the fact that �B→S̄ is a positive trace-preserving
map, �B→S̄(σλ) is a valid quantum state, and therefore
pσ (a2, . . . ,aN |M̂2, . . . ,M̂N ,λ) is a quantum response function,
meaning that it necessarily obeys the nonsignaling principle
(see, e.g., Ref. [36]).

To complete the proof let us mention that there exist local
models in which one of the response functions is quantum,
with the well-known example being the Barrett model [31] for
the Werner states [37]. Another example of such a model is the
one introduced in Ref. [32] for the isotropic states (17). Thus,
the N -partite states given in Eqs. (19) and (28) [in the second
case provided that the condition (53) is satisfied] with L = 1
(that is, the isometry is applied only to the second subsystem)
are examples of GME states that are not GMN according to
the operational definitions of nonlocality.

B. Multipartite steering

Interestingly, this last observation suggests that our method
can also be used to construct GME states that are unsteerable
in a sense we will make precise in this section. This has already
been mentioned in [13] but no details have been given regarding
this issue. We fill this gap here.

We first recall the notion of steering and begin with the
simplest bipartite scenario as it serves as the basis for our main
constructions.
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In a steering scenario two parties share at the beginning
an unknown state ρAB ∈ B(Cd ⊗ Cd ). The question now is
whether one of the parties, say Alice (A), by performing some
measurements on her share of ρAB , is able to collapse (steer)
Bob’s reduced state into different ensembles.

More formally, suppose Alice may perform some prede-
termined number of generalized measurements Mx = {Mx

a },
where a enumerates results of the xth measurement (for
simplicity we assume all measurements to have the same
number of outcomes) and Mx

a are the measurement operators,
i.e., Mx

a � 0 and
∑

a Mx
a = 1d for each x. The unnormalized

Bob’s state after the result a of the xth measurement has been
obtained reads

�B
a|x = trA

[(
Mx

a ⊗ 1B

)
�AB

]
. (60)

The collection {�B
a|x}a,x is referred to as an assemblage. Now,

we say that the assemblage {�B
a|x}a,x is unsteerable from

Alice to Bob, shortly A → B unsteerable, if the above can be
written as

�B
a|x =

∫



dλ ω(λ)p(a|x,λ)σB
λ , (61)

where 
 is again the set of hidden variables, ω(λ) is some prob-
ability density over 
, p(a|MA,λ) is a probability distribution,
called as previously the response function of party A, and σB

λ

are some quantum states.
If the opposite holds we say that the given assemblage

is A → B steerable. Further, if all possible assemblages are
unsteerable (to reduce the clutter, when the direction of steering
is clear we omit X → Y ) we say that the state itself is
unsteerable and if there exists a steerable assemblage we call
the state steerable. Unsteerable assemblages (states) are said to
have a local hidden state model (LHS)—the name stemming
directly from the form of (61).

Not surprisingly, steering cannot take place when the initial
state is separable, i.e., ρAB = ∑

λ pλ�
A
λ ⊗ γ B

λ . In such case
it is enough to take p(a|x,λ) := trMx

a �A
λ and it is immediate

to realize that the resulting �B
a|x assumes the form of Eq. (61).

Entanglement is thus a necessary condition for steering and the
presence of steering certifies entanglement of an unknown state
ρAB . Nevertheless, it is not sufficient: although all separable
states are unsteerable, some entangled states also have an
underlying LHS. These notions are thus inequivalent. In fact,
steering as a type of correlation can be placed strictly between
entanglement and nonlocality. As a side note, note that the
definition of steering introduces asymmetry into the scenario
as it distinguishes the roles of the parties. A priori, there is
no guarantee that this asymmetry remains at the fundamental
level, i.e., some states are steerable from Alice to Bob [Eq. (61)
does not hold] but not in the opposite direction [Eq. (61) with
the parties exchanged always holds]. It turns out that it is indeed
the case: there are known examples of states which are only
one-way steerable [39].

In the modern approach, steering is considered within the
paradigm of (one-sided) device-independent quantum infor-
mation processing. While it is assumed that Bob’s measure-
ments (with the roles of the parties in the formulation we
have presented here) are well characterized and trusted, Alice’s
measurements are treated as black boxes performing unspeci-
fied POVMs Mx . Bob can perform full state tomography and

learn the states �B
a|x and later basing on this knowledge verify

whether Alice indeed might have steered his share of the state.
Let us now move to the multipartite case, where the situation

clearly becomes more involved. It is not our goal to consider
all steering scenarios possible in the multipartite setting (see
Ref. [38]). We only focus on the case of relevance for future
purposes in the present paper, which is the scenario in which a
group of L parties perform (untrusted) measurements and the
question is whether this might lead to the lack of a LHS model,
in the sense of Eq. (61), on the remaining N − L parties.

Let us then consider again N parties sharing a quantum
state ρA ∈ B((Cd )⊗N ). Let the parties be split into two groups
according to a given bipartition S|S̄. For simplicity and
no loss of generality we assume that S = A1, . . . ,AL and
S̄ = AL+1, . . . ,AN . The number L varies from 1 to N − 1
depending on the concrete situation.

Suppose now that the ith party from S may perform lo-
cal measurements M (i)

xi
= {Mxi

ai
} with measurement operators

Mxi
ai

; xi’s enumerate the measurements and the outcomes are
labeled ai . The unnormalized postmeasurement states on S̄

now read

�S̄
aS |xS

= TrS

[(
Mx1

a1
⊗ · · · ⊗ MxL

aL
⊗ 1S̄

)
ρA
]
, (62)

where a := a1 . . . aL and xS := x1, . . . ,xL.
The terminology now is the same as in the bipartite case.

The collection {�S̄
aS |xS

}aS ,xS
is called the assemblage. It is said

to be S → S̄ unsteerable if there is a decomposition of the form

�S̄
aS |xS

=
∫




dλ ω(λ)p(aS |xS,λ)σ S̄
λ , (63)

where σ S̄
λ are some states (called as previously hidden) acting

on the Hilbert space corresponding to the group S̄, whereas
p(aS |xS,λ) is a response function corresponding to parties
belonging to S; 
 is the set of hidden variables and ω(λ) a
probability density over 
. It is worth noting at this point
that the hidden states σ S̄

λ are arbitrary in the sense that no
separability condition is imposed on them, although the parties
from S̄ are spatially separated. If there is no decomposition (63)
for the assemblage, it is called S → S̄ steerable. If for some
choice of measurements the resulting assemblage is S → S̄

steerable the state ρA is called S → S̄ steerable. Otherwise, it
is said to be S → S̄ unsteerable.

Let us now demonstrate that the methods from Sec. III B
may be directly linked with a construction of genuinely
multipartite entangled states which are unsteerable for a given
bipartition. The result relies on the observation made by some
of us in Ref. [39]. We recall it here in a version adapted to
our considerations. Let us take, analogously to Sec. IV A, a
state ρAB and two trace-preserving maps �A→S and �B→S̄

and assume �A→S to have the dual3 map PPPO and �B→S̄ to

3Given the linear map � : B(H) → B(K) its dual is defined to be the
linear map �† : B(K) → B(H) satisfying Tr[X�(Y )] = Tr[�†(X)Y ]
for any X ∈ B(K) and Y ∈ B(H). Recall that if � is positive (in
particular completely positive), its dual �† is also positive. Moreover,
if � is trace-preserving, i.e., Tr[�(X)] = TrX for any X, the dual map
�† is unital, i.e., �†(1K) = 1H with 1X being the identity operator
acting on X .
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be positive. Assuming then that (�A→A1 ⊗ �B→S̄)(ρAB) � 0,
we have the following fact (see also Ref. [39]).

Fact 4. Let ρAB ∈ B(H2,d ) be A → B unsteerable. Then,
for any pair of trace-preserving positive maps �A→S and
�B→S̄ such that �B→S̄ has the dual map PPPO and (�A→S ⊗
�B→S̄)(ρAB) � 0, the N -partite state

σA = (�A→S ⊗ �B→S̄)(ρAB) (64)

is S → S̄ unsteerable.
The proof of this fact can be found in Ref. [39]; however,

for completeness we also provide it in the Appendix. We just
mention here the origin of the requirement of the dual of �B→S̄

to be PPPO. This stems from the fact that an application of this
map to the products of local measurement operators on S̄ must
result in positive operators, as the latter constitute a generalized
measurement.

To construct example multipartite states that are genuinely
entangled and at the same time S → S̄ unsteerable, let now

�A→S : B(Cd ) → B(VS),
(65)

�B→S̄ : B(Cd ) → B(VS̄)

be two isometries with VS and VS̄ being subspaces inHd ′,L and
Hd ′,N−L, respectively, that are either symmetric or genuinely
entangled. Then, we have the following fact.

Fact 5. Let ρAB be entangled but A → B unsteerable.
For any pair of the isometries (65) the N -partite state σA =
[�A→S ⊗ �B→S̄](ρAB) is GME and S → S̄ unsteerable.

Proof. From Fact 4 we have that the state σA is S → S̄

unsteerable, whereas from previous facts that it is GME. �
Thus, some of the multipartite states introduced in Sec. III C

are not only S|S̄ local but also S → S̄ unsteerable.
To have a definition of unsteerability in the multipartite case

à la definition of locality of Refs. [14], one needs to assume
that the response function p(aS |xS,λ) is nonsignaling, and
accordingly assume that L = 1 in the above construction.

V. CONCLUSION

In Ref. [13] we outlined a method of generating genuinely
entangled N -partite states from K-partite genuinely entangled
ones with K < N . The aim of the present work is to describe
this method in greater detail and, more importantly, to signif-
icantly generalize it. In order to achieve this goal we provide
quite general entanglement criteria allowing one to check
whether a given multiparty state is genuinely entangled. In the
particular case of K = 2 these criteria are simple to formulate:
if an N -partite state is entangled across certain bipartition S|S̄
and its parts corresponding to S and S̄ are supported on some
genuinely entangled subspace or the symmetric one, then this
state is genuinely entangled.

We then apply our method to some known classes of
bipartite and multipartite entangled states obtaining examples
of mixed N -partite states that are genuinely entangled. At
the same time, also generalizing the results of Ref. [13], we
demonstrate that with the aid of our method we can construct
further examples of N -partite genuinely entangled states which
are not genuinely nonlocal. These novel classes of states
provide further support for the statement made in Ref. [13]

(see also Ref. [16]) that entanglement and nonlocality are
inequivalent notions in the multiparty case.

Our research provokes several natural questions. For in-
stance, it would be interesting to see whether with the aid
of our method one can create further interesting classes of
multiparty states or whether our entanglement criteria could be
used to prove that some existing classes of states are genuinely
entangled. On the other hand, it is of interest to see whether
the classes of genuinely entangled states we construct admit
more restrictive local models, in particular, the fully local one.

From another perspective, one could also investigate how
the ideas presented here could be combined with other ap-
proaches to the construction of large quantum states from
smaller ones such as the fusion-type techniques that allow for
creation of GHZ states [41], cluster states [42], or the W states
(see, e.g., Refs. [43–45]). It would be of interest to see whether
such a combination would account for more general setups.
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APPENDIX: PROOFS

Here we provide the proof of Lemma 1 from the main text
used in the proof of Facts 3 and 4.

Lemma 1. Let |ψ〉 ∈ Hd,N be a pure state which is product
across a certain bipartition T |T̄ . If P

sym
S |ψ〉 = |ψ〉 where S is

a subset of A having nontrivial overlaps with T and T̄ , i.e., S ∩
T �= ∅ and S ∩ T̄ �= ∅, then |ψ〉 is also product with respect to
the bipartition S|S̄.

Proof. From the assumption that |ψ〉 is product with respect
to T |T̄ it follows that |ψ〉 = |ψT 〉|φT̄ 〉. Let us then consider
two cases: (i) either T or T̄ is contained in S; (ii) none them is
contained in S.

Case (i). For concreteness, but without any loss of gener-
ality, we assume that T is contained in S. Then, we write the
vector |φT̄ 〉 in its Schmidt decomposition with respect to the
bipartition [T̄ ∩ S]|T̄ ′ with T̄ ′ = T̄ \ (T̄ ∩ S) as

|φT̄ 〉 =
∑

i

√
λi

∣∣φ′i
T̄ ∩S

〉∣∣ωi
T̄ ′
〉
, (A1)

where λi are the Schmidt coefficients, and |φ′i
T̄ ∩S

〉 and |ωi
T̄ ′ 〉 are

some orthonormal bases defined on T̄ ∩ S and T̄ ′, respectively.
The condition P

sym
S |ψ〉 = |ψ〉 implies then that for any i, the

following identity

P
sym
S |ψT 〉∣∣φ′i

T̄ ∩S

〉 = |ψT 〉∣∣φ′i
T̄ ∩S

〉
(A2)

is satisfied. This, by virtue of the results of Refs. [22,23] implies
that all vectors |ψT 〉|φ′i

T̄ ∩S
〉 are fully product; i.e., they can be

written as

|ψT 〉∣∣φ′i
T̄ ∩S

〉 = |ei〉⊗|S|, (A3)

with |ei〉 being some qudit vectors. In fact, the vectors |ei〉 can
differ only by a phase. To see that, it is enough to trace out the
T̄ ∩ S part of (A3), which gives |ψT 〉〈ψT | = |ei〉〈ei |⊗|T | for
any i, meaning that they are all equal up to some phase (there
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are clearly some relations between these phases, but they are
not important for what follows). As a result,

|ψT 〉∣∣φ′i
T̄ ∩S

〉 = eiδi |e〉⊗|S|. (A4)

Substituting (A3) into (A1) one finally sees that |ψ〉 is product
with respect to S|S̄. In fact, it is even fully product on the
subspace S.

Case (ii). Let us expand both vectors |ψT 〉 and |φT̄ 〉 as

|ψT 〉 =
∑

i

√
λi

∣∣ψ ′i
T ∩S

〉|ω′i
T ′ 〉 (A5)

and

|φT̄ 〉 =
∑

i

√
γi

∣∣φ′i
T̄ ∩S

〉∣∣ω′′i
T̄ ′
〉
, (A6)

where |ω′i
T ′ 〉 and |ω′′i

T̄ ′ 〉 are some orthonormal bases defined on
T \ (T ∩ S) and T̄ \ (T̄ ∩ S). The condition P

sym
S |ψ〉 = |ψ〉

implies that for any pair i,j one has [Note that (T ∩ S) ∪ (T̄ ∩
S) = S.]

P
sym
S |ψ ′i

T ∩S〉
∣∣φ′j

T̄ ∩S

〉 = ∣∣ψ ′i
T ∩S

〉∣∣φ′j
T̄ ∩S

〉
. (A7)

Again, due to the results of [22,23] every vector in the above
must be fully product. Moreover, one can check that these fully
product vectors may differ only by a phase, so that∣∣ψ ′i

T ∩S

〉∣∣φ′j
T̄ ∩S

〉 = eiδij |e〉⊗|S|, (A8)

where δij are some phases [note that (A7) imposes some
conditions on these phases; however, they are not important
for the proof; still they must be such that the state remains
product with respect to T |T̄ ]. Putting (A8) into |ψT 〉|φT̄ 〉
one finally obtains that |ψ〉 is product with respect to S|S̄.
In particular it is of the form |ψT 〉|φT̄ 〉 = |e〉⊗|S||ω̄S̄〉, where
|ω̄S̄〉 is a state defined on S̄ = T ′ ∪ T̄ ′. This completes the
proof. �

Let us now provide the proof of Fact 4.
Fact 4. Let ρAB ∈ B(H2,d ) be A → B unsteerable. Then,

for any pair of trace-preserving positive maps �A→S and
�B→S̄ such that �B→S̄ has the dual PPPO and [�A→S ⊗
�B→S̄](ρAB) � 0, the N -partite state

σA = [�A→S ⊗ �B→S̄](ρAB) (A9)

is S → S̄ unsteerable.
Proof. Let �

†
S→A be the dual map of �A→S and define the

following operators:

M̂A
a1

= �
†
S→A

(
M (1)

a1
⊗ . . . ⊗ M (L)

aL

)
. (A10)

From the duality of the map in the construction above it
immediately follows that the resulting operators form proper
POVMs. Unnormalized states after the measurements results
a1 have been obtained upon measuring M1 by the party A1 on
σA [Eq. (A9)] read

�S̄
aS |MS

= TrS

[(
M (1)

a1
⊗ . . . ⊗ M (L)

aL
⊗ 1S̄

)
σA
]

= TrS

[(
M (1)

a1
⊗ . . . ⊗ M (L)

aL
⊗ 1S̄

)
× (�A→S ⊗ �B→S̄)(ρAB)

]
= �B→S̄

(
TrA

[
M̂A

a ρAB

])
= �B→S̄

(∑
λ

ω(λ)p(aS |M̂A,λ)σB
λ

)

=
∑

λ

ω(λ)p(aS |M̂A,λ)�B→S̄(σB
λ ). (A11)

The penultimate equality, in which p(a1|M̂A,λ) is some
measurement-dependent probability distribution, is a conse-
quence of A → B unsteerability of ρAB . Postmeasurement
states admit thus a decomposition of the form (63), with
the hidden states {�B→S̄(σB

λ )}λ, so the state σA is A1 → S̄

unbisteerable. �
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