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Abstract: The paper presents experimental and numerical investigations on 
novel prefabricated composite building wall panels for residential building 
constructions. The wall panels were composed of reinforced concrete ribbed 
elements with the core from the EPS foam as the thermal insulation. The 
wall panels in the full-scale 1:1 were subjected to vertical loads. In the first 
step, the experiments were analysed with simple usual static methods. Next 
they were analysed numerically using the finite element method based on 
two different constitutive continuum models for concrete. First, an elasto-
plastic model with the Drucker-Prager criterion defined in compression and 
with the Rankine criterion defined in tension was used. Second, a coupled 
elasto-plastic-damage formulation based on the strain equivalence 
hypothesis was used. In order to describe strain localization in concrete, 
both models were enhanced in a softening regime by a characteristic length 
of micro-structure by means of a non-local theory. A satisfactory agreement 
between the experiments and FE analyses was achieved. In addition the FE 
results with the non-local approach were compared with the crack band 
model. 

Keywords: composite panels; damage mechanics; elasto-plasticity; EPS 
foam; non-local theory; reinforced concrete; crack band approach 

1. Introduction

Nowadays, in order to diminish construction costs and to shorten construction time of 
residential buildings, different prefabricated systems are offered on the building market. 
Prefabricated buildings are building types which consist of several factory-built 
components or that are assembled on-site to complete the unit. In addition, the structural 
design may be improved through the development and application of composite elements. 
An attractive energy-saving construction system for residential buildings was proposed. 
It is composed of monolithic load bearing capacity reinforced concrete (RC) frames and 
prefabricated composite structural insulated slabs and wall panels consisted of reinforced 
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concrete (RC) and expanded polystyrene (EPS) (Sewaco System, www.sewaco.pl, 
Smakosz & Tejchman 2014, Skarzyński et al. 2017). The advantages of such a 
construction system are:  

a) short time of a building process due to presence of prefabrication for slabs and 
walls during a construction process (3 times shorter time than a standard 
monolithic construction), 

b) energy-saving due to the presence of RC and EPS (thermal conductivity coefficient 
of external envelopes is only 0.11-0.15 kW/m2K),  

c) high apparent sound reduction index R due to the presence of RC and EPS (R=33-
34 dB), 

d) good standard of finish.  

The wall panels were composed of RC ribbed elements with the core from the 
EPS foam as the thermal insulation. The both materials (RC and EPS) were together 
constructed in a prefabricated factory. The panels were 6.6 m long and 3.0 m high with 
the total thickness of 0.30 m. The expanded polystyrene (EPS) foam core had the 
thickness of 0.12-0.23 m. In usual engineering design calculations of residential houses, 
it was assumed that all loads were carried by horizontal prefabricated slab panels 
supported on spatial monolithic longitudinal and transverse RC frames located on ground 
beams and footings. The slabs were dimensioned in the usual way as RC T-elements 
without EPS and composite wall panels by means of 2 simple approaches: the frame 
model (FM) and truss wall model (TWM). The residential buildings were constructed in 
the following way: 

a) footing foundations and foundations walls were placed on a stable soil ground, 

b) inner and outer prefabricated composite walls were mounted on foundation walls 
(they were temporarily supported during mounting), 

c) ceiling slabs and balcony slabs (without additional loads) above ground floor were 
placed on walls, 

d) composite elements were connected with monolithic reinforced longitudinal and 
transverse RC frames by means of vertical bars ϕ10 every 50 cm and stirrups ϕ10 
every 15 cm, 

e) attic prefabricated wall was mounted and connected with reinforcement of 
monolithic frames, 

f) ceiling slabs above the attic walls were constructed and roof panels were mounted, 

g) finishing works were done. 

Our paper is experimentally and theoretically oriented. It focuses on studying the 
strength, deformability and failure of 3 large wall panels 6.6×3.0×0.3 m3 (scale 1:1) under 
bending, based on full-scale laboratory tests in order to evaluate their real load bearing 
capacity. The walls were symmetrically loaded by 1 or 3 vertical forces and failed in a 
different way: a) due to the rapture failure of the lower panel reinforcement (panel '1'), b) 
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local concrete damage under the vertical force (panel '2') c) and reinforcement rupture in 
the frame beam (panel '3'). Initially the experimental results were compared with a 
theoretical formula for the bearing capacity of RC-elements. Next, the numerical 
deterministic evaluation of experimental results using two different continuum 
constitutive models for concrete (for comparison purposes) was conducted. First, an 
isotropic elasto-plastic model with the Drucker-Prager criterion defined in compression 
and with the Rankine criterion defined in tension was used. Second, an isotropic coupled 
elasto-plastic-damage formulation based on the strain equivalence hypothesis was used. 
In order to ensure mesh-independent FE results and to properly describe strain 
localization in concrete, both models were enhanced in a softening regime by a 
characteristic length of micro-structure by means of a non-local theory in the integral 
format. For reinforcement simulations, an associated elasto-perfectly plastic constitutive 
law was assumed. A slip-bond model was assumed. The FE results with the non-local 
approach were also compared with the crack band model (called also the mesh-dependent 
softening modulus model) that has been used in many engineering computations as a 
simple technique eliminating or reducing the sensitivity of numerical results to the size 
of finite elements in simulations that involve strain localization due to softening zones 
(Bazant and Oh (1983), Jirasek and Bauer (2012), Xenos and Grassl (2016)). It is based 
on the idea that the crack opening is transformed into inelastic strain by distributing it 
over an element length dependent zone in order to preserve the overall energy dissipated 
by a failure process. Strain localization (width, spacing and inclination of localization 
zones) in this model strongly depends on the mesh size.  

The innovative points in this paper are twofold (beneficial for the optimum 
engineering design): 

a) experimental investigations of very large novel composite building wall panels 
with and without door/window holes in the scale 1:1 under bending, 

 b) validation of two popular continuum approaches for concrete in order to describe 
the shear strength, deflection and pattern of localization zones in large RC 
elements (6.6×3.0×0.3 m3) that were constructed under industrial conditions. 
The paper is a continuation of experimental and numerical results concerning 
slab panels (Skarżyński et al. 2017). 

 

2. Laboratory full-scale tests on composite wall panels 

Three different bending tests were performed for ribbed wall panels containing EPS from 
one side: one for a full prefabricated panel without a monolithic frame (called wall panel 
'1', Figure 1a), second for a full prefabricated panel including a monolithic frame along 
edges (2 columns and 1 beam) (called wall panel '2', Figure 1b) and third for 
a prefabricated panel with a window and door hole including a monolithic frame on edges 
(2 monolithic columns and 1 beam) (called wall panel '3', Figure 1c). The panel concrete 
was prepared from the ordinary Portland cement (CEM I 42.5R), aggregate and water. 
The river sand and gravel aggregate was used with the maximum aggregate diameter 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


4 
 

dmax=8 mm, mean aggregate diameter d50=2 mm and aggregate volume of =75%. The 
water to cement ratio was equal to w/c=0.42. The average cylinder compressive strength 
of panel concrete was fcm=58.1 MPa, average splitting tensile strength fctm=3.97 MPa and 
average modulus of elasticity Ec=37.4 GPa. Frame concrete had the average cylinder 
compressive strength fcm=47.1 MPa, average splitting tensile strength fctm=3.92 MPa and 
average modulus of elasticity Ec=36.7 GPa. The steel class was AIIIN (class B500). The 
concrete cover from the bar centre to the concrete surface was 20 mm. The yield strength 
of reinforcement was about 600 MPa and modulus of elasticity was Es=200 GPa. The 
quasi-static tests were performed with the controlled displacement rate of 6-18 mm/h. 
The concentrated vertical loads were prescribed to the walls since concentrated forces 
(transferred from beams) provide the greatest load on walls. 

Panel '1’ 

The full wall panel with 8 vertical ribs was free at ends. Its span was 6200 mm. The 
longitudinal bending reinforcement of the prefabricated horizontal panel rib (lower part 
of the frame beam) was composed of 3 bars ϕ14 (bottom bars) and 1 bar ϕ10 (top bar) 
(Figure 2). As the rib shear reinforcement, 42 stirrups ϕ6 and 21 vertical bars ϕ10 were 
used which also served as a connection between the prefabricated wall panel and 
monolithic frame beam (stitching reinforcement). As the reinforcement of the 
prefabricated vertical edge panel ribs and bottom horizontal panel rib, the bar meshes 
with the diameter of 6 mm were used at the distance of 150 mm in the both directions. 
The wall panel was incrementally loaded in a symmetric way by 3 vertical forces applied 
through steel plates 300×300×15 mm3 on rubber pads which were at the distance of 2.5 m 
(Figures 3 and 4). The displacements under the forces F1-F3 were controlled 
independently of each other in order to obtain the similar maximum forces.  

Figure 5 presents the experimental total vertical force against the mid-span 
deflection curve F=f(u) and crack pattern. The maximum total vertical force was 

Fmax=F1+F2+F3=221.4 kN for u3 mm (Figure 5A). Up to this force, the similar vertical 
forces were observed. For F=Fmax, the first bending crack appeared at the mid-span which 
quickly propagated towards the panel top (Figure 5B). After it, the forces were different 
(the force F1 fell down to 43 kN). The acceleration of the force F2 allowed for equalizing 
the vertical forces to the value of 58 kN (u=5.2 mm). Next the force F1 diminished due to 
the rupture failure of the lower panel reinforcement. Before cracking the horizontal and 
vertical wall displacements were not greater than 0.1 mm. After cracking the lower and 
upper wall part moved out of plane by about 2.7 mm. The maximum measured total 
vertical force F=221.4 kN was significantly higher than the maximum vertical assembly 
force on the building site for one panel 6.6 m wide, i.e. 83.6 kN. 

Panel '2’' 

The full wall panel with 8 vertical ribs (as in the panel '1') was fixed in a monolithic frame 
(Figure 1b). The panel span was 6.6 m. The reinforcement of the prefabricated panel was 
the same as in the panel ‘1’ (Figure 1a). The monolithic frame beam was reinforced with 
2 longitudinal bars ϕ10 and frame columns were reinforced with 4 vertical bars ϕ12 and 
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stirrups with the diameter 6 mm placed at the distance of 150 mm (Figure 6). Moreover 
2 bars ϕ14 were used in two corners to link the monolithic frame beam and frame column 
reinforcement. The panel was incrementally loaded in a symmetric way by 1 vertical 
force applied through a steel plate on a rubber pad at the mid-span.  

Figure 7 presents the experimental force-deflection curve F=f(u) and crack 
pattern. The maximum failure force was Fmax=501.6 kN for u=3.1 mm (Figure 7A). The 
first bending crack (Figure 7B) appeared in the slab mid-span for 25% of the maximum 
vertical force. Then it evolved towards the top and ended about 0.30 m below the 
prefabricated panel beam for the maximum force (its width was 0.35 mm). The panel 
failure took place in a rapid brittle way due to a local damage of concrete under the 
vertical force (Figure 8) - the longitudinal reinforcement has not yielded yet. 

The lower and upper mid-part of the wall panel moved out of plane in different 
directions (1.3 mm at the upper part, 4.7 mm at the mid-part and 10 mm at the lower part). 
A visible jump in measured displacements was noticed after concrete cracking. The 
measured displacement of the columns was 0.4 mm (upper part) and 0.9 mm (mid-part). 

Panel '3' 

The wall panel with 7 vertical ribs had a window and door hole and was fixed in 
a monolithic frame (Figure 1c). The panel span was 6.6 m. The longitudinal 
reinforcement in the prefabricated upper horizontal panel rib was 2 bars ϕ10 (bottom bars) 
and 1 bar ϕ10 (top bar). As the shear reinforcement, the stirrups ϕ6 at the distance 300 
mm were used. In addition, the vertical bars ϕ10 were put at the distance of 300 mm were 
used to preserve the connection between the prefabricated panel and monolithic frame 
beam (stitching reinforcement). As the reinforcement of the edge vertical panel ribs and 
lower horizontal panel rib, the bar meshes with the diameter 6 mm were used at the 
distance of 150 mm in the both directions. The monolithic frame beam was reinforced 
with 2 longitudinal bars ϕ10 and the columns were reinforced with 4 vertical bars ϕ10 
and stirrups with the diameter 6 mm placed at the distance of 0.3 m (Figure 9). Moreover 
2 bars ϕ12 were used in two corners to link the monolithic beam and column 
reinforcement. The panel was symmetrically loaded from the top as the wall panel '2'.  

Figures 10 and 11 present the experimental force-deflection curve F=f(u) and 
crack evolution. The first peak of the vertical force was F=108 kN for u=4.3 mm. The 
maximum vertical force (second peak) was Fmax=118 kN for u=9.2 mm (Figure 11). The 
deflection was calculated as the difference between the displacement of the mid-span 
bottom point and settlement of the supports. The experimental force indicated softening 
after the first peak of the vertical force, then re-hardening, second peak of the vertical 
force and again softening. The first softening appeared during the crack formation 
between the window and door. The prefabricated panel had the initial crack 0.1 mm wide 
in the window corner which was created during transportation. For the 25% of the 
maximum vertical force, the bending cracks first appeared in the panel mid-span. For 
F=70 kN and u=1.83 mm, three cracks occurred: one at the lower left window corner, 
second at the bottom at the mid-span and third in the upper door corner. For F>70 kN, a 
rapid growth of the width of the above cracks was noticed. For F=80 kN and u=2.19 mm, 
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the cracks were about 1 mm wide. For F=108 kN (u=4.3 mm), the panel part between the 
door and window was totally debonded and the load started to be carried by the frame 
only. For the maximum force F=118 kN (u=9.2 mm), the numerous cracks were 
observed: in the mid-span of the panel upper beam and frame beam, in the left frame 
corner and outside of the left frame column (Figure 11c). The wall panel failure took 
place in a rapid way due to the reinforcement rupture in the frame beam for u=11 mm.  

In all experiments the measured cracking and failure forces for concentrated loads 
were higher than the calculated ones that corresponded to service uniformly distributed 
loads for residential buildings.  

 

3. Initial dimensioning of wall panels 

The bearing capacity of 3 composite wall panels was initially nvestigated with 2 simple 
usual approaches to dimension RC structures: the frame model (FM) and truss wall model 
(TWM). The FM approach was consistent with the dimensioning assumption for the 
building system, i.e. all loads were carried first by prefabricated slabs and then by 
monolithic RC frames. In TWM, the wall panels were modelled by sets of compressive 
and tensile rods. We assumed the actual cross-section geometry of vertical and horizontal 
ribs and beams. Concrete between ribs was replaced by diagonal rods with the rectangular 

cross-section of br  t (br=8t, t=40 mm - the concrete thickness). The concrete rods were 
removed when their cross-sections were cracked.  

Panel '1' 

In FM, the bending bearing capacity of the upper frame rib was calculated as a continuous 
beam supported on 8 elastic supports (vertical ribs). The external supports (imitating 
frame corners) were fixed. The calculated maximum bending span moment was 58 kNm. 
The maximum bending moment of the upper rib with the existing reinforcement was 

M=78.2 kNm (Fi=109.1 kN). 

The calculated moments and forces using TWM for the maximum total vertical 
force (F1=80 kN, F2=65 kN, F3=75 kN) are depicted in Figures 12b and 12c. The 
calculated maximum bending moment of the horizontal upper frame rib was 
Mmax=18.3 kNm (Figure 12b) and the maximum compressive normal force was Nmax=-
56.3 kN (Figure 12c). The corresponding bending moments and compressive normal 
forces were in the horizontal bottom panel rib: M=0 kNm, N=-58.7 kN and in the 
columns: M=0.94 kNm, N=-55.4 kN (Figures 12b and 12c). The characteristic design 
tensile resistance of the horizontal bottom panel rib (area 0.06×0.18 m2, reinforcement 
2ϕ6) was NRd=52.2 kN which was smaller than the experimental one of 58.7 kN. Thus, 
the wall panel was able to carry also the part of the horizontal tensile force.  

Panel '2' 

In the experiments the cracking force was 134 kN and failure force was 501.6 kN. The 
characteristic design moment resistance of the frame beam was MRd=124.9 kNm (caused 
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by the force F=113 kN). The maximum characteristic load on the panel during the 
building assembly was 115.9 kN.  

In TWM (Figure 13a), for the experimental cracking force of 134 kN, the tensile 
force in the bar ‘12-13’ was equal 30.6 kN. The tensile load bearing capacity of this bar 
was 40.7 kN. After a vertical crack occurred, the static scheme of the lattice wall has 
changed. The truss rod at the bottom central part (rod ‘12-13’) did not transfer a normal 
force and the rod ‘5-13’ did not transfer a shear force (Figure 13a). The critical section 
was the upper rod subjected to the eccentric compression. There, the calculated maximum 
bending moment (for Fmax=501 kN) was Mmax=150.38 kNm with the corresponding 
normal force N=-225.13 kN (Figures 14b and 14c). In turn, the bending moment and the 
normal force calculated based on the measured strains in concrete and reinforcement 
(2ϕ10 and 3ϕ14), 34.6 kNm and 71.4 kN, were significantly smaller than from TWM. 
Thus TWM was not accurate enough to properly describe the distribution of the moment 
and forces after cracking and to reproduce the failure force.  

Panel '3' 

For FM the critical design resistance was the bending resistance of the upper beam 
MRd=76.7 kNm (F=61.7 kN). The shear resistance (stirrups ϕ10 at the distance of 0.30 m) 
was VRd=170 kN (F=336 kN). The maximum characteristic panel load was 61.7 kN. The 
cracking occurred in the experimental panel for F=65 kN at the connection between the 
panel and upper beam in the region between a window and door and the failure force was 
118 kN.  

The initial (before cracking) static system for TWM is shown in Figure 15. In the 
experiment the initial crack appeared along the rod '2' in the nodes ‘8-9’ for F=65 kN. In 
TWM the crack appeared in the node '8' for F=63 kN. The calculated bending moment in 
the upper beam (node '8') was 25.8 kNm (Figure 15b); in the laboratory test the bending 
moment was 25 kNm. After cracking, the model was modified, i.e. the rods '7' and '23' 
were assumed to be discontinuous and the rods '21' and '7' transferred compression only 
(Figure 16a). For the failure force F=118 kN, the maximum compressive normal force 
was N=-43.26 kN (left column). In the upper beam, the bending moment and normal force 
were M=76.02 kNm and N=-38.01 kN (Figures 16b and 16c) whereas the bending 
moment was 82 kNm in the laboratory test. The calculation deformation by TWM was 
approximately in agreement with the measured one.  

For all wall panels a good agreement was obtained with respect to the cracking 
force. In order to calculate the failure load, a modified lattice wall model should be used 
by taking cracking into account. A satisfactory agreement was achieved for the panels '1' 
and '3'. 

4. Constitutive models for concrete, reinforcement and EPS 

The FE analyses were carried out with the most sophisticated wall panel '3'. Two different 
constitutive models for concrete were used: an isotropic elasto-plastic model (Equations 
(A1)-(A6), Appendix 1) and an isotropic coupled elasto-plastic-damage model 
(Equations (A7)-(A14), Appendix 2). 
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4.1. Elasto-plastic model for concrete 

This isotropic elasto-plastic model for concrete (Marzec et al., 2007, Majewski et al., 
2008, Tejchman & Bobiński, 2012, Korol et al., 2014) requires two elastic parameters: 
modulus of elasticity E and Poisson’s ratio υ, one compression yield stress function 
σc=f(κ1) (based on a uniaxial compression test), one tensile yield stress function σt=f(κ2) 
(based on a uniaxial tension test), internal friction angle φ and dilatancy angle ψ (based 
on a triaxial compression test). The model has some disadvantages. The shape of the 
failure surface in a principal stress space is linear (not paraboloidal as in reality). In 
deviatoric planes, the shape is circular (during compression) and triangular (during 
tension); thus it does not gradually change from a curvilinear triangle with smoothly 
rounded corners to nearly circular with increasing pressure. The strength is similar during 
triaxial compression and extension, and the stiffness degradation due to strain localization 
and non-linear volume changes during loading are not taken into account. 

The following material parameters were assumed (for the prefabricated panel and 
monolithic frame): E=37.1 GPa and υ=0.20 (based on laboratory experiments). The 
cylinder compressive strength was fc=52.6 MPa and tensile strength was ft=3.94 MPa 
(based on the laboratory experiments). The linear relationship between the compressive 
σc and hardening/softening parameter κ1 was assumed. We assumed 3 different linear 
hardening/softening curves (Figure 17A). The compressive fracture energy Gc was equal 

to 2750 N/m (curve 'a', 1
res=0.003), 3250 N/m (curve 'b', 1

res=0.003) or 3750 N/m (curve 

'c', 1
res=0.0055). It was calculated as Gc=gc×wc (gc - area under the entire 

softening/hardening function up to κ1=0.006, wc≈3.5×lc - the width of compressive 
localization zones with lc=5 mm, Tejchman & Bobiński, 2012). In the case of the tensile 
fracture energy, two non-linear exponential Hordijk's curves were analysed (Figure 17B). 
The tensile fracture energy Gf varied between 200 N/m (curve 'a') and 400 N/m (curve 
'b'). It was calculated as Gf=gf×wf (gf - area under the entire softening function, wf ≈3.5×lc 
- the width of tensile localization zones with lc=5 mm). The ratio Gc/Gf was 
approximately 15. The internal friction angle was equal φ=12° (Eq.A2), dilatancy anlgle 
ψ=8° and non-locality parameter m=2 (Bobiński & Tejchman, 2004). 

 

4.2. Coupled elasto-plastic damage model for concrete 

The constitutive model (Marzec & Tejchman, 2012, 2013, Skarżyński et al., 2017) 
assumes the different stiffness in tension and compression and a positive-negative stress 
projection operator to simulate crack closing and crack re-opening and is 
thermodynamically consistent. It shares main properties of the model by Lee & Fenves 
(1998), which was proved to not violate thermodynamic principles (plasticity is defined 
in the effective stress space, isotropic damage is used and the stress weight function is 
similar). Moreover Carol & Willam (1996) showed that for damage models with crack-
closing-re-opening effects included, only isotropic formulations did not suffer from 
spurious energy dissipation under non-proportional loading (in contrast to anisotropic 
ones). The constitutive model shares properties of other coupled elasto-plastic-damage 
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formulations for concrete (Chen et al., 2012, Grassl et al., 2013, Mihai et al., 2016, Xotta 
et al., 2016). 

The coupled elasto-plastic-damage model requires the following 12 material 

constants E, υ, 0, α, β, 1, 2, , at, ac,  and  and 2 hardening yield stress functions 
(the function by Rankine in tension and the function by Drucker-Prager in compression). 

In the case of linear hardening, 16 material constants are totally needed (E, υ, 0, α, β, 1, 

2, , at, ac, , , initial yield stresses yt
0 (tension) and yc

0 (compression) and hardening 
plastic moduli Hp in compression and in tension). If the tensile failure prevails, one yield 

stress function by Rankine can be used only. The quantities y
0 (initial yield stress during 

hardening) and 0 are responsible for the peak location on the stress-strain curve and a 
simultaneous activation of a plastic and damage criterion (usually the initial yield stress 

in the hardening function yt
0=3.5-6.0 MPa and 0=(8-15)10-5 under tension). The shape 

of the stress-strain-curve in softening is influenced by the constant β in tension (usually 

β=50-800), and by the constants  and 2 in compression (usually =50-800 and 2=0.1-

0.8). The parameter 2 influences also a hardening curve in compression. In turn, the 

stress-strain-curve at the residual state is affected by the constant  (usually =0.70-0.95) 

in tension and by 1 in compression (usually 1=1.0-1.2). Since the parameters  and 1 

are solely influenced by high values of , they can arbitrarily be assumed for softening 

materials. Thus, the most crucial material constants are y
0, 0, β,  and 2. In turn, the 

scale factors at and ac influence the damage magnitude in tension and compression. In 
general, they vary between zero and one. There do not exist unfortunately the 
experimental data allowing for determining the magnitude of at and ac. Since, the 
compressive stiffness is recovered upon the crack closure as the load changes from 
tension to compression and the tensile stiffness is not recovered due to compressive 
micro-cracks, the parameters ac and at can be taken for the sake of simplicity as ac=1.0 
and at=0 for many different simple loading cases as e.g. uniaxial tension and bending. 
The equivalent strain measure   was defined in terms of elastic strains. In uniaxial 

compression, the material strength increases with increasing 0 and decreasing  and 2 

and the material softening grows with increasing 0 and decreasing 2. The material 
softening mainly increases with decreasing β. The drawback of this formulation is the 
necessity to tune up constants controlling plasticity and damage to activate an elasto-
plastic criterion and a damage criterion at the same moment. As a consequence, the 

chosen initial yield stress y
0 may be higher than this obtained directly in laboratory 

simple monotonic experiments.  

Within the elasto-plastic-damage, the FE calculations were mainly performed 

with the following set of material parameters: yt
0=4.6 MPa (tension), yc

0=54 MPa 

(compression), Hp=21 GPa (in both tension and compression), 0=1.10×10-4, =14º, 

=8º, =100, =0.90, 1=1.05, 2=0.38, =450, at=0 and ac=1. In addition, the 

computations were carried out with the smaller tensile fracture energy (=700). 
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4.3. Non-local approach for concrete 

Standard constitutive laws are not able to describe properly strain softening of the 
material when using FEM that results in pathological sensitivity of the numerical solution 
to the size and alignment of finite elements. Since these laws contain no information about 
the size and spacing of localization zones, their enrichment by a characteristic length of 
micro-structure (related to the size and spacing of material heterogeneities) is necessary. 
The characteristic length restores also the well-posedness of boundary value problems 
and makes the FE results mesh-independent. A non-local theory in the integral format 
was used as a regularisation technique (Bažant & Jirásek, 2002, Tejchman & Bobinski, 
2012, Bobiński & Tejchman, 2016, Giry et al., 2011, Pijauder-Cabot & Dufour, 2010). 
In this approach, the principle of a local action does not take place any more. Polizzotto 
et al. (1998) laid down a thermodynamically consistent formulation of non-local 

plasticity. In the calculations, the softening parameters i (i=1, 2) were assumed to be 
non-local (independently for both yield surfaces fi) (Brinkgreve, 1994) 

     
   
 







V

V i

ii mm




d

d
1

x

x
xx




            for        i=1, 2            (1) 

where i (x) are the non-local softening parameters, V denotes the body volume, x is the 

coordinate vector of the considered point,  is the coordinate vector of the surrounding 

points,  denotes the weighting function and m is the additional non-local parameter 
controlling the size of the localization plastic zone. In the calculations within and coupled 
elasto-plastic-damage, the equivalent strain measure ෤ was replaced by its non-local 
definition (Marzec & Tejchman, 2012) 

                                 ത ൌ ׬ ఠ൫ห|࢞ି|ห൯ఌ෤ሺሻೇ ௗ

׬ ఠ൫ห|࢞ି|ห൯ௗሻೇ

.                                  (2) 

As a weighting function ω, the Gauss distribution function was used (Bažant & Jirásek 
2002) 

 
2

1
c

r

l

c

r e
l




 
 
                                                      (3) 

where lc is a characteristic length of micro-structure and the parameter r is the distance 
between material points. The averaging in Equation (1) was restricted to a small 
representative area around each material point (the influence of points at the distance of 

r=3lc was only of 0.01%). Some different techniques (e.g. symmetric local correction 
approach, distance-based and stress-based model) may be used to calculate softening non-
local parameters near boundaries in order to remove an excessive energy dissipation 
(particularly pronounced for notched specimens) (Borino et al. 2002, Grassl et al. 2014, 
Jirasek et al. 2016). The distance-based model seems to be the most realistic since it 
provides a good agreement for both unnotched and notched beams with the same set of 
parameters (Havlasek et al. 2016). In our paper, due to a large wall panel size and a small 
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effect of boundaries, the softening non-local parameters near boundaries were calculated 
using a standard formulation (Eqs.1-3) (Bažant & Jirásek, 2002). When calculating non-
local quantities close to notches, the so-called “shading effect” is considered (Bažant & 
Jirásek, 2002), i.e. the averaging procedure considers the notches as an internal barrier 
that is shading a non-local interaction. 

The characteristic length lc is mainly determined with an inverse identification 
process of experimental data (Mahnken & Kuhl 1999, Skarżyński et al. 2011). In order 
to simplify the calculations, non-local rates were replaced by their approximations 
calculated with known total strain increments (Brinkgreve 1994). The characteristic 
length lc of micro-structure within isotropic elasto-plasticity and isotropic damage 
mechanics may be about 2 mm (fine-grained concrete) and 5 mm (usual concrete). based 
on the image correlation DIC results (Skarżyński et al. 2011, Skarżyński & Tejchman 
2010, 2013). We assumed lc=5 mm in our FE analyses. Note that in order to obtain totally 
mesh-independent results, the mesh size should be smaller or equal to (2-3)×lc (Tejchman 
& Bobiński 2012). The FE calculations with a local approach totally depend on the mesh 
size (load-displacement curves and strain localization) (Tejchman and Bobinski, 2012, 
Skarżyński et al. 2017).  

 

4.4. Reinforcement 

In order to simulate the behaviour of main reinforcement bars and stirrups (modelled as 
one-dimensional truss elements), the elasto-perfect plastic constitutive law was assumed 
with the following Es=200 GPa (modulus of elasticity) and σy

s=600 MPa (σy
s – yield steel 

stress). The calculations were mainly carried out with bond-slip. In the first case, the same 
displacements along a contact surface/line between concrete and reinforcement were 
assumed. In the case of bond-slip, the analyses were carried out with a relationship 
between the bond shear stress τb and slip u using the simplest bond law Dörr (Tejchman 
& Bobiński, 2012) which neglected softening and assumed a yield plateau: 

2 3

0
0 0 0

0

0.5 4.5 1.4 0

1.9

b t

b t

u u u
f if u u

u u u

f if u u





      
          
       

 

.            (4) 

The parameter u0 is the displacement at which perfect slip occurs. In order to 
consider bond-slip, the interface with a zero thickness was assumed along a contact 
surface/line where a relationship between the shear traction and slip was introduced. The 
calculations were carried out with the bond-slip for u0=0.03-1.0 mm.  

The two 3D enhanced models were implemented into the commercial finite 
element code Abaqus (2011) with the aid of the subroutine UMAT (user constitutive law 
definition) and UEL (user element definition) for efficient computations (Bobiński & 
Tejchman, 2004). For the solution of a non-linear equation of motion governing the 
response of a system of finite elements, the initial stiffness method was used with 
a symmetric elastic global stiffness matrix. The calculations were carried out using the 
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Abaqus finite element code (Abaqus, 2011). The non-local averaging was performed in 
the current configuration. This choice was governed by the fact that element areas in this 
configuration were automatically calculated in Abaqus (2011). 

Both isotropic constitutive concrete models of Sections 4.1 and 4.2 were several 
times used to successfully simulate fracture and strength in different RC elements 
subjected to shear and bending (e.g. Bobiński and Tejchman, 2004, Tejchman and 
Bobinski 2012, Marzec, et al. 2007, Marzec and Tejchman, 2012, 2013, Marzec et al. 
2013, Skarzynski et al. 2017, Korol et al. 2014, 2017). For simulations of curved cracks 
during the so-called mixed shear-tension test by Nooru-Mohamed, the isotropic elasto-
plastic model with the Rankine criterion and non-local softening was found to be the most 
suitable approach for a realistic simulation of the experimental cracks’ shape and 
curvature (Bobiński and Tejchman, 2016a, 2016b). The results produced with an isotropic 
damage formulation were less realistic and strongly depended upon the equivalent strain 
definition (Bobiński and Tejchman, 2016a).  

 

5. FE results for composite wall panel 

The numerical simulations were solely carried out for the wall panel '3' (with a window 
and door opening) that was fixed to the monolithic RC frame. Approximately 600'000 
tetrahedral elements were used (Figure 18). Each four-node tetrahedron included linear 
interpolation functions. The element width and height were equal to s=30 mm (i.e. s=6×lc 
with lc=5 mm) and element depth was 20-30 mm [s=(4-6)×lc]. The reduction of the 
element size down to the recommended value of s=(2-3)×lc (in order to properly capture 
strain localization) was not performed in order to reduce to diminish the computation 
time. In the case of FE calculations of non-local interactions in all panel finite elements, 
the computation time was about 3.5 weeks using the computer with the Intel Xeon CPU 
3.10 GHz (2 processors), 128 GB RAM and 64-bit system. For calculations of non-local 
interactions in neighbouring elements only, the computation time was reduced to 9 days 
for one panel. Since preliminary computations indicated that the influence of EPS on the 
panel strength and distribution of localization zones was negligible (Skarżyński et al. 
2017), the FE calculations were carried out without EPS. The effect of the compressive 
fracture energy of Figure 17A also did not affect the results. 

 

5.1 FE results within enhanced elasto-plasticity 

The calculated force-deflection curves in the composite wall panel for the different bond-
slip between steel and reinforcement of Equation (4) (uo=0-1 mm) and 2 different tensile 
fracture energies of Figure 17B (Gf=200-400 N/m) are presented in Figures 19-21 without 
the wall weight (Gc=2750 N/m (curve 'a' of Figure 17A), lc=5 mm).  

The calculated vertical force always increased with increasing tensile fracture 
energy Gf (Figure 20). For Gf=200 N/m, the calculated maximum vertical force F=108 kN 
(u=10.5 cm) was smaller by 10% than the experimental one, whereas for Gf=400 N/m, 
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the calculated maximum vertical force F=140 kN for the deflection u=13.7 cm was higher 
by 20% than the experimental one (Figure 20). The bond stiffness reduction (expressed 
by the growth of u0) reduced two peak vertical forces and increased the number of 
localization zones (Figure 19). The calculated begin of re-hardening was too far for 

uo0.06 mm and too close for uo=1 mm as compared to the experiment (Figure 19). The 
first softening on the force-deflection curve (Figures 19 and 20) occurred when two 
localization zones developed between the window and door. When the region between 
the window and door had its maximum strength, the frame started to carry the load and 
the re-hardening took place on the force-deflection curve (Figures 19 and 20).  

The calculated load-deflection curves, without the wall weight, in the composite 
wall panel for 3 different compressive fracture energies of Figure 17A (Gc=2750-
Gc=3750 N/m) are presented in Figure 22 (Gf=200 N/m, curve 'a' of Figure 17B, 
lc=5 mm). The calculated maximum vertical force slightly increased with increasing Gc. 

The constants Gc and 1
res of Figure 17A strongly affected the moment of re-hardening 

on the load-deflection curve. For Gc=2750 N/m and 1
res=0.003 (curve 'a' of Figure 17A), 

the material re-hardening started for u=6.2 cm whereas for Gc=3250 N/m and 1
res=0.003 

(curve 'b' of Figure 17A) it started earlier for u=5.6 mm. The best satisfactory agreement 
between the calculations and experiments with respect to both peak vertical forces and 
shape of the force-deflection curve (curve 'c' in Figure 22) was for Gc=3250 N/m and 

1
res=0.003 (curve 'b' in Figure 17A), Gf=200 N/m (curve 'a' in Figure 17B) and uo=0.03 

mm. 

The geometry and its evolution of the calculated localization zones (Figures 19 
and 21) based on the distribution of the non-local equivalent strain measure was similar 
as the experimental crack pattern (Figure 11). However, some discrepancies happened in 
the calculations (Figures 19e and 21e). The inclination of the shear crack at the window 
bottom corner to the horizontal (35o) was too small as compared with the experiment 
(50o). A smaller number of localization zones was calculated at the panel left upper corner 
and above the window due to a too large FE size with respect to lc. In addition, strain 
localization was computed at the panel right support that was not visible in the 
experiment. The vertical localization zone at the panel bottom region did not reach the 
panel bottom in contrast to experiments. 

The wall panel failure took place in the experiment in a rapid way due to the 
reinforcement rupture in the frame beam, characterized by a drop in the load-
displacement curve occurred at the experiment end in the range u=9.2-11 mm (Fig.10). 
Since the elasto-perfect plastic constitutive law was assumed for reinforcement in the 
numerical simulations, a yield plateau was finally obtained in the FE simulations at the 
test end (Figs.19, 20 and 22). The calculated maximum normal tensile stress in the upper 
beam reinforcement was at the mid-span 600 MPa (reinforcement yielded) whereas in the 
experiment was slightly higher, 620 MPa (Figure 23A). The calculated maximum 
compressive stress in concrete in the frame beam, 26.9 MPa, was larger by 20% than in 
the experiment (Figure 23B). 
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5.2 FE results within enhanced coupled elasto-plastic damage 

The results for the coupled elasto-plastic-damage model with a non-local softening 
(lc=5 mm) using the bond-slip law (u0=0.03 mm) are described in Figure 24. In addition 
the local results and the results using the crack band approach (limited to the tensile 
softening) were attached. In the crack band approach, the area under the stress–strain 
diagram, which represents dissipated energy per unit volume was adjusted in inverse 
proportion to the width of a localized failure zone. The new material constants were 
calibrated with the aid of a simple numerical 2D plain strain concrete three-point bending 
test with the size of finite elements equal to s=30 mm and Gf=170 N/m (as for the wall 
panel of Section 5). In order to obtain a close agreement with the non-local solution (that 

realistically describes the width of localization zones), the updated model constants , 2 

and  were assumed: =70, 2=0.32 and =350. Thus, the dissipated tensile energy per 
unit volume was the same in both the non-local and crack band approach for bending. For 
the crack band approach, the computation time was shorter by the factor 3 as compared 
to the non-local approach (with a non-local interaction related to neighbouring elements 
only). 

The calculated ultimate vertical force 113 kN in the non-local approach differed 
by about 4% from the experimental value (118 kN) (Figure 24). The calculated minimum 
vertical force after the first peak (91 kN) and maximum force after the first minimum 
(113 kN) were also similar. The calculated localization zone geometry (Figure 24b) again 
matched satisfactorily the experimental cracks pattern (Figure 10). In contrast to the 
experiment, additional strain localization occurred close to the right panel support, the 
vertical localization zone did not occur above the window upper left corner, less 
localization zones occurred at the panel upper left corner and above the window (Figure 
24b). Moreover the shear crack at the window bottom corner was too flat and the vertical 
localization zone at the panel bottom mid-region was too less developed. Thus the 
enhanced elasto-plastic solution (Figure 21e) was slightly more realistic than the 
enhanced elasto-plastic damage one (Figure 24b) as compared to the experiment. 

For the crack band approach (Figure 24c), the force-deflection curve was similar 
as in the non-local approach (through a fit of the dissipated tensile energy per unit volume 
to the non-local solution). The widths of localization zones were mesh-dependent and 
limited to the sizes of finite elements. The arrangement of localization zones was less 
realistic than this in the non-local approach (Figure 24b). No localization zones occurred 
above the door and an additional vertical localization zone happened also at the window 
upper right corner in contrast to experiments (Fig.24c). Moreover, one central vertical 
localization zone above the window was not fully developed.  

According to Jirasek and Bauer (2012), the practical application of the crack band 
approach as a technique eliminating the pathological mesh sensitivity is not 
straightforward since the success depends on many different factors (e.g. fracture energy 
rescaling, element type and element shape). Xenos and Grassl (2016) showed that both 
the load-displacement curves and crack patterns were however mesh-dependent for 
reinforced concrete elements using the crack band approach. In the case of the FE 
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analyses with the local-approach (Fig.24d), the force-deflection curve and strain 
localization were clearly different than in the non-local approach, depending upon the 
mesh-discretization.  

The numerical normal stresses in tensile reinforcement and compressive concrete 
at the mid-span of the frame beam were in agreement with the experiment using the non-
local approach (Figure 25). The decrease of the plastic modulus Hp changed the failure 
mechanism and lead to a higher maximum vertical force. It caused a slower increase of 
elastic strains and consequently a slower increase of the equivalent strain. Therefore the 
region between the window and door had a larger strength thus the frame started to carry 
the load later and thus the re-hardening effect was shifted. The localization zone in the 
central bottom wall part was more developed and less localization zones were in the 
frame.  

Summarized the both enhanced constitutive continuum models for concrete 
satisfactorily captured the behaviour of the large wall panel under bending. Good 
accordance between the numerical and experimental outcomes was achieved with respect 
to the maximum vertical force, failure mode, location of localization zones and normal 
stresses in tensile reinforcement and compressive concrete. The differences between the 
experimental and calculated crack geometry were probably caused by the fact that 
concrete imperfections during element constructions were not taken into account during 
calculations (Section 2). In addition, the element size (s=6×lc) was twice as large as 
compared to lc (the recommended value s=3×lc). 

 

6. Conclusions 

Based on the experimental and numerical investigations of novel composite building wall 
panels subjected to bending in the scale 1:1, the following conclusions can be drawn:  

 For all experimental wall panels, both the cracking and failure forces were larger 
than the service load. The presence of wall panel openings strongly decreased 
(about 4 times) the wall panel's strength. The strength of the wall panel with the 
frame was two times higher then the strength of the pure wall panel. Large 
concentrations of tensile stresses occurred at opening corners and between the 
openings (door and window). Due to that the additional reinforcement close to 
openings (bar nets  ϕ6) and bottom panel bars (2× ϕ10) were recommended.  

 For the wall panels '1' and '3', a good agreement was achieved between simple 
theoretical calculations of Section 3 and experiments. For the panel '2', 
a satisfactory agreement between theoretical calculations and experiments was 
solely obtained for the cracking force. 

 Both constitutive continuum models with non-local softening for concrete 
satisfactorily reproduced the behaviour of the wall panel with openings under 
bending in spite of its large size and usual industrial realisation. The numerical 
outcomes were similar as the experimental ones with respect to the maximum 
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vertical force, shape of the force-deflection curve, failure mode, geometry of 
localization zones and normal stresses in tensile reinforcement and compressive 
concrete. The calculated vertical force always increased with increasing tensile 
and compressive fracture energy and bond stiffness. The tensile fracture energy, 
compressive fracture energy and residual compressive parameter strongly affected 
the moment of re-hardening on the force-deflection curve. 

 Both the non-local and crack band approach produced similar force-deflection 
curves. The calculated geometry of cracks was however more realistic in the non-
local approach. In the crack-band approach, the width of localization zones was 
strongly mesh-dependent and equal to the element size.  
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Appendix 1 

In order to describe the concrete behaviour by an elasto-plastic constitutive model, two 
failure criteria were assumed. In a tensile regime, the Rankine criterion was used with the 
yield function f1 using isotropic softening and associated flow rule and in a compressive 
regime, the Drucker-Prager yield surface f2 with isotropic hardening/softening and non-
associated flow rule was used  

     1 i 1 1 2 3 t 1f , max , , , 0                                      (A1) 

     2 2 2 2

1
1 0

3ij cf , q p tan c q p tan tan                  
 
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,       
1

3 kkp                                                  (A3) 

                                                   (A4) 

1 1g f                                                                     (A5) 

 
2 tang q p                                                             (A6) 

where: i - the principal stress (i=1, 2, 3), t - the uniaxial tensile yield stress, 1 - the 

softening parameter equal to the maximum principal plastic strain 1
p, q - the Mises 

equivalent deviatoric stress, p - the mean stress,  - the internal friction angle in the 
meridional stress plane (p–q plane), c - the cohesion related to uniaxial compression 

strength, sij - the deviator of the stress tensor ij, (sij=ij+ijp) c - the uniaxial 

compression yield stress, 2 - the hardening/softening parameter corresponding to the 
plastic vertical normal strain during uniaxial compression, gi – flow potential function, 

rbc
 - the ratio between the biaxial compressive strength and uniaxial compressive 

strength (rbc
1.2) and  - the dilatancy angle (). The last term in Equation (A3) 

results from the yield condition q-ptan-c=0 for uniaxial compression with q=c and 

p=1/3c. 

 

Appendix 2 

The coupled elasto-plastic-damage model for concrete (Marzec & Tejchman 2012, 
Marzec et al., 2013) combines elasto-plasticity with a scalar isotropic damage assuming 
a strain equivalence hypothesis according to Pamin & de Borst (1999). The elasto-
plasticity was defined in terms of effective stresses according to  

eff e
ij ijkl klC                                                            (A7) 

In an elasto-plastic regime, a linear isotropic Drucker-Prager criterion with a non-
associated flow rule in compression and a Rankine criterion with an associated flow rule 
in tension (Appendix 1) defined by the effective stresses were used. The material 
degradation was calculated within isotropic damage mechanics, independently in tension 
and compression using one equivalent strain measure ෤ (Mazars & Pijaudier-Cabot 1996) 

(i - principal strains) 

෤ ൌ ඥ∑ 〈௜〉ଶ௜                                                            (A8) 

The equivalent strain measure ෤ was defined in terms of elastic strains. The stress-strain 
relationship was represented by following formula 

 1 eff
ij ijD  

                                                      (A9) 

with the term ‘1-D’ defined as: 

3

2 ij ijq s s

 3 1
tan

1 2
bc
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
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    1 1 1c t t cD s D s D                                          (A10) 

wherein 

0( )01 (1 )tD e     


                                            (A11) 

 1 2
00 0 01 1 0.01cD e

 
    

  
           

    
                    (A12) 

 1 eff
t t ijs a w        and      1 1 eff

c c ijs a w                            (A13) 

 






 






otherwise

 0 if0

eff
i

eff
i

eff
ij

eff
ijw






                                          (A14) 

where Dt and Dc are damage parameters describe the damage evolution under tension 
(Peerlings et al., 1998) and compression (Geer 1997) with the material constants: α, β, 

1, 2, , at and ac are the scale factors and  eff
ijw  denotes the stress weight function 

(Lee &Fenves 1998). The bracket in Equation (A14) is defined as	〈ݔ〉 ൌ ሺݔ ൅  .ሻ/2|ݔ|
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c) 

 

 

 

 

 

Fig.1: Geometry of prefabricated composite wall panels: a) full panel '1' without 

monolithic frame, b) full panel '2' surrounded by monolithic frame and c) a) panel '3' 

including window and door holes surrounded by monolithic frame 

 

 

FIGURE 1 
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b) 

 

 

 

 

 

Fig.2: Composite wall panel '1' without monolithic frame: a) top reinforcement, b) side 

and bottom reinforcement 

 

 

FIGURE 2 
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Fig.3: Loading system of composite wall panel '1' without monolithic frame during 

bending (units in [cm]) 

 

 

 

 

FIGURE 3 

  

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


27 
 

 

a) 

 

  

                                                                                b) 

 

 

Fig.4: Experimental set-up for composite wall panel '1' without monolithic frame: a) top 

view and b) view on steel plates on rubber pads (F1-F3 - vertical forces) 

 

 

FIGURE 4 
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A) 

 

 

B) 

 

Fig.5: Composite wall panel '1' without monolithic frame: A) evolution of vertical forces 

F1 (a), F2 (b) and F3 (c) along frame top against mid-slab deflection u and B) crack 

location (in red) for maximum total vertical force Fmax=F1+F2+F3=221.4 kN (u=2.86 

mm) 

FIGURE 5 
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Fig.6: Composite wall panel '2' with monolithic frame:  frame reinforcement  

 

 

 

 

 

FIGURE 6 
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A) 

 

b) 

B) 

Fig.7: Composite wall panel '2' surrounded by monolithic frame: A) evolution of vertical 

force F against mid-slab deflection u and B) crack pattern (in red) for Fmax (u=3.1 mm) 

 

 

FIGURE 7 
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Fig.8: Composite wall panel '2': local damage of concrete under vertical force 

 

 

 

 

FIGURE 8 
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Fig.9: Reinforcement of composite wall panel '3' surrounded by monolithic frame 

 

 

 

FIGURE 9 
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Fig.10: Composite wall panel '3' with monolithic frame: evolution of vertical force F 

against mid-slab deflection u  

 

 

 

 

 

 

FIGURE 10 
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a) 

 

b) 

 

c) 

 

Fig.11: Composite wall panel '3' with monolithic frame: crack evolution (in red) for 

different vertical force F: a) F=70 kN (u=1.83 mm), b) F=80 kN (u=2.19 mm) and 

c) Fmax=118 kN (u=9.2 mm) 

FIGURE 11 
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Fig.12: TWM results (panel '1') for maximum total vertical force (F1=80 kN, F2=65 kN, 

F3=75 kN): a) static system, b) bending moments and c) normal forces (red colour - 

tension, blue colour - compression) 

 

 

 

FIGURE 12 
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Fig.13: TWM results (panel '2') for cracking vertical force (F=134 kN): a) static system, 

b) bending moments and c) normal forces  

 

 

FIGURE 13 
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c) 

Fig.14: TWM results (panel '2') for failure vertical force (F=501 kN): a) static system, 

b) bending moments and c) normal forces  

 

 

 

FIGURE 14 
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a) 

b) 

c) 

Fig.15: TWM (panel '3') before cracking (F=63 kN): a) static system, b) bending 

moments and c) normal forces  

FIGURE 15
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 a) 

b) 

c) 

Rys.16: TWM results (panel '3') for vertical failure force (F=118 kN): a) static system, 

b) bending moments and c) normal forces  

FIGURE 16 
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 A) 

 

B) 

 

Fig.17: Different curves assumed in enhanced elasto-pasticity: A) 3 linear 

hardening/softening curves σc=f(κ1) in compressive regime and B) 2 non-linear softening 

curves σt=f(κ2) in tensile regime (σc - compressive stress, σt - tensile stress, κi - 

hardening/softening parameter) 

 

FIGURE 17 
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a) 

 

 

b) 

 

Fig.18: FE mesh for composite wall panel '3' (without EPS): a) entire mesh and b) zoom 

on mesh 

 

FIGURE 18 
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c) 

d) 

e) 

 

Fig.19: Vertical force-deflection curves F=f(u) and distribution of non-local tensile 

softening parameter κ2 (u=11 mm) for composite wall panel from FE analyses within 

enhanced elasto-plasticity as compared to experiment (compressive fracture energy 

Gc=2750 N/m - curve 'a' of Fig.17A), tensile fracture energy Gf=200 N/m (curve 'a' of 

Fig.17B) and characteristic length of micro-structure lc=5 mm): a) experiment (Fig.11c), 

b) FEM (perfect bond), c) FEM (bond-slip with u0=0.03 mm (Eq.4) and, d) FEM (bond-

slip with u0=0.06 mm) and e) FEM (bond-slip with u0=1.0 mm) 
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FIGURE 19 
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Fig.20: Vertical force-deflection curves F=f(u) composite wall panel from FE analyses 

within enhanced elasto-plasticity with different tensile fracture energy Gf (compressive 

fracture energy Gc=3250 N/m (curve 'b' of Fig.17A), bond slip with u0=0.03 mm and 

characteristic length of micro-structure lc=5 mm): a) experimental result (Fig.10), b) FEM 

with Gf=200 N/m (curve 'a' of Fig.17B) and c) FEM with Gf=400 N/m (curve 'b' of 

Fig.17B) 

 

 

FIGURE 20 
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c) 

 

d) 
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     e) 

 

Fig.21: Comparison of calculated evolution of non-local tensile softening parameter κ2 

within enhanced elasto-plasticity in composite slab panel with experimental crack pattern 

for different vertical force F of Fig.20 (curves 'a' and 'b'): a) F=70 kN (u=1.83 mm), b) 

F=80 kN (u=2.19 mm), c) F=100 kN (u=4.32 mm, first peak in FEM computations), d) 

F=90 kN (u=5.86 mm, end of softening in FEM computations) and e) Fmax=118 kN 

(failure, u=9.22 mm) (tensile fracture energy Gf=200 N/m (curve 'a' of Fig.17B), 

compressive fracture energy Gc=3250 N/m (curve 'b' of Fig.17A), bond-slip with u0=0.03 

mm and characteristic length of micro-structure lc=5 mm) 

 

 

FIGURE 21 
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Fig.22: Vertical force-deflection curves F=f(u) composite wall panel from FE analyses 

within enhanced elasto-plasticity with different compressive fracture energy Gc (tensile 

fracture energy Gf=200 N/m (curve 'a' of Fig.17B), bond slip with u0=0.03 mm and 

characteristic length of micro-structure lc=5 mm): a) experimental result (Fig.10), b) FEM 

with Gc=2750 N/m (curve 'a' of Fig.17A), c) FEM with Gc=3250 N/m (curve 'b' of 

Fig.17A) and d) FEM with Gc=3750 N/m (curve 'c' of Fig.17A) 

 

 

FIGURE 22 
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A) 

 

B) 

 

Fig.23: Calculated and measured normal stress  at wall mid-span versus deflection u: 

A) tensile stress in reinforcement (before failure) at frame beam bottom and 

B) compressive stress in concrete at frame beam top and (a) experiments and b) FE result 

within enhanced elasto-plasticity (tensile fracture energy Gf=200 N/m (curve 'a' of 

Fig.17B), compressive fracture energy Gc=3250 N/m (curve 'b' of Fig.17A), bond-slip 

with u0=0.03 mm and characteristic length of micro-structure lc=5 mm) 

 

FIGURE 23  
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b) 
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c) 

 

d) 

 

Fig.24: Calculated force-deflection curves and distributions of non-local/local equivalent 

strain measure (u=11 mm) for composite wall panel from FE analyses within coupled 

elasto-plastic-damage: a) experiment, b) non-local approach with lc=5 mm, c) crack-band 

approach and d) local approach  

 

 

FIGURE 24 

  

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


56 
 

 

A) 

B) 

 

 

Fig.25: Calculated and measured normal stress  at wall mid-span versus deflection u: 

A) tensile stress in reinforcement at frame beam bottom (until breaking) and 

B) compressive stress in concrete at frame beam top and (a) experiments and b) FE results 

within enhanced coupled elasto-plastic damage 

 

FIGURE 25 
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