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1 Abstract 

The paper is a continuation of [1] where the formulation of the elastic constitutive law for 

functionally graded materials (FGM) on the grounds of nonlinear 6-parameter shell theory with 

the 6th parameter (the drilling degree of freedom) was presented. Here the formulation is 

extended to the elasto-plastic range. The material law is based on 2J  Cosserat plasticity and 

employs the well-known Tamura-Tomota-Ozawa (TTO) [2] mixture model with additional 

formulae for Cosserat material parameters. Formulation is verified by solving a set of 

demanding analyses of plates, curved and multi-branched shells, including geometry, thickness 

and material distribution variation parameter analyses. 

Keywords: A. Functionally graded materials (FGMs), B. plastic deformation, C. Finite element 

analysis (FEA). 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

2 
 
 

2 Introduction 

The progress in material science and technology resulted in the so-called functionally 

graded materials (FGMs). The concept of FGMs with continuous change of the constituent 

materials in the given direction was proposed in [3]. A breakthrough in development of 

functionally graded materials was established by the works of Japanese scientists performed in 

the 80s and 90s [4]. The characteristic properties of FGMs are: no stress concentration aroused 

by discontinuity of material properties (typical for discrete composite layerwise material 

distribution [5]), resistance to heat, oxidation and corrosion typical of ceramics with 

simultaneous strength, ductility and toughness representative for metals [6]. The wide range of 

applications of FGMs in engineering results mostly from their thermal properties [7,8]. Most 

notably, the FGMs are applied in 2-dimensional models of structures such as plates e.g. [9–11] 

and shells e.g. [12–15]. For such structural elements, a lot of research, either analytical or 

numerical, was conducted towards better understanding of FGMs’ behavior in various load and 

boundary conditions [16–19]. Stability analysis of FG sandwich beams and thin-walled 

functionally graded I-shaped beam was performed in [20] and [21], respectively. Rizov [22] 

evaluated the effect of material nonlinearity on delamination fracture in a functionally graded 

multilayered beam. Rational use of FGMs in thin-walled structures requires the knowledge 

about the stability, buckling loads and, last but not least, limit load capacity. Papers [23–25] 

provide a decent account of what has been done so far in these areas. Free vibration analysis of 

FGM plates and shells is topic of few recent papers eg. [26][27][28][29], results obtained there 

could be applied in aerospace design, one of possible FGM shells area of application. 

This work presents the elastoplastic numerical analysis (based on Finite Element Method, 

FEM) of FGM shells. The elastoplastic analysis of FGMs was described for the first time in 

paper [30]. The Authors applied FE method to compute thermal residual stresses induced during 

cooling at graded ceramic-metal interfaces. Then, they investigated in [31] the influence of a 

gradient exponent and graded interlayer thickness on stress residual reduction. Aboudi and 

Pindera [32] studied thermo-inelastic response of functionally graded metal matrix composites 
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with nonuniform fiber spacing in the thickness direction. The influence of packing arrangements 

of metal and ceramic phases on the thermomechanical deformation and the local strains and 

stresses was analyzed in [33]. The material properties of FGM shell are usually computed using 

modified rule of mixtures (TTO model) proposed for metal alloys by Tamura et al. [2]. 

Determination method of TTO model parameters for FGMs was described in [34,35]. The 

method was based on inverse analysis and micro-indentation tests. 

Jin et al [6] proposed an extension of the TTO model and presented the analysis of 

elastoplastic crack growth in the specimen with notch. The problem of elastoplastic deformation 

and residual thermal stresses induced in the fabrication process of FGM plates was analyzed in 

[7]. Baghani and Fereidoonnezhad [9] provided solution for circular plates loaded with arbitrary 

rotationally symmetric loads. The elasto-plastic behavior of FG circular plate under low velocity 

impact was investigated numerically and experimentally in [36,37]. Kalali et al [38] and Akis 

[12] discussed the elastoplastic behavior of functionally graded spherical vessels subjected to 

pressure. The elastoplastic analysis of FGM plate under termomechanical loading was 

performed in [11,39]. Huang and Han [5] compared their analytical solution with FEM solution 

for the functionally graded cylindrical shell subjected to axial compression. The stability of 

cylinders made of FGMs under various load conditions was studied in [18,40,41]. Xu et al. [42] 

and Kleiber et al. [43] analyzed elastoplastic buckling behavior of rectangular FGM plates. In 

contrast to the works described above, deformation of FGM plates with in-plane variation of 

material properties was described in [44]. Then, Amirpour et al. [8] developed elastoplastic 

damage model, discussed implementation and integration of constitutive relation using 

predictor-corrector scheme.  

The aforementioned papers presented elastoplastic analysis of FGM plates, vessels and 

cylindrical shells. There seems to be a lack of research on elastoplastic behavior of shells with 

geometry other than flat and cylindrical. Hence, the aim of this paper is to provide several new 

numerical results for shells with orthogonal intersection as those used in thin-walled members. 
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The materially and geometrically nonlinear analysis will be performed for irregular functionally 

graded shells under mechanical loads. 

The study is based on the shell theory that naturally includes the 6th rotation parameter 

known as the drilling rotation. Theoretical aspects of the theory such as strong form of the 

initial-boundary value problem, jump conditions and weak forms were described for instance in 

[45–48]. One of the main aspects of the formulation is that the shell strain measures are not 

symmetric so that the theory falls into the category of materials with internal structure e.g. 

[49,50]. Particularly, here we deal with the case of Cosserat shell with rigid directors [51]. In 

addition, the theory is not limited by magnitude of displacements or rotations. Numerical 

analyses are based on the shell 0C  16-node finite elements CAM [52], with full Gauss-

Legendre integration (4x4 point rule) of the element arrays in the element surface. The elements 

have 6 engineering degrees of freedom per node that makes them suitable tool for analysis of 

shells with various intersections undergoing finite rotations. Technically, the elements are based 

on Lagrange interpolation polynomials. However, the rotations are interpolated using special 

procedure as described in [53]. 

The elastoplastic constitutive law for the FGM 6-parameter shell is formulated in the 

course of the through-the-thickness integration of elastic Cosserat plane stress [49,54], using the 

concept of the first order shear deformation theory. Consequently the formulation is naturally 

endowed with characteristic length, since the Cosserat plane stress is assumed in each layer of 

the shell. Further assumptions pertaining the formulation of the material law are as follows (cf. 

e.g. [55,56]): additive decomposition of small elastoplastic strain rate and associative flow rule.  

In our previous studies the elastic constitutive relation of FGM shells based on 2-D 

Cosserat plane stress was formulated with respect to the middle [57] and neutral [1] reference 

surface. The influence of: choice of material or neutral surface and characteristic length on the 

response of the shell was evaluated in paper [1]. Here, the elastoplastic constitutive model for 

functionally graded shells, consistent with used shell theory, is presented. At a single layer level 

plane stress Cosserat continua is assumed, with  independent fields of in-plane translations and 
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drilling rotation. This results in non-symmetrical in-plane shear stresses and additional coupling 

stresses, taken into account in a natural way. 

3 Elastoplastic constitutive relation 

We briefly summarize the formulation of the FGM elastic constitutive relation as 

obtained in [1] in the range necessary to state the elastoplastic formulation.  

3.1 Cosserat plane stress 

As mentioned in previous section, assumption of Cosserat plane stress in each layer of the 

shell and then, integration through thickness is a natural and intuitive way of formulation 

material law in nonlinear 6-parameter shell theory. Cosserat continua and their various 

applications were described in many papers in recent times, e.g. [58][59][60][61]. In Cosserat 

media, not only position of point is defined, but also its orientation, thus at the given point 

displacements and rotations are independent. That leads to lack of symmetry stress and strains 

tensor and additional couple stress and curvature tensors are present. Details could be found e.g. 

in [62] along with reduction of 3D Cosserat continua to plane stress or strain cases. 

Let e  and stresses σ  be the generalized strains defined at each lamina of the FGM shell 

 
{ } { }
{ } { }

T
11 22 12 21 13 23

T
11 22 12 21 13 23

  | ,

  | .

m d

m d

e e e e κ κ

σ σ σ σ m m

= =

= =

e e e

σ σ σ

 (1) 

The Cosserat material law between vectors e  and σ  is described by the following matrix [1] 

 

1 2

2 1

2

2

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 2 0

0 0 0 0 0 2

mm mde

dm dd

Ea Ea

Ea Ea

G + G

G G +

Gl

Gl

κ κ
κ κ

 
 
 
   −

= =    −    
 
 
  

C C
C

C C
, (2) 

where 1

1

1 2
a

ν
=

−
, 2 1a νa= , 

2

2
( ) ( )

1

N
z G z

N
κ =

−
. Here the symbol N , following [63], is referred 

to as the Cosserat coupling number. Equation (2) shows clearly the placement of the micropolar 

characteristic length l.  
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3.2 Strains in the shell space, stress and couple resultants 

Employing the Reissner-Mindlin type kinematical assumption (the First Order Shear 

Deformation Theory, FOSDT) the membrane components of the strain vector me  are computed 

from the following equation 

 m m bz= +e ε ε , (3) 

where [ , ]z h h+ +∈ − +  is the coordinate in the thickness direction mε  and bε  are the known 

strains at the shell reference surface 

 T T
11 22 12 21 1 2 11 22 12 21 1 2{ | || | } { | || | }m s b dε ε ε ε ε ε κ κ κ κ κ κ= =ε ε ε ε ε . (4) 

In (4) labels m, s, b, and d denote respectively: the membrane, shear, bending and drilling part. 

For the drilling part we assume that relation d d=e ε  holds in the shell space. It should be 

stressed that the FOSDT assumption (3) is not used in present formulation of 6-parameter 

theory anywhere else but only in postulated formulation of the material law in present approach. 

The stress and couple resultants vector is defined correspondingly to (4) as 

 11 22 12 21 1 2 11 22 12 21 1 2 T T{ | || | } { | || | }m s b dN N N N Q Q M M M M M M= =s s s s s . (5) 

The membrane, bending and drilling stress resultants are derived by integration of stresses 

through the shell thickness [ , ]z h h+ +∈ − +  

 {
[ ( ) ]

dm

h h

m m mm m b md dh h

mm m mb b md d

dz z dz
+ +

− −

+ +

− −
= = + +

= + +

∫ ∫
ee

s ε ε ε

A ε B ε C ε

14243
σ C C

, (6) 

 
2[ ( ) ]

h h

b m mm m b md dh h

bm m bb b bd d

zdz z z z dz
+ +

− −

+ +

− −
= = + +

= + +
∫ ∫s ε ε ε

B ε E ε F ε

σ C C
, (7) 

 
[ ( ) ]

h h

d d dm m b dd dh h

dm m db b dd d

dz z dz
+ +

− −

+ +

− −
= = + +

= + +
∫ ∫s ε ε ε

C ε F ε H ε

σ C C
, (8) 

where the following arrays are defined 

 
h

mm mmh
dz

+

−

+

−
= ∫A C , 

hT
mb bm mmh

z dz
+

−

+

−
= = ∫B B C , 

hT
md dm mdh

dz
+

−

+

−
= =∫C C C , (9) 
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 2h

bb mmh
z dz

+

−

+

−
=∫E C , 

hT
bd db dmh

zdz
+

−

+

−
= =∫F F C , 

h

dd ddh
dz

+

−

+

−
=∫H C . (10) 

Note that the equations (6)-(10), unlike in our previous work [1], cannot be explicitly 

integrated. Instead, Gauss-Legendre or Gauss-Lobatto quadrature rule will be employed in the 

calculations. As far as the transverse shear is concerned the following equation is used, with sα  

as the shear correction factor 

 
0

0ss

G

G

 
=  
 

C ,     
h

s ss s s ss sh
α dz

+

−

+

−
= = ∫D ε εs C . (11) 

That is, the transverse shear stress-strain relation is treated as purely elastic in the present 

formulation. Finally, the structure of the constitutive relation is  

 

m mm mb md m

s ss s

b bm bb bd b

d dm db dd d

     
     
    =                

s A B C ε

s D ε

s B E F ε

s C F H ε

0

0 0 0

0

0

, e=C εs . (12) 

3.3 TTO formulation 

Let (c) stands for ceramic and (m) for metal constituent. The shell section is assumed as 

ceramic rich on the top surface ( )h++  and metal rich on the bottom surface ( )h+− . The power 

law  

 c

1

2

n
z

V
h

 = + 
 

,   m c1V V= − ,   0n ≥  (13) 

describes the distribution of material constituents in the thickness direction z. Here n  denotes 

the power-law exponent. Material constituents could be distributed along thickness according to 

various laws, detailed description and their influence on free vibration of FGM shells is 

collected in [29]. 

In the assumed TTO model, see e.g. [2,5,15], materials’ mixture is treated as elastoplastic 

with isotropic linear hardening, with properties described by the following relations 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

8 
 
 

 ( ) c c
m m c c m c

m m

q E q E
E z E V E V V V

q E q E

   + += + +   + +   
,  (14) 

 ( ) c c m mz V Vν ν ν= + , 
( )

( )
( )

2 1 ( )

E z
G z

zν
=

+
, 0 0σ ( ) σ m c

Y Ym c m
c m

q E E
z V V

q E E

 += + + 
 (15) 

 ( ) c c
m m c c m c

m m

q E q E
H z H V E V V V

q H q H

   + += + +   + +   
. (16) 

In the above equations ( )E z  is the effective Young modulus, ( )zν  is the effective Poisson’s 

ratio, ( )G z  is the shear modulus, q  denotes the so-called [5] ratio of stress to strain transfer and 

( )H z  is the multilinear hardening modulus. Cosserat parameters in mixture are defined as 

follows:  

 ( ) c c m ml z l V l V= + ,      
2

2
( ) ( )

1

N
z G z

N
κ =

−
. (17) 

3.4 Yield function for TTO Cosserat shell 

Within the framework of 2J  plasticity for Cosserat material ([64]) we assume yield function f  

in the form 

 23 σYf J= − ,     2
2 1 2 3 /ij ij ij ji ij ijJ a s s a s s a m m l= + + ,   1

3σ δ σij ij ij kks = − . (18) 

In (18) ijm  are the components of the Cosserat couple tensor, cf. [65]. The effective plastic 

strain is defined as 

 
1/2p 2

1 2 3ε
p p p p p p
ij ij ij ji ij ijb e e b e e b lκ κ = + + 

& & && & & & ,   1
3ε δ εij ij ij kke = −& &&  (19) 

where the dot denotes the rates of: the deviatoric strain ije&  and of the 3D Cosserat micro-

curvatures p
ijκ& . In calculations we assume that constants ,i ia b , 1,2,3i =  take on the following 

values: 1
1 4a = , 1

2 4a = , 1
3 2a = , 1

1 3b = , 1
2 3b = , 2

3 3b =  but other options are also possible, see e.g. 
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[64]. Thus, assuming also plane stress in each layer of the FGM shell, we obtain from (18) and 

(19) 

 ( ) ( )2 2 2 2 2 2
2 11 22 11 22 12 21 12 21 13 232

1 3 3 3

3 4 2 2
J σ σ σ σ σ σ σ σ m m

l
 = + − + + + + + 
 

 (20) 

 ( ) ( )
1/2

p 2 2 2 2 2 2
11 22 12 12 21 21 13 23

2 1 2 1 2
ε ( ) ( ) ( ) ( ) ( ) ( )

3 3 3 3 3
p p p p p p pe e e e e e κ κ = + + + + + +  

& & && & & & & &  (21) 

Classical plasticity formulae [56] is used with for associated flow rule and isotropic linear 

hardening  

 p f
γ

∂=
∂

ε
σ

& & ,     0σ σY Y Hγ= + . (22) 

Equations of plasticity are integrated using the closest point projection algorithm, e.g. [56], [66] 

[67] which in the context of  the present shell theory has been already discussed thoroughly in 

[55], therefore the details are omitted here. 

 

4 Results 

All calculations presented in this section are based on the own FEM code CAM [52], 

written in Fortran. The used finite elements (CAMe16) are 16-node elements with full 4×4 

Gauss-Legendre integration in the shell reference surface. Through the thickness integration of 

the constitutive relation is carried out using Gauss-Legendre or Gauss-Lobatto quadrature. 

Shear correction factor 5 6sα =  is used in present calculations. In each calculation, middle 

reference surface approach is applied [1] which means that integration in (9)-(10) runs from 

/ 2h h−− = −  to / 2h h++ = , where h  denotes shell thickness. All quantities are given in unit 

system N , mm , MPa . 

4.1 Rectangular plate under in-plane compression (I type) 

FGM rectangular plate, compressed in one direction, is taken into consideration. The 

dimensions, material data and reference results are obtained from [43]. Geometry and FEM 
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discretization is shown in Fig. 1. Plate thickness is constant and equal to 3.175h = . 

Discretization makes use of the symmetry of: geometry, loading and deformation. Material 

parameters are: { }0,  0.5,  1.0,  2.0,  5.0,  n ∈ ∞ , 340000cE = , 0.25cv = , 0.0001cl = , 

206200mE = , 0.3mv = , 0.0001ml = , 0mH = , 0 250Ymσ = , 4500q = , Gκ = . 

At first, comparison of present results and those obtained from [43] is presented. 

Reference solution was obtained by FEM analysis. Material parameters variation with respect to 

thickness is defined by equations (14)-(16) which yields smooth distribution from pure metal to 

pure ceramic layer. Here, following concept presented in [43] an initial geometrical, zero-stress 

imperfection is introduced. Initial displacement of middle point is assumed as 1000impfw b= , 

with imperfection shape provided by linear static solution for plate deflection.  

The obtained results are compared to reference solution [43]. Integration in the direction 

of thickness is performed using 7-point Gauss-Legendre quadrature. Various rectangular plates 

are analyzed which differ in assumed /b h  and /a b  ratios. This gives a spectrum of plates 

from nearly square with width 40b h=  to rectangular 80b h=  (see table 1).  

Results will be presented as equilibrium curves in the following coordinates 

( )/ , /Y YS Sε ε , where: 

• 
2 Au

a
ε =  is relative shortening of plate; 

• Ym
Y

mE

σε =  is axial strain at which metallic plate starts yielding; 

• xP
S

b h
=

⋅
 is average stress, where xP  is total reaction collected form edge 0x =  ; 

• Y YmS σ=  is yielding stress for metallic constituent. 

The computations are performed for plates with aspect ratios collected in table 1 and 

following values of power law exponent { }0,  0.5,  1.0,  2.0,  5.0,  n ∈ ∞ . Limit values of 

parameter n give homogenous perfectly plastic metallic plate (n = ∞ ) or elastic ceramic plate (

0n = ). 
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Graphs presented in the Fig. 2-Fig. 7, show the stress ratio / YS S  with respect to / Yε ε  

and displacement Bw  of center point B. The authors’ curves are compared to reference solution, 

only results for variant D weren’t provided in [43]. It is worth to notice that for long plates 

(variants D-F) in some analyzes, initial deformation do not conform with the failure mode 

which leads to turning of the curves back to negative direction of Bw  displacement. The present 

results are in good agreement with reference solution for variant A, B and C (short plates). For 

long spans (variants E, F) larger differences are visible, especially in equilibrium paths after 

limit load point is reached. Additionally, contour plots of displacement w at the end of analysis 

for variant F are shown in Fig. 8. 

As an additional study, convergence analysis for different rules of through-the-thickness 

integration is conducted. The following methods are compared: Gauss-Legendre quadrature,  

Gauss-Lobatto quadrature and thickness division into equal layers (single integration point at 

the center of each layer). The influence of number of integration points on the limit load is 

investigated. Compressed plate with dimensions / 40b t = , / 2.625a b =  and power-law 

exponent 2.0n =  is analyzed. Results collected in Fig. 9, Fig. 10 and Fig. 11 show that in every 

case the limit loads converge however in different manner. When Gauss-Lobatto quadrature is 

used, convergence “from top” is observed, as the integration point is placed exactly on purely 

ceramic elastic layer in every simulation. As the value of weight assigned to this points becomes 

smaller, the limit load reduces. In Gauss-Legendre quadrature and equal thickness layers 

calculations, integration point closest to ceramic outer surface is assumed to be elasto-plastic 

with relatively high hardening modulus. Consequently, latter two methods of through-the-

thickness integration gives convergence “from bottom”. The algorithm used to integrate 

elastoplastic material law implemented in author’s FEM code was not able to obtain 

convergence in Gauss-Legendre quadratures with 17, 19 and 21 integration points in those limit 

points, due to relatively high value of tangent hardening modulus in highest fraction of ceramic 

constituent. 
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It can be argued that usage of Gauss quadratures requires less integration points in 

comparison to equal-layer method to obtain comparable results. On the other hand, differences 

are relatively small, thus the equal thickness layers method is acceptable where application of 

classical quadratures for FGM shell is not possible (like in commercial codes). 

4.2 Rectangular plate under in-plane compression (II type) 

We analyze the compressed plate proposed in [42]. The problem is similar to previous one 

(with different geometry and material data) yet here the reference solutions are obtained by 

analytical derivations. Geometrical dimensions are (according to notation in Fig. 1) 200a = , 

100b = , { }20,  25,  30,  40,  50,  60,  80,  100b t ∈ . Perfect flat initial geometry is assumed in 

analysis. Material data is defined as: { }0.2,  5.0n ∈ , 375000cE = , 0.14cv = , 0.005cl = , 

107000mE = , 0.34mv = , 0.005ml = , 4600mH = , 0 450Ymσ = , 4500q = , Gκ = .  

Equilibrium paths obtained in geometrically and materially nonlinear FEM analysis are 

presented in Fig. 12 and Fig. 13. Our nonlinear curves are compared to analytically obtained 

critical loads from paper [42]. In this case it could be assumed that buckling occurs when central 

point displacement Bw  become non-zero. Results show good agreement between reference and 

present values of buckling load. Contour plots of displacement w, placed on right sides of Fig. 

12 and Fig. 13, reveal the same final deformation shape in every case, namely 3 half waves 

along compression direction and 1 half wave in perpendicular direction.  

Additionally, the present investigations give further insight into behavior of the 

compressed plate. Namely, stable postbuckling increase of strength of whole structure for 

0.2n =  and clear limit load points obtained in 5.0n =  cases can be noticed. For thin plates (

{ }60,  80,  100b t ∈ ), buckling occurs prior to the first yielding while for thicker plates buckling 

is in partially yielded structure. D
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4.3 Elastoplastic bucking of axially loaded cylindrical shell  

Cylindrical shells are often used in engineering practice. Their statics and dynamics has 

been extensively studied in the literature and it always is a challenge. Theoretical foundations 

may be traced back to the book by [68]. Static numerical analysis of such shells requires special 

techniques to trace the equilibrium path, such as for instance arc-length control or displacement 

control, see for instance Ramm or Crisfield in [69]. Another approach is to employ dynamic 

analysis e.g. [70,71][72]. However, such analysis is also demanding and theoretical results are 

therefore always important. The present example is taken from [5] and is used to validate the 

present formulation. Axially loaded cylindrical shell was considered there both analytically and 

numerically. The material parameters are: 1.0n = , 53.75 10cE = ⋅ , 51.07 10mE = ⋅ , 0.14cν = , 

0.34mv = , 14000mH = , 0 450Ymσ = , 4500q = , Gκ = , characteristic length of metal and 

ceramic are equal 0.01m cl l h= = . The inner surface is ceramic-rich. Proportional load is 

assumed as ( ) refP Pλ λ= , 1000refP = . The geometry of the shell is presented in Fig. 14. The 

number of CAMe16 elements along the height is 52 while in the circumferential direction 

equals to 64.  

The displacement control was used to trace the equilibrium path with the control 

displacement v  of the top of the shell. The load is understood as the sum of reaction at upper 

edge. The present results are compared with reference solution from [5] and with own Abaqus 

commercial code calculations in Fig. 15 and Table 2. In Abaqus, 31715 nodes, 31400 elements 

S4R and 20 or 7 layers (with single integration point in the middle of each layer in thickness 

integration) were used in simulation. It can be noticed that all the results are in good agreement. 

In addition, in Fig. 16, we present load-deformation path for thickness 0.2h = . Abaqus 

results were obtained with different types of finite elements and number of composite layers 

whereas CAM results with 7 integration points (Gauss-Legendre rule) in the thickness direction. 

It can be observed that once the limit point is reached there appear some discrepancies among 
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the results which are attributed to different element formulations and depend on the 

approximation of the material structure in the thickness direction.  

Moreover, to investigate the jump observed on CAMe16 equilibrium path we analyze two 

deformation states indicated in Fig. 16 as point A and point A’. The results are shown in Fig. 17 

and in Fig. 18. It is visible that the observed jump is attributed to the presence of new 

deformation wave localized close to the bottom and top edge. The contour plot of effective 

plastic strains is presented in Fig. 18 for the first and last through-the-thickness integration 

point. In Gauss-Legendre quadrature those points are located closely to inner and outer surface 

but not directly on them.  

Shell deformation at limit load point is compared with deformation at the end of analysis 

(final point of curves in Fig. 15) for different values of shell thickness in Fig. 19. The plots 

show that when { }0.15,  0.2,  0.3,  0.4h ∈ , the final deformation is asymmetric, however 

deformation is still axially symmetric. Obviously, waves forms along the ruling of cylinder, but 

those are far from being regular sine-type function like assumed in analytical solution, see [5]. 

These results show indeed that present example is very demanding test, because of complex 

deformation at final configuration.  

4.4 Box section column under axial load 

In this example we analyze the shell with orthogonal intersections. Nonlinear response 

and load capacity of axially loaded box section column is studied. The geometry and boundary 

conditions are shown in Fig. 20. The material parameters are: 53.75 10cE = ⋅ , 51.07 10mE = ⋅ , 

0.14cν = , 0.34mv = , 4600mH = , 450Yσ = , 4500q = , Gκ = , 0.0002m cl l= = . Dimensions 

of the structure are assumed as: width of the cross section 100a =  , depth 50b = , height 

200L = , uniform shell thickness 2h = . The inner surface is metal-rich. The displacement 

control was used to trace the equilibrium path with the control displacement v  of the top edge 

of the column. The study of the influence of the power-law exponent n  on the results is 

performed. The equilibrium paths with respect to the displacements Av  and Bw  for variable n  
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are shown in Fig. 21. With the decrease of n  the limit points become less pronounced, however 

the curves exhibit plateau-like shape. For 5.0n =  and n = ∞  it was possible to find the 

maximum of the curve, the respective values of limit loads are given in Fig. 21. It is also worth 

noticing, that in case n = ∞  displacement Bw  changes sign, namely at the beginning of analysis 

point B is moving outwards the box section, however at a load level 51.041 10×  direction of 

movement rapidly changes and finally point B is placed inside section, like for other values of 

n. 

In Fig. 22 typical deformation is presented, with 3 half-waves along axis of the box. 

Contours of reduced, Huber-Mises-Hencky type stresses (20) (purely ceramic material) or 

equivalent plastic strain (mixed material) are shown in inner most, metallic layer. 

5 Conclusions 

We have successfully formulated elastoplastic constitutive relation for FGM shells with 

Cosserat-type kinematics with associated FEM implementation. The formulation is capable of 

dealing with unlimited translations and rotations. In particular, due to the natural presence of the 

so-called drilling rotation at the element node, the presented formulation is particularly well-

suited for the simulations where orthogonal shell branches appear. The obtained results are in 

good correspondence with analytical ([5,42]) and numerical reference solution ([43] and own 

Abaqus calculations). The presented results support the following conclusions:  

• Numerical stability analysis of cylindrical shells in the post-limit range is particularly 

demanding, the results may depend on the FEM formulation and discretization. Thus, 

analytical or experimental results are indispensable to validate the formulation. 

• Application of different quadrature rules in the thickness direction provides lower or 

upper bound of the result. 

• Nonlinear FEM analysis gave insight in postbuckling deformation of compressed 

structures. In case of cylindrical geometry, deformation is more complicated than 

described by the product of the sine and cosine functions, like in analytical solutions 

[5,42]. 
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• In papers by Huang and co-workers [5,42] critical loads were calculated. The values of 

our critical loads are in good agreement with reference values in case of compressed 

plate, but for cylindrical shell these meet with limit loads, even though buckling is not 

observed at this point (deformation gradually forms since start of loading, without 

noticeable change of its shape). Sudden change of shape is noticed after load passes 

limit load point. 
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Figures’ captions 

Fig. 1. Compressed plate: geometry, imperfection, load and boundary conditions. 

Fig. 2 Compressed plate: equilibrium paths for variant A ( / 40b t = , / 0.875a b = ). 

Fig. 3 Compressed plate: equilibrium paths for variant B ( / 55b t = , / 0.875a b = ). 

Fig. 4 Compressed plate: equilibrium paths for variant C ( / 80b t = , / 0.875a b = ). 

Fig. 5 Compressed plate: equilibrium paths for variant D ( / 40b t = , / 2.625a b = ). 

Fig. 6 Compressed plate: equilibrium paths for variant E ( / 55b t = , / 2.625a b = ). 

Fig. 7 Compressed plate: equilibrium paths for variant F ( / 80b t = , / 2.625a b = ). 

Fig. 8 Compressed plate: final contour plots of displacement w for variant F ( / 80b t = ,

/ 2.625a b = ). 
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Fig. 9 Compressed plate: limit load point convergence study with respect to relative shortening 

/ Yε ε , the influence of number of integration points in thickness direction. 

Fig. 10 Compressed plate: limit load point convergence study with respect to center point 

deflection wB, the influence of number of integration points. 

Fig. 11 Compressed plate: limit load point convergence study with respect to number of 

integration points. 

Fig. 12 Compressed plate: average stress vs. central deflection curves for 0.2n = , contour plots 

of displacement w at the end of analysis (right side) 

Fig. 13 Compressed plate: average stress vs. central deflection curves for 5.0n = , contour plots 

of displacement w at the end of analysis (right side). 

Fig. 14. Cylindrical shell under action of axial load, geometry and boundary conditions. 

Fig. 15. Cylindrical shell under action of axial load, authors’ load-deformation curves, the 

influence of thickness h. 

Fig. 16. Cylindrical shell under action of axial load, load-deformation path, 0.2h =   

Fig. 17. Cylindrical shell under action of axial load, deformation detail and radial displacement 

before (point A) and after (point A’) the jump on equilibrium path. 

Fig. 18. Cylindrical shell under action of axial load, effective plastic strain closely to inner and 

outer surface. 

Fig. 19. Deformation of cylindrical shell in radial direction along its ruling (line parallel to y 

axis). 

Fig. 20. Axially loaded box section column, geometry and boundary conditions 

Fig. 21. Axially loaded box section column, influence of n on load-displacement path of vA 

Fig. 22. Axially loaded box section column, deformation shape and contours of H-M-H stress 

and equivalent plastic strain 

Table 1 Dimensions of analyzed variants of compressed plate. 

variant b/h a/b h a b wimpf 
1/4 plate 

discretization 
A 40 0.875 3.175 111.125 127.0 0.127 8x8 CAMe16 
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B 55 0.875 3.175 152.8 174.625 0.175 8x8 CAMe16 
C 80 0.875 3.175 222.25 254 0.254 8x8 CAMe16 
D 40 2.625 3.175 333.375 127.0 0.127 24x8 CAMe16 
E 55 2.625 3.175 458.4 174.625 0.175 24x8 CAMe16 
F 80 2.625 3.175 666.75 254 0.254 24x8 CAMe16 

 

Table 2. Limit loads for axially loaded cylindrical shell, the influence of thickness h 

 
h 

0.05 0.1 0.15 0.20 0.30 0.40 0.50 
analytical 
Ref [5] 

1.854 7.412 14.472 22.757 44.716 75.232 117.459 

present formulation 
CAM 

1.862 7.027 14.298 23.538 46.619 72.705 103.530 

Abaqus 
S4R, 20 layers 

1.841 7.020 14.309 22.827 46.855 74.482 108.218 

Abaqus 
S4R, 7 layers 

1.817 6.848 13.898 22.756 45.188 70.183 102.968 
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• Standard TTO formulation of elastoplastic functionally graded material is extended to 

Cosserat type shell theory, with asymmetric membrane strain measures and drilling 

rotation, 

• Numerical results contain vital information about the use of different quadrature rules 

used to integrate the stress components in the through-the-thickness direction of the 

shell, 

• The influence of finite element discretization and formulation is studied, specifically on 

the post-peak response of the shell 
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