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Abstract 

 

The thesis concentrates on comprehensive theoretical, numerical and experimental 

analysis of guided wave propagation in bars embedded in concrete or mortar. The 

investigations are focused on a particular type of objects representing a laboratory model 

of a ground anchor. Complex description of wave propagation phenomena in partially 

embedded bars is given and its application in detection of various types of defects 

is analysed. 

The first part of thesis is focused on dispersive relations describing multimode wave 

propagation in free and multilayered bars of circular cross-section. Analytical solution 

in the form of dispersion curves is an important element of the analyses presented 

in the subsequent parts of the work regarding wave propagation in undamaged specimens, 

specimens with debonding and specimens with localized and surface damages. 

Experimental and numerical analysis of wave propagation in undamaged anchors 

with variable bonding lengths allowed to derive relations enabling estimation of major 

geometric parameters on the basis of time-domain signals. Next, the influence 

of debonding length and its location on the wave propagation phenomena was described. 

The research carried out in the further part of the work proved the possibility of using 

guided waves for detection of relatively small-size debonding, as well as corrosion 

and point damage located in both embedded and free parts. The last stage of non-

destructive testing concerned the wave propagation in a real drill-hollow bar commonly 

used for execution of geotechnical facilities. The influence of couplers connecting 

individual bars on the wave attenuation was analysed. Additionally, drill-hollow bar 

was used for real small-scale anchor performed in the ground. The possibility of guided 

wave application in the monitoring of the hardening process of cement mortar forming 

anchor body was demonstrated. Comparison of the results for anchor placed in the ground 

and the anchor after excavation allowed to determine the surrounding ground medium 

impact on the registered time signals. 

Finally, the most important conclusions of the conducted research and future 

plans were pointed out. 
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Streszczenie 

 

Praca zawiera analizę teoretyczną, numeryczną oraz eksperymentalną propagacji fal 

prowadzonych w prętach osadzonych w materiale kompozytowym typu beton lub zaprawa. 

Głównym obiektem badań był model laboratoryjny kotwy gruntowej. Przedstawiono 

szczegółowy opis zjawiska propagacji fali w prętach częściowo osadzonych oraz 

przeanalizowano możliwość jego wykorzystania w detekcji różnych typów uszkodzeń. 

W pierwszej części pracy przedstawione zostały rozwiązania dyspersyjne opisujące 

wielomodową propagację fali w prętach jedno- i wielowarstwowych o kołowym przekroju 

poprzecznym. Rozwiązanie analityczne w postaci krzywych dyspersji stanowiło ważny 

element analiz przedstawionych w kolejnych częściach pracy, dotyczących propagacji fali 

w kotwach nieuszkodzonych, kotwach z uszkodzeniami w postaci rozwarstwienia, a także 

uszkodzeniami punktowymi i powierzchniowymi. 

Badania eksperymentalne oraz obliczenia numeryczne dotyczące propagacji fal 

prowadzonych w nieuszkodzonych kotwach o zmiennej długości otulenia pozwoliły na 

opracowanie zależności umożliwiających określenie podstawowych parametrów 

geometrycznych kotwy na podstawie sygnałów czasowych. Następnie opisano wpływ 

długości oraz położenia uszkodzenia w postaci rozwarstwienia na zjawisko propagacji fali. 

Badania przeprowadzone w dalszej części pracy wykazały możliwość wykorzystania fal 

prowadzonych do wykrywania rozwarstwień o relatywnie niewielkim rozmiarze, a także 

uszkodzeń korozyjnych oraz punktowych położonych, zarówno w części otulonej jak i 

swobodnej. Ostatni etap badań nieniszczących dotyczył propagacji fali w rzeczywistej 

żerdzi powszechnie wykorzystywanej podczas wykonywania obiektów geotechnicznych. 

Przeanalizowany został wpływ elementów łączących pojedyncze żerdzie na tłumienie fali. 

Stalowa żerdź posłużyła ponadto do wykonania w gruncie rzeczywistej kotwy w małej 

skali. Wykazano możliwość wykorzystania fal w monitoringu twardnienia zaprawy 

cementowej formującej buławę kotwy. Porównanie wyników kotwy umieszczonej w 

gruncie oraz kotwy po wykopaniu pozwoliło na określenie wpływu obecności ośrodka 

gruntowego na rejestrowane sygnały czasowe propagującej fali.  

W podsumowaniu przedstawiono najważniejsze wnioski z przeprowadzonych badań 

oraz przyszłe plany dotyczące dalszych prac naukowych. 
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CHAPTER 1 

Equation Section (Next) 

 

 

 

1 Introduction 

Introduction 

1.1 Guided waves in diagnostics of engineering structures 
 

Monitoring of structures, assessing their state, early damage detection and predicting 

the remaining service has become the field of special importance since the uprising 

of engineering. An increasing number of machines, buildings and vehicles and the need 

of constant controlling their technical condition have forced the improvement of diagnostic 

systems. The impressive development of diagnostic techniques has been observed in recent 

decades. Nondestructive testing (NDT) and nondestructive evaluation (NDE) methods 

for characterizing defects bring useful information about the current state of the tested 

elements. Structural health monitoring (SHM) which is an extension of NDT&E systems 

attempts to develop procedures of damage detection by permanently attached sensors 

which provide recording, analyzing, localizing damage conditions and making a real-time 

damage prognosis ([30],[198]). 

The SHM is an interdisciplinary research area and nowadays it attracts significant 

interest of scientists. A variety of methods of NDT&E and SHM gives the opportunity 

to choose an effective approach with regard to a considered problem or a kind 

of monitored damage ([55],[88]). Many effective methods have been developed 

in previous works, e.g. ground penetrating radar ([7],[111],[113]), electrical impedance 

[148], acoustic emission ([45],[73],[74],[202]), eddy current [123], thermal imaging 

([83],[226]), x-rays [191], vibration-based methods ([64],[90],[142],[184],[205],[214], 

[227]) and wave propagation-based methods [190] including ultrasonics ([41],[105]), 

impact-echo technique ([59],[66],[89],[122],[185]), or guided waves ([153],[160],[164], 

[183],[186]). 
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The SHM systems based on mechanical wave propagation have been successfully 

applied in diagnostics of civil, naval, and aerospace structures. The main advantage 

of SHM methods based on wave propagation is a possibility to detect and localize 

relatively small defects. Despite the fact that the first works on wave propagation appeared 

several centuries ago, their potential for nondestructive evaluation has not been recognized 

until 1951, when Firestone and Ling patented the method and means to generate 

and implement vibrational waves in plates [63]. In 1957 Worlton published a paper 

on Lamb waves application to inspect plate-like structures [216]. Four years later he also 

experimentally supported the theory of Horace Lamb formulated in 1916 ([114],[217]). 

Wortlon in his research excited waves with various frequencies in plates with various 

thickness – his results confirmed the Lamb theory about vibrations in plate. In 1965 

Wortlon also patented a method of generating ultrasonic plane waves at a predetermined 

frequency [218]. Since that time a large number of works have been devoted to guided 

wave application in non-destructive testing. 

The guided wave propagation in plates has been intensively studied by a number 

of researchers. The main advantage of wave application in diagnostics of plates is their 

possibility to monitor large areas during a single measurement. Datta [43] studied 

dispersive waves in a laminated plate with an arbitrary number of arbitrarily anisotropic 

laminae. Giurgiutiu et al. [70] used a linear piezoelectric-wafer phased array in monitoring 

of crack growth in aluminum plates. Ihn and Chang [93] monitored fatigue crack growth 

in a cracked metallic plate repaired with a bonded composite patch. Kudela et al. [110] 

proposed a damage detection algorithm for a multilayer composite plate by a clock-like 

configuration of sensors. Malinowski et al. [138] studied damage detection in an aluminum 

alloy specimen and implemented a special algorithm to process voltage signals in order to 

extract features related to defect. Various sensors configurations for damage detection in 

aluminum plates were investigated by Wandowski et al. [209]. Ambrozinski et al. [11] 

used self-focusing Lamb waves for SHM of plate structures. Dziendzikowski et al. [58] 

investigated damage detection in composite plates by two parallel linear arrays. Bayesian 

system identification theory has been applied for damage detection in plates by Yan [223]. 

Due to a relatively low energy dissipation guided waves can travel throughout long 

objects without significant reduction in signal amplitude. This advantage is particularly 

important in the case of monitoring rods, beams, pipes or rails. A potential application 

of waves in diagnostics of rods and beams was demonstrated by Palacz et al. [165], who 

detected an additional mass of the rod. Rucka [181] detected various types of defects 
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in rods by the use of waves. Lucena and Dos Santos [132] proposed a new approach based 

on the combination of time reversal method and spectral element method to perform 

damage detection in rodlike structures. Lestari and Qiao [120] measured the traveling time, 

speed reduction, and wave attenuation parameters of propagating wave and applied them 

to detect damage in composite laminated beams. Ziaja et al. ([232],[233]) investigated 

guided wave propagation and possibility of its application for diagnostic purposes in thick-

walled cylindrical structures. Defects in rails were detected by the use of waves by Lee et 

al. [119], who used a hybrid analytical-FEM technique to design the sensor to generate rail 

boundary conditions by means of a dispersion curve and wave structure analysis. Zumpano 

and Meo [245] presented a damage detection technique of structural surface damage on rail 

structures by the use of pressure, shear and Rayleigh waves. Zhang et al. [230] performed 

a continuous wavelet transform to analyse Lamb wave dispersion and locate damages in 

switch rails. Mariani et al. [136] investigated rail integrity using a high-speed and 

noncontact system based on guided waves. They accomplished a prototype which involved 

ultrasonic air-coupled guided wave signal generation and allowed for air-coupled signal 

detection. Wave propagation has been successfully applied in damage detection in 

pipelines by Alleyne and Cawley [10]. They studied L(0,2) mode interaction with features 

occurring in chemical plant pipework. Lowe et al. [130] detected corrosion damage in 

insulated pipes by ultrasonic guided waves. Tse and Wang [206] investigated 

circumferential notches in pipelines and the impact of their depth on collected wave 

signals. Guided wave behaviour in pipe bends was considered by Sanderson et al. [189]. 

Guided wave sensitivity to even small defects occurring between particular layers 

of specimen contributed to the development of methods of nondestructive diagnostics 

of multilayered composite panels commonly employed in aerospace industry. The potential 

application of waves in diagnostics of aircraft structures was demonstrated e.g. in [42], 

[94],[193],[154]. Dalton et al. [42] examined wave propagation across free skin, tapering 

skin, skin loaded with sealant and paint, double skin joined with either sealant or adhesive 

and lap and stringer joints which are members of an aircraft fuselage structure. Ihn 

and Chang [94] detected damages in airbus fuselage panels by a pitch-catch method. 

Senyurek [193] excited surface waves and estimated the location of defects in wing slats 

of Boeing 737 aircraft. Monnier [154] presented the results of damage monitoring 

in carbon/epoxy aeronautical structure using integrated piezoelectric sensors. 

Elastic waves are also an attractive alternative for the state assessment of prestressed 

bolted connections because in contrast to standard visual methods they do not require 
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a direct access to the connection [71]. Wave propagation for diagnostics of bolted lap 

joints was presented by Amerini and Mao [12], who studied the relationship between 

the state of bolted specimen and linear and nonlinear acoustic/ultrasound parameters. 

Wang et al. [212] presented the relationship between wave energy signal and torque level 

in a bolted connection. Kędra and Rucka [100] proposed a development of damage index 

based on energy of initial part of a wave signal. 

The description above contains only a small part of works that has been devoted 

to employment of wave propagation phenomena in diagnostics of structural elements 

however, all reported papers greatly illustrate a potential of SHM systems based 

on ultrasonic testing. 

 

1.2 Guided wave propagation in condition assessment of 

embedded waveguides 
 

Any free or embedded metal bar can be perceived as a waveguide to allow 

for disturbance propagation. Such waveguides can be found in many areas of civil 

engineering. One of common examples of embedded waveguides are steel rods embedded 

in concrete. Reinforced concrete is nowadays one of the most frequently and widely used 

material for civil engineering structures. Steel inserts in the form of bars, wires, strings, 

cables and nets can be used as a reinforcement in complex structures like bridges, dams, 

silos or buildings. At best, concrete cover protects metal waveguides from various types 

of damages. The outer concrete layer protects the steel against mechanical damage, while 

its alkaline environment prevents from corrosion. However, when the concrete cover 

is damaged or voids are formed while concrete was pumped, reinforcement is much less 

protected. Those damage forms are especially dangerous because they develop 

in the interior of structure without a possibility to be freely observed. 

Due to the significant potential of nondestructive methods and the possibility 

of applying them in diagnostics of common structural elements, wave propagation 

problems in embedded waveguides have been extensively investigated since 20
th

 century. 

The first works address theoretical aspects of wave propagation in multilayered bars. 

The theory of guided waves in multilayered rods can be found in the works of researchers 

such as Baltrukonis et al. ([17],[18]), McNiven and SackMan [141], Armenàkas 

([14],[15]), Whittier and Jones [213], Kelkar [99], Reuter [176], Lai [112] and Thurston 
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[204]. These papers generally concern analytical solutions for particular wave mode 

families, the shape of dispersion curves and the procedures to trace them. Their theoretical 

exploration was a meaningful prerequisite for the implementation of guided waves 

for many challenging applications like nondestructive testing of embedded bars. 

Examples of practical applications of wave propagation cover a wide range 

of various engineering structures considered as embedded waveguides. The integrity 

of anchorages of tendons of post-tensioned bridges was investigated by Pavlakovic [171]. 

He considered analytically and numerically leaky cylindrical systems and then used 

a developed model for the inspection problem of damage detection of embedded steel 

tendons. His work proved that nondestructive testing method based on wave propagation 

can be applied in detection of fracture or mass loss due to corrosion.  

The results of applying wave propagation in the diagnostics of rock bolts were 

presented by Beard et al. ([22],[23],[24]). They investigated mode sensitivity to material 

parameters and geometry changes of epoxy bonded rock bolts. They also analysed wave 

attenuation in short lengths of grouted tendons and evaluated mode reflection coefficient 

from breaks of various geometry. The research team from Dalhousie University 

investigated the influence of curing time [135], frequency and grouted length [242], grout 

quality [243], and missing grout [40] on guided wave propagation and proposed a new 

approach for field monitoring of rock bolts [244]. They also performed simulations 

of wave attenuation and group velocity [39] and analysed numerically the effects of mesh 

density and wave excitation frequency on wave propagation signals [229]. Examples 

of guided ultrasonic waves application in diagnostics of rock bolts can be also found 

in papers published by Han et al. [81], Ivanović and Neilson [96], Lee et al. [118], Wang 

et al. [210] and Wu et al. [221]. 

Guided waves were also used in the detection of most common damage modes 

of steel reinforcement embedded in concrete. Na et al. ([158],[159]) examined 

the possibility of guided wave application in a bar-concrete interface testing. Corrosion 

monitoring was a topic of research presented by Reis et al. [177], Ervin et al. ([60],[61]), 

Sharma and Mukherjee [194], Li et al. [121], Moustafa et al. [156] and many others. 

Localized damages in rebar reinforced beams were detected by guided waves, inter alia, 

by Lu et al. [131] and Moustapha et al. [157]. 

Guided waves also turned out to be promising tool to assess strains and stresses 

in embedded waveguides. Stress levels in free seven-wire steel strands and strands 

anchored in concrete block were monitored with the use of ultrasonic waves by Chaki 
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and Bourse [31]. Akbarov and Guliev [5] applied a three-dimensional linearized theory 

of wave propagation in an initially stressed body to investigate the influence of finite initial 

strains in a circular cylinder embedded in elastic medium. 

All the papers mentioned above are perfect examples of practical use 

of the phenomenon of the disturbance propagation in the diagnostics of embedded 

waveguides. Despite enormous effort of scientists all around the world, many aspects 

of wave propagation in embedded waveguides remain not recognized yet. 

 

1.3 Ground anchors as embedded waveguides 
 

A structural example to represent an embedded waveguide is a ground anchor. 

Ground anchors are widely used in mining, tunneling and geotechnical engineering 

to prevent the movement of rock or ground strata ([80],[195]). They are commonly used, 

together with rock bolts and soil nails, in slope engineering projects and also 

for remediation purposes after the loss of slope stability [97]. The major components 

of ground anchor are steel tendon and anchor body made of mortar (Figure 1.1a). 

An overall construction process of a ground anchor takes place underground so its state 

cannot be assessed by standard visual inspection (Figure 1.1b). The most important 

difference between ground anchors and soil nails or rock bolts playing similar roles is their 

length. The length of a tendon of ground anchor can be significant because in general 

the load centre must be located at a maximum distance from the fulcrum edge of the 

supported structure [86]. Another important difference is the presence of the so-called 

anchor body of a possible significant diameter compared to the fixed zone of rock bolts. 

At the first performance stage of a ground anchor, an oblong hole with a designed 

inclination is drilled by water-flushing in the ground (Figure 1.1b-II). When the drilling 

reaches the required depth, it is filled with injected liquid cement-grout. Next a steel 

tendon is placed in the ground and additional grout is injected (Figure 1.1b-III and IV). 

The injected grout forms an anchor body which is a retaining structure to transfer shear 

stresses at the grout/ground interface. After some time secondary grouting (post-grouting) 

is performed what leads to increase in size of the anchor body. The shapes of anchor 

bodies and their diameters may vary considerably and generally they depend 

on the properties of surrounded ground and the application of anchorage system [188]. 
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The ground anchor state assessment usually involves pull-out destructive tests. 

The pull-out tests are carried out on a few specially prepared anchors. They allow 

assessing load-carrying capacity of tested specimens and lead to visual inspection 

of workmanship quality. Destructive tests make it possible to verify the design 

assumptions regarding the size of the anchor body. However, destructive tests are also 

expensive, time consuming and provide information on a few chosen specimens only. 

Limitations of invasive methods forced the need of development of nondestructive 

techniques which would be faster, more effective and most important, applicable for all 

anchors. 

One of the greatest challenges in the field of diagnostics of ground anchors is their 

size estimation without violating their integrity. In general, load-carrying capacity 

of ground anchor greatly depends on the diameter and length of the anchor body. 

The diameter of the anchor body cannot be determined exactly due to large diversity of soil 

properties and is only estimated on the basis of soil type and diameter of the drill hole. 

Forming the anchors with diameters too small threatens the safety of the entire supporting 

structure, while too big diameters result in injecting too much liquid grout, what 

is associated with unnecessary, significantly higher costs. The second important parameter 

is bonding length. The guarantee of good health of the anchor and proper load transfer 

is a high quality of connection between grout and tendon at the length of the anchor body 

formation. Furthermore, the thorough cover is an excellent corrosion protection for steel 

components. Poor bonding quality results not only in lower load-carrying capacity but also 

in lower durability of an entire anchor. Even after pull-out tests there is no possibility 

to assess the state of a grout-tendon connection. This kind of quality check would require 

not only pull-out tests, but also total destruction of the anchor body. 

Despite the fact that anchors are relatively simple engineering structures, there 

are a lot of problems with their proper and effective diagnostics. The desired diagnostic 

method should be nondestructive, what would let avoid additional costs. It should be easily 

applied in the state assessment of all investigated anchors, not just a few selected ones. 

Moreover, it should give the opportunity to estimate the most important geometric 

parameters like free length, bonding length, the effective length of the steel-grout 

connection and diameter, without a specimen damage. It should be also suitable 

for damage detection occurring as a result of corrosive environment or excessive loads. 

The methods based on a guided wave propagation phenomenon meet all these 

requirements. The great application potential of waves in diagnostics of different 
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embedded waveguides has been proved by many scientists; however, many aspects 

of nondestructive inspection of ground anchors are still untouched. 

 

 

Figure 1.1 a) Ground anchor, b) process of installation of ground anchor 
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1.4 Aim and scope of study 
 

The main purpose of the conducted research is a complex investigation of specific 

problems of wave propagation in embedded circular waveguides. The investigations were 

focused on a particular type of objects representing a laboratory model of a ground anchor. 

The emphasis of the study is a nondestructive diagnostics of ground anchors including 

estimation of basic geometric parameters and detection of the most common damage 

patterns. 

The content is organized as follows. Chapter 1 contains discussion about damage 

detection in structural elements using guided waves.  

Chapter 2 derives an analytical model of longitudinal wave propagation in free 

and multilayered rods. Basic rod theories bringing approximate solutions for a wave 

propagation model in a free rod are derived and dispersion curves are presented. 

Approximate solutions are compared with Pochhammer-Chree theory, whose theory 

is regarded the most accurate bar theory directed to longitudinal wave propagation. 

Moreover, because of the fact that steel tendon of the anchor often occurs as hollow-drill 

bar system, the dispersion equation for hollow cylinders is also presented. In the second 

part of the chapter three matrix methods (Global Matrix Method, Transfer Matrix Method 

and Stiffness Matrix Method) commonly used to model wave motion in multilayered 

systems are presented. 

Chapter 3 is devoted to description of numerical and experimental methods applied 

during the investigations.  

Chapter 4 covers theoretical, numerical and experimental investigations of wave 

propagation in undamaged anchor models. Algorithms dedicated for determining the basic 

geometric parameters of ground anchors on the basis of wave propagation signals 

are presented here. 

The use of wave propagation phenomenon for debonding detection in ground 

anchors is presented in Chapter 5. Three various locations and variable lengths 

of debonding are analysed and their influence on the wave propagation phenomenon 

is investigated. 

Chapter 6 describes the use of waves in detecting corrosion - another common 

damage occurring in anchor systems. Two types of damage (localized damage and uniform 

corrosion of the rod surface) are investigated. Both free rods and multilayered rods 

embedded in mortar are considered in the research. 
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Chapter 7 is focused on experimental investigation of elastic wave propagation 

in a self-drilling hollow bar system, which is commonly used in geotechnical industry 

as the element of grouted ground anchors and soil nails. The influence of discontinuities 

in the form of mounting connections occurring over the tendon length on wave attenuation 

is analysed. The wave propagation studies are carried out in a small-scale model 

of the ground anchor performed in the ground with the use of a self-drilling hollow bar 

system. 

The conclusions and future research plans are included in the final Chapter 8. 

The original elements of the author’s scientific work are: 

 a detailed description of specific problems of wave propagation in healthy ground 

anchors with particular emphasis on characteristic features of guided waves 

propagating in free and embedded parts of the tendon, at the interface between 

the tendon and the surrounding anchor body as well as waves diffracted on the start 

of the anchor body, 

 explaining the changes in wave velocity for various bonding lengths, 

 derivation of formulas by means of which it is possible to determine geometric 

parameters of the anchor (free length, bonding length, diameter of anchor body),  

 theoretical, numerical and experimental investigations of longitudinal guided modes 

in multilayered cylindrical bars with pre-existing debonding, including the influence 

of debonding location and its length on the separation of modes, their conversion 

and diffraction as well as the average wave velocity, 

 investigation of influence of pre-existing debonding and its location on the results 

on destructive pull-out tests, 

 investigation of corrosion and point damage detection in free and embedded bars, 

 influence analysis of discontinuities in the form of mounting connections occurring 

over the tendon length on wave attenuation, 

 monitoring the process of hardening cement inject on a small-scale real ground 

anchor, 

 comparison of results obtained for underground and excavated anchor to illustrate 

the influence of surrounding ground on wave propagation signals. 
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The author conducted theoretical considerations, experimental studies as well 

as numerical calculations. The results of the research of guided wave propagation 

in ground anchors were published in papers [235]-[237] and [239]-[241]. 
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CHAPTER 2 

Equation Section (Next) 

 

 

 

2 Guided waves in rods 

Guided waves in rods 

 

Waves in rodlike structures have been a topic of considerable interest of many 

investigators over the centuries. A comprehensive review on rod theories can be found 

in Green [76] and McNiven and McCoy work [140]. Several rod theories varying in basic 

assumptions have been proposed up till now. Basically, two different approaches 

to the propagation of longitudinal waves in rods can be distinguished. The first approach 

is to find the exact theory for the displacements, strains and stresses describing wave 

motion to satisfy the field equations of isotropic, elastic materials. Due to the fact that 

the exact solution is characterized by a high degree of complexity and it contains infinite 

number of possible wave modes, the second approach focuses on formulating approximate 

theories assuming that the wave motions do not satisfy the field equations of elasticity 

[140]. Approximate theories are easier to use for engineering applications, however, they 

allow for obtaining correct relationships between wave velocities and the frequency only 

in a relatively short range of low frequencies. 

The study of mathematical description of longitudinal waves in elastic rods has been 

already carried out by Bernoulli in 1741 [140]. His investigation concerned vibrations 

of a column of air, however it led to the same governing equation as for the elementary rod 

theory presented in paragraph 2.1.1. In 1876 Pochhammer published in his work [174] 

the exact frequency equation which is still considered the most accurate description 

of wave propagation in rods of a circular cross-section. Ten years later in 1886 Chree [34], 

unware of Pochhammer’s investigations, published a paper in which he presented the same 

frequency equation. It is worth mentioning that many articles include the information that 

Chree firstly published his frequency equation in his further paper in 1889 [35]. 
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Despite the fact that both Pochhammer and Chree independently proposed the same 

exact solution of wave propagation problem in cylindrical bars, they also developed 

the same considerably simpler approximate solution for bars of a small radius. Very similar 

solution to approximate the Pochhammer-Chree equation but based only on physical 

reasoning was proposed by Lord Rayleigh in 1894 in [126]. In 1927 Love [127] derived 

an approximate theory using variational energy equation in which kinetic energy 

was affected by additional terms resulting from rod contraction due to the Poisson’s ratio 

effect while the rod deforms longitudinally. 

Despite the fact that the Pochhammer equation was formulated in 1886, the first 

attempts to solve it were made in 1941 by Bancroft [19]. Bancroft studied the lowest 

branch and evaluated the relation between the wavenumber and phase velocity. 

He indicated that the phase velocity approaches the velocity of the Rayleigh wave 

as the wavelength becomes smaller. Bancroft’s work was then generalized and extended 

by Hudson [92]. He showed the fundamental branch in general changes with the Poisson’s 

ratio, but also there is one point on the lower branch invariant Poisson’s ratio variations. 

Extensive theoretical and experimental investigations of wave propagation rods using 

the Hopkinson pressure bar were conducted by Davies [44]. Davies recorded a signal 

as a time function using a camera and cathode ray oscilloscope, what allowed 

for performing a detailed image of a propagating pulse. He showed that the shape 

of the impulse was changing as it travelled along the rod because of the dispersive 

character of waves. Further studies of the Pochhammer equation conducted by Holden [87] 

have shown an analogy between the exact Rayleigh-Lamb equation for plates 

and the Pochhammer equation for rods: each equation can be satisfied by a purely 

imaginary wavenumber and a real frequency. Moreover, he proposed using bounding 

curves and intersections which helped tracing the dispersion curves. His idea to construct 

the frequency spectra by means of bounds was later willingly used by other researchers. 

The study of the Pochhammer equation was continued by Adem [4], who discovered that 

the equation can be satisfied by complex wavenumbers. Moreover, he described 

exponential decay of amplitudes of waves harmonically distributed along the rod axis 

for complex wavenumbers. 

Parallel with the research on the Pochhammer equation, simplified theories 

were developed. In 1951 Mindlin and Herrmann [143] proposed a new rod theory 

considering shear strains and the corresponding shearing stresses. Their two-mode theory 

was a compromise between too complex Pochhammer theory and Love theory which 
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in turn was suitable only for low frequencies. Herrmann [84] analysed the Mindlin-

Herrmann dispersion relation but with taking into account free and forced vibrations. 

The Laplace transform was used by Miklowitz ([145],[146]) to obtain a solution for 

a semi-infinite rod subjected to axial force. Mindlin-Herrmann dispersion equations were 

rewritten by Plass and Steyer [173] in another form. They proposed a dispersion relation 

in the form of five first-order partial differential equations. Volterra [208] proved that the 

Mindlin-Herrmann equations can be derived directly from the exact Pochhammer-Chree 

solution. Another rod theory was proposed by Bishop [29] in 1952. The Bishop single 

mode theory uses assumption of the Love theory on the relation between lateral 

displacements and axial stresses and additionally takes into account shear stresses 

associated with rod diameter change due to a passing wave. The Bishop theory additionally 

takes into account shear stresses which occur as a result of changes of diameter caused 

by wave motion. 

The three-mode approximate theory for longitudinal wave propagation was proposed 

in 1960 by Mindlin and McNiven [144]. The third mode in this theory was obtained 

by means of extending the range of the Mindlin-Herrmann theory by expanding 

the deformations in Taylor series. Simultaneously, Onoe, Mindlin and McNiven conducted 

studies about the Pochhammer equation and their findings were published in [163]. They 

presented roots of equation as spectral lines which were plotted using two sets of grid lines. 

The paper published by Zemanek [228] completed the study on the Pochhammer equation. 

Simultaneously, studies on wave propagation in hollow cylinders have been widely 

conducted. Axially symmetric waves in hollow cylinders have been investigated 

by McFadden [139], Gosh [72] and Herrman and Mirsky [85]. In 1959 Gazis ([67],[68]) 

was the first one to consider a three-dimensional wave field in axial, radial and angular 

directions and presented an analytical foundation of the investigation of harmonic waves. 

He described a thorough solution for axisymmetric and non-axisymmetric wave modes 

in a thin-walled hollow cylinder. A comprehensive analysis of guided waves in cylinders 

is included in works of Achenbach [3], Auld [16], Bird ([27],[28]), Doyle ([51],[52]), 

Greenspon ([77],[78],[79]), Miklowitz [147], Mirsky ([149],[150]) and Rose [180]. 
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2.1 Waves in free rods 
 

The knowledge and understanding the basic assumptions of particular rod theories 

is essential in making a conscious choice of approach for the investigations of guided wave 

propagation in rodlike structures. For this reason, before proceeding to the main problem 

of dissertation concerning wave propagation in in such a complicated multilayered 

structure like ground anchors, the author found it appropriate to present a brief introduction 

in longitudinal wave propagation in rods, hollow cylinders and multilayered rods what 

is presented in following Chapter. Elementary mechanics is used to present governing 

equations for rods. At first the simplest elementary rod theory is described and then higher 

order rod theories (one-mode Love, two-mode Mindlin-Herrman, three-mode Mindlin-

McNiven theory and multimode Pochhammer theory) are introduced by appending 

modifications. The lack in literature for Mindlin-Herrmann and Mindlin-McNiven theories 

makes the author’s decision to present in this Chapter a full derivation for rods with 

a cylindrical cross-section. 

2.1.1 Elementary rod theory 

The elementary rod theory considers a long and slender rod carrying only one-

dimensional axial stress. Lateral contraction is neglected here. The considered rod 

is straight, prismatic with constant cross-sectional area A, mass density ρ and modulus 

of elasticity E (Figure 2.1). This approach presents the simplest available rod model. 

 

 

Figure 2.1 Differential element of a rod with loads 

 

The displacement field can be described by an expression: 

 0( , , ) ( , )xu x r t u x t , (2.1) 
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where x and t space and time variables, respectively. Displacement field is defined 

by longitudinal displacement 
0 ( , )u x t  only. Derivation of dispersion relation 

for the elementary rod is made by using the variational Hamilton’s principle what must 

be preceded by calculation of potential, strain and kinetic energies of the rod while 

the disturbance passes through. The potential strain energy is computed by integrating 

energy density over the total volume of the rod: 

      
1 1

...
2 2

T

xx xx rr rr xr xrU d d          
 

         . (2.2) 

Assuming linearly elastic material the Hooke’s law holds: 

 xx xxE  , (2.3) 

geometric linearity assumption yields the following axial strain xx  relation: 

 0
xx

u

x






. (2.4) 

Then, according to Eq. (2.2) the potential strain energy due to elementary rod theory is: 

 

2

0

0

1

2

L
u

U EA dx
x

 
  

 
 , (2.5) 

and the kinetic energy is: 

 2

0

0

1

2

L

T Au dx  . (2.6) 

The work made by external potential forces is: 

 0 0

0 0

( , ) ( ) ( , )

L L
L

K K L LV q x t dx F u F u q x t dx Fu         . (2.7) 

The governing equation is obtained substituting strain and kinetic energies 

and potential into the variational Hamilton’s principle: 

  
2

1

0

t

t

T U V dt      . (2.8) 
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After substituting Eqs. (2.5)-(2.7) into Eq. (2.8) and neglecting the action of body forces q  

the following relation can be obtained: 

 
2

1

2

0 0
0 0 02 0

0

0

t L
L

t

u u
EA Au u dx EA F u dt

x x
  

     
            

  . (2.9) 

The governing equation of motion for an elementary rod can be formulated 

comparing the first integrand to zero: 

 
2 2

0 0

2 2
0

u u
EA A

x t


 
 

 
. (2.10) 

Expressing a harmonic solution in the following exponential form: 

 
 

0 0

i kx t
u U e

 
 , (2.11) 

the spectrum relation emerges: 

 
ph

E
c const


  , (2.12) 

where phc  is phase wave velocity. Phase velocity is a wave speed of individual frequency 

components and is defined as: 

 phc
k


 . (2.13) 

The velocity of the whole wave packet containing waves with various frequencies 

is called group velocity. The wave group velocity can be calculated as the derivative 

of circular frequency with respect to a wavenumber: 

 g ph

d E
c c

dk




   . (2.14) 

It can be seen that in case of elementary rod theory group velocity is identical 

to phase velocity and these wave velocities are constant for all frequencies. 

As a consequence dispersion effects are not observed in the rod theory domain. Moreover, 

the group and phase wave velocities in an elementary rod is not affected neither by cross-

sectional area, its shape nor inertia moments. For this reason, the elementary rod theory 
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can provide only a crude information about wave velocity for slender rods with an arbitrary 

cross-section. 

2.1.2 Love rod theory 

The Love rod theory is an improvement of the elementary rod theory and is derived 

for rods of cylindrical cross-sections. As in the elementary theory, plane sections remain 

plane and axial stresses are assumed uniformly distributed over a cross-section. However, 

the Love theory takes into account rod contraction due to Poisson's ratio effect while rod 

deforms longitudinally. Thus, each material point is also characterized by transverse 

velocity. The displacement field can be described by an expression: 

 0( , , ) ( , )xu x r t u x t . (2.15) 

where 0 ( , )u x t  is an average axial displacement in x direction. The additional equation 

coupling longitudinal and transverse velocities and affecting the rod kinetic energy 

can be presented as [52]: 

 0( , ) x
r

u u
u x t vr vr

x x

 
   

 
. (2.16) 

As previously, variational Hamilton’s principle is applied to derive dispersion relation 

for the Love rod. The strain energy for the Love theory: 

 

2

0

0

1

2

L
u

U EA dx
x

 
  

 
 , (2.17) 

is the same as for the elementary rod theory. Thus, the kinetic energy is then affected 

by additional terms and can be calculated by the expression: 

 

2

2 2 0
0

0

1

2

L
u

T Au I dx
x

  
  

   
   

 , (2.18) 

where I is the polar moment of inertia for the rod of a circular cross-section with radius a : 

2

2 4

0 0

1

2

a

I r rdrd a



    . 
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Figure 2.2 Segment of a rod with end loads 

 

According to Figure 2.2 the potential is given as [52]: 

 
0 0

0 0

( , ) ( ) ( , )

L L
L

K K L LV q x t dx F u F u q x t dx Fu         . (2.19) 

The governing equation can be obtained substituting strain and kinetic energies 

and potential into the variational Hamilton’s principle: 

  
2

1

0

t

t

T U V dt      . (2.20) 

After substitution of Eqs. (2.17), (2.18) and (2.19) into Eq. (2.20), and taking the variations 

inside and integration by parts, the following equation can be obtained: 

2

1

2 2
2 20 0 0 0

0 0 02 2 0

0

0

t L
L

t

u u u u
EA I Au u dx EA I F u dt

x x x x
      

       
                

  . (2.21) 

Because of arbitrary space and time limits, the first integrand must be zero 

and the governing equation of motion for Love rod can be written as: 

 
2 2 2

20 0 0

2 2 2
0

u u u
EA I A

x x t
  

  
  

  
. (2.22) 

Then, the spectrum relation is given by: 

 
2 2

A
k

EA I




  
 


, (2.23) 

and the group velocity is: 

 

3
2 2

21g

E I
c

EA

 




 
  

 
. (2.24) 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


 

 
 

47 

 

Because of insufficiently accurate approximation for lateral deformation, the 

correction factor in the form of adjustable parameter K can be introduced (cf. [52]). 

It appears at identical positions as the Poisson’s ratio term [52]. 

2.1.3 Mindlin-Herrmann rod theory 

The Mindlin-Herrmann rod theory is the simplest multimode theory considering 

shear deformation and corresponding shear stresses coupled with transverse displacement. 

Radial deformations are not dependent of the axial deformations, but the Poisson’s ratio 

relation between axial and radial strains is retained. Similarly to Love theory, plane 

sections remain plane because of proportion between radial displacements and a radial 

coordinate. Two additional deformation field components consistent with the axial motion 

can be presented in following form [247]: 

 
0

1

( , , ) ( , ),

( , , ) ( , ) .

x

r

u x r t u x t

u x r t x t r




 (2.25) 

The corresponding non-zero strains and stresses can be obtained by applying strain-

displacement and stress-displacement relations for axisymmetric problems: 

 1
r

rr

u

r
 


 


, (2.26) 

 1

1r uu

r r


 




  


, (2.27) 

 0x
xx

u u

x x


 
 
 

, (2.28) 

 011 1

2 2

xr
rx xr

u uu
r

x r x r


 

     
       

      
, (2.29) 

 0
1 12 2 2xr r r

rr

u uu u u

r r r x x
     

     
         

      
, (2.30) 

 0
1 1

1
2 2 2xr r ru u uu u u

r r r r x x


     



       
            

        
, (2.31) 

 0 0
12 2 2x xr r

xx

u u u uu u

x r r x x x
     

      
         

       
, (2.32) 

 01xr
xr rx

u uu
r

x r x r


   

     
       

      
. (2.33) 

The total strain energy according to Eq. (2.2) is given as follows: 
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   
2

2 0 0
1 1

0

2

0 1
1

1
2 2 2 2

2

                                                  2 .

L
u u

U A A
x x

u
I dx

x x

      


  

     
       

    

  
   

   


  (2.34) 

The kinetic energy of wave motion in a Mindlin-Herrmann rod is: 

 2 2

0 1

0

1

2

L

T Au I dx      . (2.35) 

The potential of applied surface tractions and loads is given by: 

 0 0 1 10 0

0

( )

L
L L

V q x u dx Fu Q     . (2.36) 

Taking variation inside the integrals above and integrating by parts it reads: 

 

 

  

 

2 2

1 1

2

1

01
1 1 0 1

0

2 2
0 1

0 1 12 2

0 1
0 1 0 1

1
8 4 4

2

      2 2 2 2

       + 2 2 ,

t t L

t t

t

t

u
U A A u A

x x

u
A u I dxdt A

x x

u
A u A u I dt

x x


        


     


      


      

 
    

  

  
     

  

   (2.37) 

  
2 2 2

1 1 1

2 2

0 1 0 0 1 1

0 0

1

2

t t tL L

t t t

T Au I dx Au u I dxdt                    , (2.38) 

  
2 2

1 1

0 0 1 1

0

( )

t t L

t t

V q x u dx F u Q dxdt         . (2.39) 

Applying Hamilton’s principle (Eq. (2.20)) a set of two partial differential equations 

is formed: 

  
2

0 1
02

2 2
u

A A Au q
x x


   

 
   

 
, (2.40) 

  
2

01
1 12

2 4 2
u

I A A I
x x


      


   

 
. (2.41) 
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with associated boundary conditions at both ends of the rod: 

 

  0
0 1

1
1 1 1

;     2 2 ,

;     2 .

u
u F A A

x

Q I A
x

   


  


  




 



  (2.42) 

In order to obtain the spectrum relation a harmonic solution is expressed 

in the following form: 

 

 

 

0 0

1 1

,

.

i kx t

i kx t

u U e

e






 

 



 




  (2.43) 

By substituting Eq. (2.43) into Eqs. (2.40) and (2.41), a system of algebraic equations 

can be written: 

 

2 2
0

2 2
1

(2 ) 2 0

02 4(2 )

UAk A Aik

Aik A Ik I

    

     

        
              

  (2.44) 

Inserting these expressions into the displacement equations of motion and evaluating 

the resulting determinant the dispersion relation is obtained: 

     

 

4 2 2 2 2

2 2

2 16 2

                                                                    4 2 0.

A I k A I A A I k

A I A

            

     

           

     

 (2.45) 

There are two mode pairs because the equation above is quadratic with respect to 2k . 

The first mode is real only, but its speed decreases with frequency. In the case of low 

frequencies it is reduced to the elementary rod theory. The cut-off frequencies 1c  and 2c   

for both dispersion curves can be calculated solving Eq. (2.45) when 0k  : 

 1 0c     and   
 

2

2
2c

A

I

 





 . (2.46) 

Similarly to the Love rod theory, correction factors may be introduced 

in the dispersion equation for the Mindlin-Herrmann rod. The correction factors are 

introduced into the equations for more precise dispersion curve fitting [140]. Hudson [92] 

proved in his work that generally the fundamental branch varies with the Poisson’s ratio, 
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but also there is one point on the lower branch insensitive to variations in Poisson’s ratio. 

According to Hudson’s inquires one of the correction parameters is applied to make 

the spectral line pass through this point. Second correction parameter may be used 

to ensure that for small wavelengths the wave velocity approaches the Rayleigh wave 

velocity. 

2.1.4 Three mode theory 

Increasing the number of possible deformation modes a more accurate description 

of wave dispersion can be formulated [13]. The third mode can be obtained extending 

the range of the Mindlin-Herrmann theory by expanding the deformations in Maclaurin 

series. The displacements in three-mode theory for axisymmetric cross-sections considered 

in cylindrical coordinate system are assumed in form [247]: 

 

2

0 2 2

1

( , , ) ( , ) ( , ) 1 ,

           ( , , ) ( , ) ,

x

r

r
u x r t u x t x t

a

u x r t x t r





 
   

 



 (2.47) 

where a  is the radius of the rod, 0 ( , )u x t  is average axial displacement, 2( , )x t  

is of a parabolic distribution function of axial displacements along the radius of the rod 

and 1( , )x t  is the transverse displacement ([52],[107]). Non-zero strains and stresses 

obtained from the presented displacements are: 

 

 1
r

rr

u

r
 


 


, (2.48) 

 1

1r uu

r r


 




  


, (2.49) 

 
2

0 2

2
1x

xx

u u r

x x x a




   
    
    

, (2.50) 

 1
2 2

1 1 2

2 2

xr
rx xr

uu r
r

x r x a


  

    
      

    
, (2.51) 

 

 

2
0 2

2

2 2
0 02 2

1 12 2

2 2 1

2 1 2 1 2 ,

x xr r
xx

u u uu u r

x r r x x x a

u ur r

x x x xa a


   

 
    

      
                    

        
                          

  (2.52) 
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2

0 2
1 1 2

2 2 2 1xr r r
rr

u uu u u r

r r r x x x a


     

      
                     

,  (2.53) 

2
0 2

1 1 2

1
2 2 2 1xr r ru u uu u u r

r r r r x x x a





     



        
                          

,  (2.54) 

 1
22

2xr
xr rx

uu
r

x r x a


    

    
      

    
. (2.55) 

Total strain and kinetic energy can be calculated as: 

 

 

 

 

2 0 2
1 1

0

2 2
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2

21 1
2 2

1 1
2 2 2 4
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1
      2

3

                  2 2 ,

L
u

U A A
x x

u u
A

x x x x

I A dx
x x


    

 
 

 
   

   
    

  

       
              

  
    

   



 (2.56) 

 2 2 2

0 0 2 2 1

0

1 1

2 3

L

T u A u A A I dx     
 

    
 
 . (2.57) 

The potential of applied surface tractions and loads is given by: 

 0 0 1 1 2 20 0 0

0

( )

L
L L L

V q x u dx Fu Q Q      . (2.58) 

Similarly to the previous case, the use of Hammilton’s principle requires 

the variations of potential strain and kinetic energies. Taking variation inside the above 

integrals and integrating by parts one can obtain: 

 

 
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1 1
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0
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u
U A A u

x x

u
A A u u

x x x x

u
I

x x x


       

  
      

 
   

  
     

  

    
      

     

  
  

  

  

2 1
1 2 2 2           2A dxdt

x x

 
    

  
    

  

 (2.59)
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
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 
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
         

 

   
      

    

  
      
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0 0 2 2 1

0
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1 1

2 3

1 1 1
,

3 2 2
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t

T u A u A A I dx

Au u I A A u Au dxdt

       

           

 
     

 

 
     

 

  

 

  (2.60) 

  
2 2

1 1

0 0 1 1 2 2

0

( )

t t L

t t

V q x u dx F u Q Q dxdt           . (2.61) 

The differential governing equations can be obtained substituting these energy 

components into Hamilton’s principle (Eq. (2.20)): 

    
2 2

01 2
0 22 2

1 1
2 2 2

2 2

u
A A A Au A q

x x x

 
       

 
       

  
,  (2.62) 

  
2

0 2 1 2
1 12

4 2
u

A A A I A I
x x xx

  
       

   
     

  
,  (2.63) 

 
2 2

01 2 1
2 2 02 2

1 1 1 1
2 2

2 3 3 2

u
A A A A Au

x xx x

  
       

   
        

   
.  (2.64) 

The associated boundary conditions at both ends of the rod are defined as: 

 

 

 

0 2
0 1

1 2
1 1 2

0 2
2 2

1
;     2 2 ,

2

2
;     ,

1 1
;     2 .

2 3

u
u F A A

x x

Q I
x a

u
Q A

x x


   

 
 


  

  
      

 
   

  
     

  (2.65) 

Assume the solution for three dependent variables 0u , 1 , 2  in the form: 
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( )

0 0

( )

1 1

( )

2 2

,

,

.

i kx t

i kx t

i kx t

u U e

e

e











 

 

 



 

 

 (2.66) 

Substituting (2.66) into (2.62)-(2.64) leads to the system of algebraic equations: 

   

 

   

2 2 2 2

2 2

2 2 2 2

0

1

2

1 1
2 2 2

02 2

2 4 0

1 1 1 1 0
2 2 2

2 2 3 3

Ak A Aik Ak A
U

Aik A Ik I Aik Aik

Ak A Aik Aik Ak A

        

      

          

   

       


     

 
     
     
     
        
 
 

.(2.67) 

and the determinant on expansion is: 

 6 4 2

3 2 1 0 0a k a k a k a    , (2.68) 

where: 

 

     

 

   

2 2

3

2 3 2 3 2 2 2

2

22 2

1

2 2

0

1
2 ,

12

4 4 6 8 24 2 ,
12

2 5

3 6 12

                                                              8 2 ,

a A I

A
a A IA I

a A A A I

A I

a

  

          

 
    

      

  
 

        
 

   
       

  

   


 
2 2 2

2 28 2 .
3 12

A IA
A A I

 
        

    
        

    

 (2.69) 

The equation above is cubic with respect 2k  and therefore there are three-mode 

pairs. As previously, correction factors for a precise curve fitting may be applied. An 

example of dispersion equations for a three-mode theory introducing the correction 

parameters may be found in [140]. 

More accurate higher-mode theories can be obtained increasing the number 

of possible deformation modes ([13],[247]). In general, displacement components can 

be expanded into a Maclaurin series and the number of unknown functions defining 

a displacement field taken into account determines the number of modes which 

can be obtained as a result of solving the dispersion equation. The form of displacement 

field for various rod theories and higher order rod theories can be found in [247]. 
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2.1.5 Pochhammer theory 

The rod theories presented in the preceding sections are not exact and they are 

suitable for describing wave dispersion relations for relatively long and thin rods only. 

The exact dispersion relation, which represents a nonlinear model of longitudinal wave 

propagation in elastic, thick rods has been derived by Pochhammer [174] and Chree [34]. 

Wave propagation characteristics in a cylindrical coordinate system (Figure 2.3) were 

derived by Gazis [67]. Pavlakovic [171] adapted his work for multilayered systems 

including material damping and slightly corrected Gazis paper. The derivation of wave 

propagation characteristics presented in following section is greatly based on their works.  

 

 

Figure 2.3 Structural element of a rod with circular cross-section 

 

The displacement field must satisfy Navier’s displacement equation of motion for 

elastic isotropic media: 

  2       u u u . (2.70) 

According to the Helmholtz decomposition, the displacement field vector u  can 

be expressed as the sum of irrotational vector field u  and the solenoidal vector field ru  

[164]. It assumes that the displacement field vector can be decomposed as the sum 

of scalar field called scalar potential   and vector field called vector potential 

 , ,x rH H HH :  

  u H , (2.71) 

with 

 ( , , , )F r x t H . (2.72) 
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Function ( , , , )F r x t  can be chosen arbitrary for gauge invariance ([67], [75], [171]). 

In the case of simple rods F  equals zero. Substituting Eq. (2.71) into a displacement 

equation of motion (2.70) results in wave equations given by the following expressions: 

 

 
2

2

1

Lc
   , (2.73) 

 

 

2
2

2 2

1

S
tc


 



H
H . (2.74) 

where Lc  and Sc  are velocities of longitudinal and shear waves in infinite medium, 

respectively: 

 
2

Lc
 




 ,  (2.75) 

 
Sc




 .  (2.76) 

The solution of wave equations can be assumed as follows: 

 
 

( )cos
i kx t

f r n e


 


 ,  (2.77) 

 
 

3 ( )sin
i kx t

xH g r n e





 ,  (2.78) 

 
 

( )cos
i kx t

H g r n e


  


 ,  (2.79) 

 
 

( )sin
i kx t

r rH g r n e





 ,  (2.80) 

where  f r ,  3g r ,  g r ,  rg r  are potential functions of radial coordinate r  and n  

is a circumferential order number representing the static wave pattern in a circumferential 

direction. 

Substituting equations (2.77)-(2.80) into (2.73) yields: 

 

 

2 2 2
2

2 2 2

1
0

L

d f df n
k f

r drdr r c


  
      
  

  
  

.  (2.81) 

Substituting vector potential H  from (2.78)-(2.80) into (2.74) results in coupled scalar 

equations:  
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   

 

2
2 2

2

2 2 2

2 2 2 2

2 2ˆˆ ˆ ,

S

r r
r x

c
t

H HH H
r H H x H

r r r r

 


 


      



    
            

    

H
H H H

  (2.82) 

where r̂ , ̂  and x̂  denote unit vectors in appropriate directions and the Laplacian 

is defined as: 

 
2 2 2

2

2 2 2 2

1 1

r r r r x

   
    

   
. (2.83) 

The separated equation (2.82) can be presented in the form: 

 

 

2 2 2
23 3

32 2 2

1
0

S

d g dg n
k g

r drdr r c


  
      
  

  
  

, (2.84) 

  
 

2 2
2 2

2 2 2

1 1
2 0r r

r r r

S

d g dg
n g ng g k g g

r drdr r c
 


        ,  (2.85) 

  
2 2

2 2

2 2 2

1 1
2 0r r

S

d g dg
n g ng g k g g

r drdr r c

 
  


        .  (2.86) 

Using the Bessel differential operator defined as: 

 
2 2

, 2 2

1
1n r

n
B

r rr r

   
         

, (2.87) 

equations (2.81) and (2.84)-(2.86) can be rewritten as Bessel-type equations:  

  , 0n rB f  , (2.88) 

 , 3 0n rB g
    , (2.89) 

 1, 0n r rB g g 
    , (2.90) 

 1, 0n r rB g g 
    , (2.91) 

where: 
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 .
 

2
2 2

2

L

k
c


   , (2.92) 

 

 

2
2 2

2

S

k

c


   . (2.93) 

The unknown functions  f r ,  3g r ,  g r ,  rg r  can be expressed as the 

solution of Bessel equations in (2.88)-(2.91): 

    0 0n nf A Z r B W r   , (2.94) 

    3 3 3n ng A Z r B W r   , (2.95) 

      1 1 1 1 12 2 2r n ng g g A Z r B W r       , (2.96) 

      2 2 1 2 12 2 2r n ng g g A Z r B W r       . (2.97) 

where   and   are moduli of   and  . In order to satisfy the operator the pair 

of linearly independent Bessel functions is required. However, several combinations 

of Bessel functions may satisfy the differential operator and their choice depends 

on the real or imaginary character of   and  . The choice of pair of function affects 

the solution stability, too. 

The first pair of functions to satisfy the differential operator are Bessel function 

of the first kind nJ  and Bessel function of the second kind nY , also called Weber 

or Naumann function. The graphs of Bessel functions look like oscillating sine or cosine 

function decaying proportionally to 1/ x  and they represent standing waves. The second 

pair are modified or hyperbolic Bessel functions of the first and second kind nI  and nK . 

These functions are characterized by exponential growth or decay, respectively. A third 

valid combination includes Hankel functions of the first and second kind (1)
nH  and (2)

nH , 

also called Bessel functions of the third kind. Hankel functions represent oscillating waves 

outward- and inward-propagating from the origin. Several factors affected the choice 

of Bessel functions combination were described in [67] and [171] and are given in Table 

2.1.  
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Table 2.1 Criteria of choice of Bessel functions and parameters values 

ph Lc c  L ph Sc c c   L S phc c c   

   

   

   

   

2

2

1

2

1

1

n n

n n

n n

n n

Z r J r

W r Y r

Z r J r

W r Y r

 

 





 

 

 

 

















 
   

   

   

   

2

2

1

2

1

1

n n

n n

n n

n n

Z r I r

W r K r

Z r J r

W r Y r

 

 





 

 

 

 

 



 











 
   

   

   

   

2

2

1

2

1

1

n n

n n

n n

n n

Z r I r

W r K r

Z r I r

W r K r

 

 





 

 

 

 

 

 

 

 









 

 

Following Graff [75], in the analyzed case of the Pochhammer rod the second 

solution nY  in Eqs. (2.94)-(2.97) can be neglected, because of its singular behaviour 

at the origin. The forms of equations which allow to determine the displacements 

in the analysed medium are: 

 
1 r

x

H H
u

x r r





 
  
  

, (2.98) 

 
1 x

r

H H
u

r r x





 
  
  

, (2.99) 

 
1 xr

HH
u

r x r







  

  
. (2.100) 

The displacement field in terms of potential functions can be obtained by substituting 

Eqs. (2.94)-(2.97) and (2.77)-(2.80) into Eqs. (2.98)-(2.100). The gauge invariance 

property can be used to eliminate two unknown integration constants from the Eqs. (2.94)-

(2.97). The relationship between the components of H  is constituted by Eq. (2.71). For 

this reason, only three of each set of four potentials  , xH , rH , H  are independent and 

consequently, one of the potentials 1g , 2g  or 3g  can be set to zero without the loss 

of solution generality. This implies that a combination of two equivoluminal potentials 

of Eqs. (2.94)-(2.97) can be used to define the displacement field corresponding to another 

equivoluminal potential jg . 
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Setting 2 0g   one obtains: 

 1rg g g   , (2.101) 

hence the displacement components can be expressed as: 

        1 1 cos cos
i kx t i kx tr

x x

g g
u kf n n e U r n e

r r

 
 

  
      

 
, (2.102) 

      
3 1 cos cos

i kx t i kx t

r r

f n
u g kg n e U r n e

r r

 
 

  
     

, (2.103) 

 
     3

1 sin sin
i kx t i kx tgf

u n kg n e U r n e
r r

 
  

  
     

 
. (2.104) 

The strains-displacement relations: 

 r
rr

u

r






, (2.105) 

 
1

2

xr
rx

uu

x r


 
  

  
, (2.106) 

 
1 1

2

r
r

u u
r

r r r






   
   

   
, (2.107) 

and stress-displacement relations of the linear theory of elasticity: 

 2 x xr r
x

u uu u

x r r x
  

  
    

   
, (2.108) 

 2 xr r r
r

uu u u

r r r x
  

  
    

   
, (2.109) 

 xr
xr

uu

x r
 

 
  

  
, (2.110) 

may be incorporated to express the stress components in terms of potentials f , 1g  and 3g : 

 
 

   

 

22
2 2 3

3 12
2

                                                                                           cos ,

rr

i kx t

n r gf n
k f f g k g

r r rr

n e



   




                    
        



  (2.111) 
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 

2
23

3 1 12

22 2 1

                                                                                          sin ,

r

i kx t

gn f n n
f g k g g

r r r rr

n e





  




         
              

       



  (2.112) 

   
2

2 2
3 1 2

2 cos
i kx t

rx

kn n n
kf g g k n e

r r


   


  

        
   

. (2.113) 

Applying boundary conditions of zero tractions on the external rod surface: 

 0rr r a r rxr a r a    
   , (2.114) 

and after substituting Eqs. (2.111)-(2.113) into Eqs. (2.114) the characteristic equation 

formed by determinant of the coefficients of the amplitudes reads:  

 0     ( , 1,2,3)ij i j c , (2.115) 

where: 

 

  
     

     

   

   

   

     

 

22 2

2 2
11 2

22
12

13

21

22

22
23

31

2 2

32 2

,
2

,

2 ,

,

,

2 2 ,

,

2

n n

n n

n n

n n

n n

n n

n

k a
c a n J a aJ a

c n a J a aJ a

c n aJ a J a

c n aJ a J a

c n aJ a J a

c n a J a aJ a

c aJ a

k
c aJ

k

  
   



   

  

  

  

   

 




 
     
 
 

    
 

   

   

    

     
 

 


   

 33

,

.

n

n

a

c nJ a





  (2.116) 

The Eq. (2.115) is a general dispersion equation for circular cross-section rods. 

While longitudinal modes are considered only and a circumferential order number n  

is equal to zero, the frequency equation can be expressed by a cofactor of a matrix. 

The direct consequence of symmetry in the case of longitudinal wave is that the potential 

vector H  includes only one nonzero component H , thus in general the considered 
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displacements can be simplified. The following equations present axial and radial 

displacements, respectively: 

 
 1

x

rH
u

x r r

 
 
 

, (2.117) 

 
r

H
u

r x

 
 
 

. (2.118) 

The solutions for   and H  given by Eqs. (2.77)-(2.80) now can be rewritten as: 

    
0 0

i kx t
A J r e


 


 , (2.119) 

    
1 1

i kx t
H A J r e


 


  . (2.120) 

Applying boundary conditions of zero tractions at the external rod surface: 

 0rr r a rx r a
  

  , (2.121) 

nontrivial solution can be obtained assuming a zero determinant of amplitude coefficients. 

It leads to nonlinear equation known as the Pochhammer-Chree dispersion equation 

describing longitudinal mode propagation in rods of a circular cross-section: 

 
           

   

2
2 2 2 2

1 1 0 0

2

1 1

2

4 0.

k J a J a k J a J a
a

k J a J a


     

  

   

 

  (2.122) 

It is worth mentioning that the presented derivation is not restricted to axial waves 

only. In order to obtain dispersion equations for flexural and torsional modes it is required 

to introduce appropriate boundary conditions. In the case of flexural waves all 

displacement components exist what makes the derivation of dispersion relation much 

more complex than for the longitudinal waves. The resulting form of dispersion equation 

can be find in Pao’s and Mindlin’s work [168]: 

    2 2
1 1 1 2 3 4 5 0J J f f f f f   
       

 
J J J J J , (2.123) 

where: 
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 

 

 

 

2
2 2

1

2 2 2
2

6 4 4 2 2 2 2 4 4
3

2 2 2 2 2
4

2 4 2 2 2 2 4
5

2 ,

2 5 ,

10 2 2 4 ,

2 2 9 ,

8 2 8 ,

f k

f k

f k k k k

f k k

f k k k



 

    

  

   

 

 

     

  

     

  (2.124) 

and  ,   and k  are defined as dimensionless wave numbers: 

 a  , (2.125) 

 a  , (2.126) 

 k ka . (2.127) 

Function xJ  occurring in Eq. (2.123) is Onoe’s function of the first kind and order unity 

([162],[168]): 

 0
1

1

( )
( )

( )
x

J x
x x

J x
 J J . (2.128) 

2.1.6 Longitudinal wave propagation in hollow cylinders 

In the case of hollow cylinders, boundary conditions are defined at the outer and inner 

surfaces of the cylinder (Figure 2.4): 

 0rr r a r rx rr r rxr a r a r b r b r b           
      . (2.129) 

The governing equations (2.71)-(2.74), (2.82), (2.98)-(2.100) derived for a rod are still 

valid for a hollow cylinder, however Gazis [67] proposed slightly different form of Eqs. 

(2.77)-(2.80) : 

  ( )cos cosf r n t kx    , (2.130) 

  3( )sin cosxH g r n t kx   , (2.131) 

  ( )cos sinH g r n t kx     , (2.132) 

  ( )sin sinr rH g r n t kx   . (2.133) 
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Figure 2.4 Hollow cylinder with reference to coordinate system 

 

Next, exponential function ( )i kx te  in the equations for displacement components 

(2.102)-(2.104) and stresses (2.111)-(2.113) is replaced by a sine of cosine function: 

        1 1 cos cos sin
i kx tr

x x

g g
u kf n n e U r n t kx

r r


  

 
       

 
,  (2.134) 

      3 1 cos cos cos
i kx t

r r

f n
u g kg n e U r n t kx

r r


  

 
      

,  (2.135) 

 
     3

1 sin sin cos
i kx tgf

u n kg n e U r n t kx
r r


   

 
      

 
,  (2.136) 

 
 

   

 

22
2 2 3

3 12
2

                                                                                           cos cos ,

rr

n r gf n
k f f g k g

r r rr

n t kx


   

 

                    
        

 

  (2.137) 

 

2
23

3 1 12

22 2 1

                                                                                          sin cos ,

r

gn f n n
f g k g g

r r r rr

n t kx

  

 

         
              

       

 

  (2.138) 

   
2

2 2
3 1 2

2 cos sinrx

kn n n
kf g g k n t kx

r r
    

  
         

   

. (2.139) 

The dispersion equation is a result of substituting (2.137)-(2.139) into boundary conditions. 

There are six unknown constants 0A , 0B , 1A , 1B , 3A  and 3B  (compare Eqs. (2.94)-(2.97) 

and (2.101)) and six boundary conditions. The dispersion equation can be written 

in the form: 

 0     ( , 1 to 6)ij i j c , (2.140) 

where the elements of the first three rows of the determinant are: 
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       

     

     

       

     

     
   

2 2 2
11 1 1

2
12 1

13 2 1

2 2 2
14 1 1

2
15 2 1

16 1

21

2 1 2 ,

2 2 1 ,

2 1 2 ,

2 1 2 ,

2 2 1 ,

2 1 2 ,

2 1

n n

n n

n n

n n

n n

n n

n

c n n k a Z a aZ a

c k a Z a ka n Z a

c n n Z a n aZ a

c n n k a W a aW a

c k a W a n kaW a

c n n W a n aW a

c n n Z a

   

  

   

   

   

  















     
 

  

   

     
 

  

   

    

     

     

     

     

     

   

1 1

2
22 1

2 2
23 2 1

24 1

2
25 2 1

2 2
26 1

2
31 1 1

32

2 ,

2 1 ,

2 1 2 ,

2 1 2 ,

2 1 ,

2 1 2 ,

2 2 ,

n

n n

n n

n n

n n

n n

n n

n

n aZ a

c k a Z a ka n Z a

c n n a Z a aZ a

c n n W a n aW a

c k a W a ka n W a

c n n a W a aW a

c nk Z a k a Z a

c n aZ

  

  

    

  

   

   

    

















   

      

  

   

      

 

      

 

   

     

 

2 2 2
1

33

2
34 1

2 2 2
35 2 1

36

,

,

2 2 ,

,

.

n

n

n n

n n

n

a k a Z a

c nkaZ a

c nkaW a k a W a

c n aW a k a W a

c nkaW a

  



  

    









 

 

 

  

 

 

 (2.141)

 

The remaining three rows can be obtained from the expressions for first three rows 

while b is substituted for a. Functions xZ  and xW  are appropriate Bessel functions ( nJ  and 

nY  or nI  and nK ) and criteria for functions and parameters 1  and 2  are given in Table 

2.1. Dispersions equation for particular modes can be obtained comparing an appropriate 

subdeterminant of the matrix to zero.  

In the case of longitudinal waves involving displacements ru  and xu  the dispersion 

equation takes the following form: 

 0LD  , (2.142) 

where: 
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11 12 14 15

31 32 34 35

41 42 44 45

51 52 54 65

L

c c c c

c c c c
D

c c c c

c c c c

 . (2.143) 

2.1.7 Dispersion curves 

Dispersion curves for all presented rod theories described in paragraphs 2.1.1-2.1.6 

have been plotted using MATLAB software. For solutions of Love, Mindlin-Herrmann 

and three-mode Mindlin-McNiven theories correction factors were neglected. The results 

are presented in Figure 2.5. The format of the modes names used in the thesis 

was proposed by Silk and Baintion [196]. The dispersion curves were plotted for variable 

diameters of a steel rod (    7850 kg/m
3
, E   210 GPa, v   0.3). 

 

 

Figure 2.5 Dispersion curves for steel rod (   7850 kg/m
3
, E  210 GPa, v  0.3) and diameter of a) 1 mm, 

b) 5 mm, c) 10 mm and d) 20 mm 

 

While the diameter is relatively small dispersion curves obtained on the basis of five 

considered theories have similar shapes and overlap for a low frequency range (0 to about 

150 kHz). The smaller diameter, the greater compatibility of dispersion curves: while 

the diameter equals 10 mm and more results obtained for various theories significantly 

differ from the exact Pochhammer solution. The main differences are the shape 

of dispersion curves, the cut-off frequencies and the number of possible modes 
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for a particular frequency. It can be concluded that approximate theories can be applied 

only for rods with small diameters and relatively low frequency excitations. In the case 

of rods with large diameters application of the exact Pochhammer theory is the only one 

to bring correct results. 

Figure 2.6 presents results in the form of dispersion curves for steel pipes 

with constant outer diameter size but variable inner diameter size obtained by using 

PCDISP [192]. The first graph presents curves for a pipe with a zero inner diameter (solid 

bar). With an increase of size of inner diameter the number of dispersion curves in the 

analysed frequency range (0-500 kHz) decreases. 

 

 

Figure 2.6 Dispersion curves for steel pipe (    7850 kg/m
3
, E   210 GPa,    0.3) with outer diameter of 

20 mm inner diameter of a) 0 mm, b) 2 mm, c) 10 mm and d) 18 mm 

 

2.2 Guided waves in multilayered rods 
 

Wave propagation in layered media is considerably a much more complicated task 

than analysed in single layer systems and it has been a topic of significant interest 

of scientists. A detailed historical background of studies about wave mechanics 

in multilayered media has been presented by Lowe in 1995 [129]. The first attempts 

to describe wave propagation in multilayered media were made by Lord Rayleigh in 1885 

[125]. His work concerned propagation of elastic waves along a free surface of a semi-
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infinite elastic half-space. Further investigations of wave propagation in layered media 

were conducted by Lamb [114], Stoneley [200] and Love [128]. In 1917 Lamb published 

his description and analysis of waves propagating in thin plates. Stoneley’s paper 

concerned boundary waves propagating at the interface of two adjacent media. Love 

proved that the existence of transverse modes is possible in a finite thickness layer. 

The need to analyse the seismic surface waves in stratified media resulted 

in developing the theories dedicated to seismological applications. Several modelling 

methods dedicated to multilayered media with arbitrary numbers of layers variable 

in thickness and material parameters have been created. The first derivation of dispersion 

equations for a multilayered system was proposed by Thompson in 1950 [203]. 

He introduced a transfer matrix which assured the displacement continuity and stress 

equilibrium at the interface between particular layers. His method has been developed 

by Haskell [82] who also proved that this method is useful in search of the modal solutions 

for surface waves. Their method is called Transfer Matrix Method (TMM) or Thompson-

Haskell method. The method was later developed allowing complex wavenumbers 

or the frequencies. This modification made TMM useful for modelling of leaky wave 

modes. The main advantage of TMM is its formulation simplicity, however unfortunately, 

TMM turned out to be unstable for waves with high frequencies propagating along layers 

of large thickness, what is known as large fd problem (f is the frequency and d is the layer 

thickness) [57]. Imperfection of this method brought the necessity of its modification, what 

was proposed by several investigators. Described modifications caused that TMM lost 

it initial simplicity what ultimately created the need of formulating alternative methods. 

The second primary method used in multilayered media modelling is Global Matrix 

Method (GMM) developed by Knopoff [103] and Randall [175]. In Global Matrix Method 

the equations for all layers of the system are assembled in one large matrix called a global 

matrix. In the case of GMM no solution instability problem occurs, however for large 

number of layers the size of global matrix slows the computation down. 

The last method considered here is Stiffness Matrix Method (SMM) proposed 

by Kausel [102] and developed by Wang and Rokhlin ([211],[178],[179]). A stiffness 

transfer matrix relates displacements and stresses at the top and bottom of a layer. 

The main advantage of SMM is that is its unconditional stability. A brief description of all 

mentioned methods (Transfer Matrix Method, Global Matrix Method and Stiffness Matrix 

Method) has been described by Giurgiutiu [69]. 
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All mentioned methods and their modifications significantly improved the works 

on propagation in waveguides. They allowed to identify particular wave modes 

and to more effectively apply of disturbance propagation in diagnostics. Special attention 

was paid to wave propagation in multilayered cylindrical systems, which are common 

elements of machines or engineering structures. The study of wave propagation 

in composite cylinders were conducted among others by Baltrukonis et al. ([17],[18]), 

McNiven and SackMan [141], Armenàkas ([14],[15]), Whittier and Jones [213], Kelkar 

[99], Reuter [176], Achenbach [2], Lai [112] and Thurston [204]. Plane-strain transverse 

vibrations and axial shear vibrations in an infinitely long hollow cylinder were studied 

by Baltrukonis et al. ([17],[18]). McNiven and SackMan [141] conducted the study 

of axisymmetric longitudinal waves in a rod embedded in solid. They presented 

a numerical approach to dispersion equation for a two-material rod. Axisymmetric 

longitudinal waves in two-layer hollow cylinder were investigated by Whittier and Jones 

[213]. The same but more general solution was given by Armenàkas [14]. Moreover, 

Armenàkas solution also deals with flexural modes propagation. Kelkar [99] presented 

natural frequencies and mode shapes for a composite hollow cylinder. He incorporated 

the theory of elasticity and the theory of thin shells, while torsional solution of Achenbach 

[2] involves a single displacement component only. Flexural waves in a circular bimaterial 

cylinder were studied by Reuter [176]. He presented the first branch dispersion curves for 

the first flexural wave modes. Lai [112] showed that the frequency equations 

for axisymmetric waves and infinite axial wavelength can be reduced from the general 

dispersion equation. Thurston [204] presented a reasonably complete description of wave 

modes in clad rods, paying special attention to correspondences with appropriate limit 

cases. 

The knowledge on wave characteristics in multilayered cylindrical specimens 

was practically used in a wide scale. Pavlakovic [171] investigated imbedded bars 

with the aim to develop the technique of diagnostics of tendons of post-tensioned bridges. 

Beard and Lowe [24] used guided wave propagation to assess the integrity of rock bolts. 

They were modelled as rods with a circular cross-section, surrounded by a layer of epoxy 

and embedded in limestone. Simmons et al. [197] and Drescher-Krasicka [54] investigated 

leaky and nonleaky axisymmetric modes for metal-metal and metal-ceramic interface 

studies. Wave propagation in pipelines covered by protecting coatings was the topic 

of study conducted by Barshinger and Rose [20], Kirby et al. [101], Marzani et al. [137], 

Hua and Rose [91] and others. One can see that the studies have been carried out 
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in a variety of directions what proves the great potential of wave propagation method 

in diagnostics various engineering structures. 

2.2.1 Assumptions and limitations of the model 

A cylindrical wave propagation model derived in the following Chapter must 

be preceded by description of certain assumptions which are crucial in establishing the 

limits of the scope of the system. 

The main assumption says that the model is infinitely long and axisymmetric. 

Material parameters may vary only in radial direction. Moreover, within a particular 

discrete layer the material is homogeneous and changes in parameters may occur only 

as instantaneous changes at the boundaries of these layers [129]. Perfect bonding between 

layers is assumed, so the derived model does not capture some phenomena like 

delamination. 

The materials of particular layers are assumed isotropic. In general, isotropic 

materials may be modelled as elastic or material damping can be introduced in model. 

However, examples presented in the thesis are limited to the case of elastic materials. 

The last group of assumptions concerns wave motion in a considered cylindrical 

system. The waves are assumed as continuous and the frequency real. These assumptions 

exclude the possibility of incorporating transient effects into the model. Moreover, 

the waves in a model show finite energy so any energy cannot be added to the system from 

external sources, but total energy of the system may decrease due to damping and wave 

leakage into the surrounding medium. The wave is excited at one end of the system 

continually and allowed to propagate [171]. 

2.2.2 Material Layer Matrix  

Displacements and stresses are expressed by six equations (2.102)-(2.104) 

and (2.111) -(2.113) in terms of potential functions. The stress and displacement field can 

be easily calculated when solutions for these potentials are known (compare Eqs. (2.88)-

(2.91) ). Substituting the solutions of potentials into equations involving displacements 

and stresses leads to six equations with six unknowns, which are partial-wave participation 

factors. Three equations present partial wave amplitudes of outgoing waves and three stand 

for incoming waves and they correspond to coefficients of Bessel functions used in Eqs. 

(2.94)-(2.97). The partial waves in each layer of a five-layer cylindrical system are given 

in Figure.2.7. The longitudinal waves L correspond to the solution of ( )f r , the shear 
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vertical waves (SV) to the solution of 1g  and the shear horizontal waves (SH) to the 

solution of 3g . 

 

 

Figure.2.7 Five layered cylindrical system with partial waves in each layer 

 

The displacements and stresses at any location in a particular layer are result of 

summing of contribution of six partial waves in the layer. Six equations (2.102)-(2.104) 

and (2.111)-(2.113) can be expressed in a matrix form: 

  

 

 

 

 

 

 

L

r

L

SVx

rr SV

r
SH

rx
SH

A
u

A
u

Au

A

A

A























 
   
   
   
    

   
   
   
   
    

 

D , (2.144) 

where D  is called the material layer matrix. The graphical form of matrix D  is presented 

in Figure 2.8. 

           

(1,1) (1,2) (1,3) (1,6)

(2,1)

(6,1) (6,6)

L L SV SV SH SH

r

x

rr

r

rx

A A A A A A

u

u

u











     

D D D D

D

D D

 

Figure 2.8 Graphical form of material matrix layer 
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Particular columns of the material layer matrix include consecutively outward 

propagating waves f , inward propagating waves f , outward propagating waves 
1g , 

inward propagating waves 
1g , outward propagating waves 

3g  and inward propagating 

waves 
3g . The rows contain normal displacements 

ru , shear displacements u , in-plane 

displacements 
xu , normal stresses 

rr , shear stresses perpendicular to the propagation 

direction of propagation 
r  and shear stresses in the propagation direction 

rx , 

respectively. 

 

2(1,1) ( )nkr W rD   2 2 2

1(4,1) ( ) 2 ( 1) ( ) 2 ( )n nk r n n W r rW r       D  

2(1,2) ( )nkr Z rD    2 2 2

1 1(4,2) ( ) 2 ( 1) ( ) 2 ( )n nk r n n Z r rZ r       D  

2

2(1,3) ( )nr W r  D   2

2 1(4,3) 2 ( ) 2( 1) ( )n nk r W r n krW r     D  

2(1,4) ( )nr Z r D   2

1(4,4) 2 ( ) 2 ( 1) ( )n nk r Z r kr n Z r    D  

(1,5) 0D   1(4,5) 2 ( 1) ( ) 2 ( )n nn n W r n rW r    D  

(1,6) 0D   2 1(4,6) 2 ( 1) ( ) 2 ( )n nn n Z r n rZ r     D  

 

2

1(2,1) ( ) ( )n nnrW r r W r   D   2

1(5,1) 2 ( ) 2 ( )n nnkrW r k r W r   D  

2

1 1(2,2) ( ) ( )n nnrZ r r Z r   D   2

1 1(5,2) 2 ( ) 2 ( )n nnkrW r k r Z r    D  

2

1(2,3) ( )nkr W rD   2 2 2

2 1(5,3) ( ) ( ) ( )n nn rW r k r W r      D  

2

1(2,4) ( )nkr Z rD   2 2 2

1(5,4) ( ) ( ) ( )n nn rZ r k r Z r     D  

(2,5) ( )nnrW rD   (5,5) ( )nnkrW rD  

(2,6) ( )nnrZ rD   (5,6) ( )nnkrZ rD  

 

(3,1) ( )nnrW rD   1(6,1) 2 ( 1) ( ) 2 ( )n nn n W r n rW r    D  

(3,2) ( )nnrZ rD   1 1(6,2) 2 ( 1) ( ) 2 ( )n nn n Z r n rZ r     D  

2

1(3,3) ( )nkr W r D   2

2 1(6,3) ( ) 2 ( 1) ( )n nk r W r kr n W r      D  

2

1(3,4) ( )nkr Z r D   2

1(6,4) ( ) 2 ( 1) ( )n nk r Z r kr n Z r     D  

2

1(3,5) ( ) ( )n nnrW r r W r   D    2 2

1(6,5) 2 ( 1) ( ) 2 ( )n nn n r W r rW r      D  

2

2 1(3,6) ( ) ( )n nnrZ r r Z r    D    2 2

2 1(6,6) 2 ( 1) ( ) 2 ( )n nn n r Z r rZ r       D  

(2.145) 
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Functions xZ  and xW  are relevant Bessel functions ( nJ  and nY  or nI  and nK ) 

representing incoming and outgoing waves, respectively. The criteria for functions 

and values of parameters 1  and 2  are given in Table 2.1. 

2.2.3 Transfer Matrix Method  

When the stresses and displacements at the first interface i1 are assumed known, 

the amplitudes of the six waves can be determined inverting the matrix D : 

 

 

 

 

 

 

 

2

2

2

1
,

,

L

r

L

SV x

l top

rrSV

r
SH

rx l top
SH

l

A
u

A
u

A u

A

A

A

























 
  
  
  
    

   
   
   
   

    
 

D . (2.146) 

While the amplitudes in layer l1 are known the displacements and stresses 

at the bottom of the layer l1 can be calculated: 

 
2 2

1 1

1
, ,

, ,

r r

x x

l bottom l top
rr rr

r r

rx rxl bottom l top

u u

u u

u u

 

 

 

 

 



   
   
   
      

   
   
   
   
      

D D . (2.147) 

The above equation relates displacements and stresses at the top and bottom 

of a single layer l2. The Equation (2.147) can be simplified introducing a layer transfer 

matrix L : 

 
1 1 1

1
, ,l l bottom l top

L D D . (2.148) 

Due to the displacements and stresses continuity across an interface between two 

layers it can be written that: 
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2

2 1 1, , ,

r r r

x x x

l
rr rr rr

r r r

rx rx rxl top l bottom l top

u u u

u u u

u u u

  

  

  

  

  

     
     
     
          

      
     
     
     
          

L . (2.149) 

Using the similar process for each layer of the system the equation is obtained: 

 

1, ,n

r r

x x

rr rr

r r

rx rxl bottom l top

u u

u u

u u

 

 

 

 

 

   
   
   
      

   
   
   
   
      

S , (2.150) 

where n is the number of the last layer and S  is a matrix obtained by multiplying 

individual transfer matrices for each layer as: 

 2 3l l nS L L L . (2.151) 

Equation (2.150) can be then written as: 

 

11 12 13 14 15 16

21 22 23 24 25 26

31 32 33 34 35 36

41 42 43 44 45 46

51 52 53 54 55 56

61 62 63 64 65 66,n

r r

x x

rr rr

r r

rx rxl bottom

u uS S S S S S

u uS S S S S S

u uS S S S S S

S S S S S S

S S S S S S

S S S S S S

 

 

 

 

 

   
   
   
     

    
   
   
   
      

1,l top










 

. (2.152) 

For particular modes, stress-free boundary conditions to simplify the Eq. (2.152) 

can be applied. Because the system contains six equations, six boundary conditions need 

to be introduced. For free motion stresses at the bottom surface n in each case are equal 

to zero. In the case of analysed longitudinal modes additionally stresses r  

and displacements u  vanish in the entire volume of the rod. Thus, Eq. (2.152) can 

be rewritten as: 
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1

21 23 24 26

41 43 44 46

51 53 54 56

61 63 64 66 ,

0

0

0

0

r

x

rr

rx l top

S S S S u

S S S S u

S S S S

S S S S





    
    

       
    
         

. (2.153) 

Non-trivial solution of the Eq. (2.153) exists in the case of a singular S  matrix: 

 

21 23 24 26

41 43 44 46

51 53 54 56

61 63 64 66

0

S S S S

S S S S

S S S S

S S S S

 . (2.154) 

Dispersion curves for longitudinal modes can be determined solving Eq. (2.154). 

In the case of torsional and flexural modes appropriate boundary conditions concerning 

stresses and displacements are required in Eq. (2.153).  

2.2.4 Global Matrix Method 

The second matrix method commonly used for the modelling of multilayered 

systems is Global Matrix Method. As stated in paragraph 2.2.3 the displacements and 

stresses at any interface can be expressed as a function of the wave amplitudes at the top or 

bottom of two adjacent layers according to Figure.2.7: 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 2

1 2

, ,

L L

L L

SV SV

l bottom l top

SV SV

SH SH

SH SH
l l

A A

A A

A A

A A

A A

A A

 

 

 

 

 

 

   
   
   
   
   

   
   
   
   
   
   

D D . (2.155) 

The Equation (2.155) can be presented in a single-matrix form: 

 
1

2

1

, ,
2

l bottom l top

        

A
D D 0

A
, (2.156) 

where 1Α  and 2A  are layer wave vectors containing amplitudes in layer 1 and 2, 

respectively. A similar equation to Eq. (2.155) can be created for interface 3 and added 

to matrix Eq. (2.156). Creating a unified matrix for every layer results in  6 1n  

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


 

 
 

75 

 

equations and 6n  unknowns for six partial waves. In the case presented in Figure.2.7 

the global matrix can be assembled as: 

     

     

     

     

 

 

 

 

 

 

1 2

2 3

3 4

4 5

, , 1

2
, ,

3

, ,
4

5, ,

0 0 0

0 0 0
0

0 0 0

0 0 0

l bottom l top

l bottom l top

l bottom l top

l bottom l top

            
                      

             

D D A

A
D D

A
D D

A

AD D

. (2.157) 

The incoming waves in the two half-spaces (
1


A  and 

5


A ) are assumed known. 

As a result the first three and the last three columns can be removed from global matrix, 

resulting in: 

     

     

     

     

 
 

 

 

 

 

1, 21

2 3

3 4

4 , 55

,

2
, ,

3

, ,
4

,

0 0 0

0 0 0
0

0 0 0

0 0 0

l bottom

l top

l top

l bottom l top

l bottom l top

l bottom



 

           
           

  
        

  
            

AD D

A
D D

A
D D

A

D D A

, (2.158) 

where the subscripts + and – denote inward and outward propagating waves, respectively. 

This equation is satisfied when the determinant of global matrix is equal to zero. 

2.2.5 Stiffness Matrix Method  

Recall Eqs. (2.144) and (2.146) describing displacements and stresses at the top 

and bottom of a particular layer: 

 

,

.

top

top
top

bottom

bottom

bottom

u

u





 
 

 

 
 

 

D A

D A

  (2.159) 

According to Figure 2.8 the matrix D  can be divided into two parts: the first 

one contains coefficients related with displacements and the second with stresses: 

 

u



 
  
  

D
D

D
. (2.160) 

Then, Eqs. (2.159) can be expanded: 
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 u
top topu  D A , (2.161) 

 top top
  D A , (2.162) 

 u
bottom bottomu D A , (2.163) 

 bottom bottom
 D A . (2.164) 

Eliminating A  from Eqs. (2.161) and (2.162) stresses can be expressed 

by displacements for the top of the layer: 

 
1

u
top top top topu


   D D . (2.165) 

The same procedure can be used to obtaining stress-displacement relations 

for a bottom layer: 

 
1

u
bottom bottom bottom bottomu


   D D . (2.166) 

Combining Eqs. (2.165) and (2.166) leads to expression in form: 

 
top top

bottom bottom

u

u






   
   

   
, (2.167) 

where: 

 

1
u

top top

u
bottom bottom







   

    
      

D D

D D
, (2.168) 

is the stiffness of the layer. For further derivations indexes t  and b , which 

are abbreviations from the of ‘top’ and ‘bottom’ are introduced to ensure clarity 

of the presented equations. For a layer number n  stiffness matrix takes the form: 

 
, ,

, ,

n n

n

n n

l tt l tb

l

l bt l bb

 


 

 
  
  

. (2.169) 

Important element of the presented Stiffness Matrix Method is creating the stiffness 

matrix of the global system from stiffness matrices obtained for individual layers. Global 

stiffness matrix for a system containing n layers is denoted as 
nl

K . It is obtained by means 
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of a recursive process using stiffness matrix of system of 1n  layers 
1nl 

K  and stiffness 

for the n-layer 
nl

 . 

For system of 1n  layers the stress-displacement relation is given as: 

 
1 11 1 1

1

1, 11 1

, ,, , ,

,, , ,

n n

n

n nn n n

l tt l tbl t l t l t

l
l bt l bbl b l b l b

u u

u u





 



  

           
        

            

Κ Κ
Κ

Κ Κ
. (2.170) 

For the n -th layer the expression (2.167) can be then rewritten as: 

 
, , , , ,

, , , , ,

n n n n n

n

n n n n n

l t l t l tt l tb l t

l

l b l b l bt l bb l b

u u

u u

  


  

            
        

             

. (2.171) 

After the expansion, Eqs. (2.170) and (2.171) take the form: 

 
1 1 1 1 1, , , , ,n n nl t l tt l t l tb l bu u

  
 K K , (2.172) 

 
1 1 1 1 1, , , , ,n n n nl b l bt l t l bb l bu u
   

 K K , (2.173) 

 , , , , ,n n n n nl t l tt l t l tb l bu u    , (2.174) 

 , , , , ,n n n n nl b l bt l t l bb l bu u    . (2.175) 

Boundary conditions between layers n-1 and n assume the continuity of stresses 

and displacements: 

 
1, ,n nl t l bu u


 , (2.176) 

 
1, ,n nl t l b 


 . (2.177) 

After substituting (2.176) and (2.177) into (2.172) and (2.173) it holds: 

 
1 1 1 1, , , , ,n n nl t l tt l t l tb l tu u

 
 K K , (2.178) 

 
1 1 1, , , , ,n n n nl t l bt l t l bb l tu u
 

 K K . (2.179) 

Eliminating ,nl t  between (2.174) and (2.179) leads to: 

 
1 1 1, , , , , , , ,n n n n n n nl tt l t l tb l b l bt l t l bb l tu u u u 
 

  K K . (2.180) 

Equation (2.180) can be solved to obtain displacements at the top of n-th layer: 
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    
1 1 1 1

1 1

, , , , , , , , ,n n n n n n n nl t l tt l bb l bt l t l tt l bb l tb l bu u u  
  

 

   K K K . (2.181) 

The rearranged Eq. (2.181) can be substituted into (2.175) and (2.178): 

 
 

 

1 1 1

1

1

, , , , , ,

1

, , , , , ,                           ,

n n n n n

n n n n n n

l b l bt l tt l bb l bt l t

l bb l bt l tt l bb l tb l b

u

u

  

   

 







  

   
  

K K

K

  (2.182) 

 
 

 

1 1 1 1 1 1 1

1 1

1

, , , , , , , ,

1

, , , , ,                         .

n n n n n

n n n n n

l t l tt l t l tb l tt l bb l bt l t

l tb l tt l bb l tb l b

u u

u

 

 

   

 





    
  

 

K K K K

K K

  (2.183) 

Equations (2.182) and (2.183) in the matrix form can be rewritten as: 

 

   

   

1 1 1 1 1 11 1

1 1 1

1 1

, , , , , , , , ,, ,

1 1
, ,

, , , , , , , , ,

n n n n n n n n n

n n
n n n n n n n n n

l tt l tb l tt l bb l bt l tb l tt l bb l tbl t l t

l b l b
l bt l tt l bb l bt l bb l bt l tt l bb l tb

u

u

  


     

     

  

 

 

           
    

          

K K K K K K

K K K

  (2.184) 

The right-hand side matrix is a stiffness matrix 
nl

K  of the system of n-layers 

and the above equation shows a recursive procedure of its calculation. The overall stiffness 

matrix can be written as: 

 
, ,

, ,

n n

n

n n

l tt l tb

l

l bt l bb

 
  
  

K K
K

K K
, (2.185) 

and then Eq. (2.184) can be rewritten in simpler form: 

 
1 1, ,, ,

, ,, ,

n n

n nn n

l tt l tbl t l t

l b l bl bt l bb

u

u





       
     
        

K K

K K
. (2.186) 

As previously mentioned stresses at the bottom on the n-th layer ,nl b  are equal to zero: 

 
1 1

, , , ,

,, , 0

n n

nn n

l tt l tb l t l t

l bl bt l bb

u

u

        
     
        

K K

K K
. (2.187) 
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In order to solve Eq. (2.186) additional boundary conditions related 

with longitudinal, flexural or torsional wave motion need to be considered, which were 

mentioned in the paragraph 2.2.3. Applying of boundary conditions related with stresses 

and displacements at the top and bottom of extreme layers simplifies the Eq. (2.186). 

A non-trivial solution of a homogeneous algebraic system can be obtained when 

the system determinant is equal to zero. 

With the aim to track dispersion curves for multilayered specimen presented in 

further parts of the thesis software PCDISP [192] was used. 
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CHAPTER 3 

Equation Section (Next) 

3 Experimental investigation methods and finite 

element modelling of wave propagation 

 

Experimental investigations and finite element 

modelling of wave propagation 
 

This Chapter contains the essential information about experimental and numerical 

methods used in investigations presented in further parts of the thesis. The Chapter 

is divided into two parts. The first part is focused on describing a strategy of finite element 

method (FEM) program ABAQUS to solve the wave propagation problems. A typical 

numerical model of a ground anchor has also been described. Experimental investigations 

are presented next. Experimental setup, criteria influencing on the choice of excitation 

frequency, the number of cycles and windowing functions are discussed. 

 

3.1 Modelling of wave propagation 
 

In general two different approaches of modelling of guided wave propagation 

phenomenon can be distinguished. The first approach presented in Chapter 2 assumes 

investigating an analytical solution of governing motion equations for analyzed type 

of structure. The main advantage of modal models is they exact character. They allow 

predicting number of modes which can propagate for a chosen excitation frequency 

and establish their propagation velocity or assess the intensity of wave leakage 

into surrounding medium in case of multilayered structures. A prior knowledge on wave 

structure or wave field distribution is essential for choosing an appropriate mode 

for diagnostics purposes what can significantly reduce the complexity of wave propagation 

phenomenon. The programs capable to analyse wave propagation problems in continuous 

uniform and infinitely long structures are DISPERSE ([129],[170]), or PCDISP [192]. 
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Analytical solutions, despite of important advantages, can be used in a limited range 

of engineering problems only. Dispersion curves can be obtained only for objects 

with simple geometry for which dispersion equation can be formulated, while majority 

of engineering structures are complex-shaped. In each structure an infinite number of wave 

modes can be excited and additionally, various interactions between them can occur. 

Interactions with complex structural features including multiple-cracks, irregular geometry 

or corrosion in layered, anisotropic materials often cannot be effectively described 

by means of analytical approach only. 

The second approach is based on numerical simulations of wave motion what allows 

to recognize the cases which cannot be analyzed analytically or experimentally. Numerous 

of different computational techniques can be applied in wave propagation modelling, 

such as finite difference method (FDM) ([199],[201]), finite element method (FEM) 

([21],[56],[106],[234]), finite strip elements (FSE) ([32],[124]), boundary element methods 

(BEM) ([33],[231]), mass-spring lattice model (MSLM) ([50],[224]), local interaction 

simulation approach (LISA) ([46],[47],[48],[49],[116],[117]), time-domain spectral 

element method (SEM) ([36],[108],[109],[167],[172],[182],[187],[215],[246],[248]) 

or FFT-based spectral element method ([51],[165]). 

Nowadays, the finite element method is the most common one. The main advantage 

of FEM is a variety of commercial ready-made codes which do not have to be modified 

or developed by the user. In general a finite element mesh can be easily generated 

and quality of the output can be improved by mesh refinement. The FEM allows modelling 

wave motions in complex structures and visualizing results what was successfully applied 

in a wide range of wave propagation problems ([8],[238]). The FEM provides information 

on complicated cases such as interaction with local changes like various discontinuities 

([9],[56],[207]). Analysis of wave motion may be conducted without any special 

knowledge about the behaviour of particular mode however, the most important and real 

advantages of FEM application come from combining computational techniques 

with analytical investigations. Analytical solutions can be applied to determine the cut-off 

frequencies of particular wave modes, calculate their velocities and chose the most 

appropriate modes for the conducted investigation, while FEM allows verifying the mode 

choice and simulating the disturbance propagation. 

In this work a two-dimensional finite element method of structural dynamics 

is employed to recognize and visualize phenomena occurring during wave propagation 

in embedded bars. A commercial software ABAQUS was firstly introduced and then used 
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in the modelling of multilayered cylinders. Prior to results presentation of numerical 

studies in the next chapters, a short introduction on ABAQUS strategy of solving dynamics 

problems, meshing and infinite boundary conditions is presented. 

 

3.2 ABAQUS strategy 
 

In general, dynamics problems can be divided into two groups. The first group 

is addresses to analysis in the case of relatively low frequencies of an applied load and 

slower vibrations, like seismic problems. The second group relates the cases of higher 

frequency range, like wave propagation problems. The response history of dynamic 

problems can be generally obtained by a modal method, implicit direct integration 

or explicit direct integration. The modal method and implicit direct integration are suitable 

for the problems of structural dynamics, while explicit direct integration is usually used 

to solve wave propagation problems. However, it is possible to use both explicit 

and implicit integration to solve time-domain wave propagation problems, but the explicit 

direct integration is far more efficient and is characterized by lower computational cost. 

In this work, time-domain models are solved with the help of ABAQUS/Explicit package 

[1], based on explicit integration rules. 

3.2.1 ABAQUS Explicit method 

Regarding dynamic problems, the applied load is time function and consequently 

the response of a structure is time-variant, too. The equation of dynamic equilibrium is: 

   Mu Cu Ku F , (3.1) 

where u , u  and u  are nodal acceleration, velocity and displacement, respectively. 

The matrix M  is a diagonal lumped mass matrix, C  is a viscous damping matrix and K  is 

a static stiffness matrix involving elastic modulus and Poisson’s ratio of the material. The 

vector F  covers the external load. Dynamic analysis assumes that the acceleration-

dependent inertia forces and the velocity-dependent damping forces are both taken into 

consideration. Because inertia forces, damping forces and elastic forces are all time-

dependent, there is a need to satisfy Eq. (3.1) not at any time t  but at discrete time 

intervals t  separately [21]. Next, the Eq. (3.1) can be rewritten with respect to ith time 

step: 
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 i i i i  Mu Cu Ku F . (3.2) 

Direct integration conducts a numerical step-by-step procedure to integrate 

the equations. Direct integration assumes that the integrated equations are not transformed 

into a differential equation form [21]. When the solution is required from 0 to time T, 

the considered time is divided into n equal time intervals t  and then the approximate 

solution is investigated at time instants 0, t , 2 t , 3 t , …, t ,…,T . One of effective 

ways to solve equations of motion for certain time steps is the Central Difference Method 

which is utilized in ABAQUS software and it is based on the following assumptions: 

 
1 1 ( 1) ( )

( ) ( )
( )2 2

2

i i
i i

it t
   

 u u u   (3.3) 

 
1

( )
( 1) ( ) ( 1) 2

i
i i it


  u u u   (3.4) 

The superscripts 
1

2
i   and 

1

2
i   refer to mid-increment values. Explicit integration 

is applied in the ABAQUS code, what means that the results for a current step are obtained 

using historical results. While the values 
1

( )
2

i

u  and ( )i
u  are known, the current kinematic 

state can be determined:  

  ( 1) ( ) ( ) ( ) ( 1), , , ,...i i i i if u u u u u   (3.5) 

The explicit procedure is computationally efficient because the global mass matrix 

is not necessary to be assembled and inverted. The mass matrix M  is diagonal, so when 

accelerations are calculated: 

 ( ) 1 ( ) ( )( )i i i u M F I   (3.6) 

The matrix 
1

M  can be easily obtained. The vector F  is applied load vector and I  

is the internal force vector.  

In general, explicit methods are conditionally stable only. The time step size t  

is intended to be smaller than the critical time step 
crt  in order to satisfy stability limit 

[166]: 

 
max

2
crt t


    . (3.7) 
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The critical time step 
crt  is a limit value to assure stability of undamped linear 

systems. The stability limit depends on maximum eigenfrequency 
max . In problems 

of wave propagation in solids the critical time step is approximately equal to a time 

for the longitudinal elastic wave to run through the smallest element of the model mesh 

with velocity 
Lc  ([25],[104]): 

 
cr

L

L
t t

c


    , (3.8) 

where L  is the smallest element size (Figure 3.1). The relationship between the stability 

limit and the transit time for information between two adjacent nodes is known 

as the Courant-Fredricks-Lewy condition (CFL condition) [38]. The ratio between 

the actual time step used in the model and a critical time step is called a Courant number: 

 
cr

t
CLF

t





. (3.9) 

 

Figure 3.1 Smallest element size ∆L for a) linear square element, b) linear triangle element and c) quadratic 

triangle element 

 

Substituting Eq. (3.8) into (3.9), the time increment formula can be rewritten 

in the following form: 

 cr

L

L
t CFL t CFL

c


    . (3.10) 

The increment length must satisfy the stability condition, but also there are some 

recommendations related with the wave time period. An efficient procedure is to use 

an amount of minimum 20 points per cycle at the highest frequency [155]: 
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max

1

20
t

f
    (3.11) 

Longer time increments may lead to divergences in high-frequency resolving 

components. A shorter time increment may bring the waste of computation time. 

The amount of 20 points is recommended as a compromise between both accuracy 

and speed criteria.  

The second important factor influenced by wave frequency and in consequence 

its velocity is the finite element size. The level of discretization is determined 

by the condition, which says that per the shortest wavelength of interest at least 20 nodes 

must be introduced in a model. The condition can be written as: 

 min

20
el


   (3.12) 

where 
el  is element size and 

min  is the shortest wavelength of interest. 

3.2.2 Description of typical FEM model 

All rods investigated in this thesis had a circular cross-section and were embedded 

in mortar block with a circular cross-section, too. A typical anchor model is therefore 

axisymmetric. The axisymmetric model allows to shorten the time of calculations, however 

axisymmetry implies some restrictions. The main drawback of the use of the axisymmetric 

model is the threat of no mode conversion between wave modes with different 

circumferential order, so the flexural modes would not propagate. In order to allow 

the propagation of any mode, a three-dimensional specimen model is necessary to naturally 

involve a longer calculation time. 

The axisymmetric FEM models of ground anchors were developed applying 4-node 

bilinear axisymmetric quadrilateral elements with reduced integration (CAX4R). 

The dimensions of all elements were 1 mm   1 mm. In order to choose an appropriate 

element size, the mesh convergence study has been performed. The transient wave 

propagation problem was solved with the integration time step 
710t    s. In every 

investigated case a narrow range of relatively low frequencies was assumed (60-100 kHz), 

thus, all performed models were characterized by the same element size and the same 

length of the integration time step. 

The wave excitation performance was conducted applying a concentrated force 

at a chosen node. The load was applied as a sine function modulated by the Hanning 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


 

 
 

87 

 

window. Material parameters and geometry of the model as well as parameters 

of excitation load (number of cycles of sine, frequency) were introduced in ABAQUS 

on the basis of experimental data. Material damping effects in anchor models 

were neglected here.  

 

 

Figure 3.2 Ground anchor model: a) geometry and b) applied concentrated force 

 

The models of ground anchors were validated comparing the shape 

and the amplitude of experimental and numerical signals. The numerical models were 

created taking into account geometry and material parameters of experimental models. 

Next, numerical models were divided into two groups A and B: one group (A) was used 

to calibrate numerical parameters, which could not be determined experimentally. 

The calibration was performed comparing the shapes and amplitudes of numerical 

and experimental signals. The identified, calibrated parameters were introduced in models 

in the group B. The numerical results of group B were then compared 

with the experimental results. 

The connection between the rod and the cover was assumed rigid and modelled 

as a tie constraint. In case of modelling the debonding between the mortar cover 

and the steel rod (see Chapter 5), the connection between steel and mortar was not defined 

on a certain length. Exemplary acceleration map of the anchor with debonding located 

in the middle of the specimen is presented in Figure 3.3. D
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Figure 3.3 Model of ground anchor with debonding between core and cover 

 

3.2.3 Infinite elements 

In order to consider the case of ground anchor with large diameter of the anchor body 

or to include high energy dissipation at the border of mortar and soil, infinite elements 

have been introduced in several anchor models. Infinite elements are generally applied 

to model the surrounding medium whose size is large compared to the region of interest 

by conjunction with standard finite elements.  

 

 

Figure 3.4 Application examples of infinite elements: a) point load on elastic half space [1] and b) ground 

anchor surrounded by the soil 
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The region of interest should be modelled by standard finite elements while infinite 

elements should be used to model the far-field behaviour (Figure 3.4). According to [1] 

infinite elements are characterized by a linear behaviour and are applied while there 

is a need to consider boundary value problems defined in unbounded domains. In the case 

of dynamic analysis they provide “quiet” boundaries. In conducted analyzes presented 

in Chapter 4, 4-node, one-way infinite axisymmetric solid continuum elements (CINAX4) 

with two degrees of freedom in each node were used. 

 

3.3 Experimental investigations 

3.3.1 Experimental setup 

The instruments used in experimental tests include the PAQ 16000D device 

for generation and registration of wave signals and the plate piezo actuators Noliac 

NAC2011 used for both actuation and sensing of guided waves. The PAQ 16000D device 

allows to investigate wave propagation in structural elements collecting signals which 

contain information about object response (Figure 3.5a). The wave excitation 

was performed using piezo elements located at one end of the tested specimen (Figure 

3.5b).  

 

 

Figure 3.5 Experimental setup: a) laboratory model of ground anchor, b) actuator and sensor attached to the 

free end of the specimen, c) excitation signal [235] 
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It is well known that an effective monitoring system and reliable damage detection 

requires an appropriate location of transducers. Their position is usually determined 

by location of critical areas which need to be monitored. Location of the actuator 

determines a type of an excited wave mode. In the case of unfavorable actuator location, 

the wave can be damped fast what is especially disadvantageous while structures detect 

a significant wave attenuation level (i.e. concrete structures). Also, the large distance 

between actuator and the sensors results in a poor signal-to-noise ratio and the spread 

of signal due to dispersion. Despite the fact that many methods dedicated to optimize 

the sensor and actuator location have been proposed, they cannot be easily used in anchors 

monitoring due to practical aspects. As mentioned in Chapter 1, the anchor is mostly 

located underground and there is access to any of its part. For practical reasons, actuator 

can be located at the free end of the anchor tendon. The free end of a tendon is only part 

above the ground after making the anchor. It can be assumed that while performing 

a ground anchor it is possible to install additional transducers in any location of the anchor, 

however, the most practical solution is to attach them on the free end of a specimen. 

For this reason in the majority of the presented research the actuator was located at the free 

end of the anchor. 

The piezo elements are widely used as versatile components of SHM systems due 

to their advantages like duration, relatively low cost and small size. They can be used 

in a wide frequency range from 10 to 500 kHz what allows frequency adjustment 

to the monitored object or type of detected damage. The piezo elements use piezoelectric 

effect to measure changes in strains converting them to electric charge. They can 

be attached to the object by means of wax adhesive. 

3.3.2 Excitation signal 

3.3.2.1 Shape of excitation signal 

The excitation signals used in experiments were applied in the form of sine functions 

modulated by Hanning window (Figure 3.6). The function of excitation load can 

be expressed as: 

 
0 sin(2 ) ( )  

( )
0

p ft w t
p t

 
 


   
[0, ]w

w

t T

t T




  (3.13) 
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where f  is excitation frequency, 
0p  is signal excitation amplitude, 

wT  is the length 

of a modulating window. The modulation window is described by a function ( )w t : 

  ( ) 0.5 1 cos(2 / ) ,ww t ft n     [0, ]wt T  (3.14) 

and 
wn  is the number of counts in the tone burst. A possible excitation function 

is presented in Figure 3.7. The modulation of sine function is a technique minimizing 

frequency leakage and decreasing amplitude of sidelobes in signal frequency 

representation. Windowing involves forcing the amplitude of input signal at the beginning 

and at the end of input signal interval to run smoothly towards a single common amplitude 

value [133]. Figure 3.8 presents the Fast Fourier Transform (FFT) spectra of 10-cycle sine 

function modulated by various window functions. The most significant reduction 

of sidelobes leakage is provided using Hanning window so it was applied 

in the investigations. 

 

 

Figure 3.6 Modulation of wave excitation signal used in experimental investigations 

 

 

Figure 3.7 Exemplary excitation function: ten-cycle sine with carrier frequency of 80 kHz modulated 

by Hanning window 

 

The second important parameter of the excitation signal is the number of cycles. 

Let’s consider examples of signals and their FFT spectra. As previously, the sine function  
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Figure 3.8 Sine excitation signals modulated by a) Hanning, b) Hamming, c) triangle, d) rectangle window 

and e) their Fast Fourier Transforms spectra 

 

Figure 3.9 Sine excitation signals and their Fast Fourier Transforms spectra: a) signal with one cycle, 

b) signal with five cycles and c) signal with ten cycles 
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is considered however, only a rectangular window is applied. Figure 3.9 presents three sine 

function examples with the same frequency of 100 kHz and a unit amplitude but 

with variable number of cycles. The first sine shows one cycle, the second one shows five 

cycles and the last one detects ten cycles. It can be seen that in the case of five and ten-

cycle sine the main lobe peak value in FFT corresponds to the excitation frequency of 100 

kHz (Figure 3.9b and c). For a one-cycle sine the main lobe peak value in FFT corresponds 

to a lower frequency what is incompatible with the input data. The most visible influence 

concerns the number of cycles on main lobe parameters. The main lobe width decreases 

and an amplitude increases with an increasing number of cycles. This effect especially 

concerns the cases of desirable narrow frequency range excitation. However, according 

to Heisenberg uncertainty principle the “spread” of an input function and its Fourier 

transform are inversely proportional. A single peak in the spectrum of FFT requires 

an infinitely excitation time. The main drawback of a significant number of cycles 

of an excitation signal is the time duration of an excitation. In the case of long excitation 

particular reflections are possibly registered in the signal even during the excitation, 

what significantly hinders the signal interpretation. It should also be mentioned that despite 

narrowing of the main lobe by increasing number of cycles of excitation, in each FFT some 

side lobes are visible. The presence of side lobes in FFT spectrum indicates frequency 

leakage what is minimized by windowing (compare Figure 3.8). 

3.3.2.2 Frequency selection criteria 

Guided waves are dispersive waves and for this reason excitation frequency 

determines propagation velocity but also number of possible modes to be excited. 

The higher frequency, the larger number of possible wave modes. A large number 

of propagating modes may lead to difficulties in inspection. On the other hand, high 

frequency provides short time of an excitation packet. A short packet with a large number 

of cycles results in a narrow bandwidth of excitation. Moreover, short packets provide 

good temporal separation of. incident and reflected waves. There is a need to find 

a compromise between number of modes and signal legibility. Moreover, wave attenuation 

is affected by frequency. The signals registered for various excitation frequencies 

are characterized by different amplitudes. 

The frequency used in experiments was chosen of the basis of a tunning test. 

The tunning test was based on comparison of signal amplitudes collected after excitations 

of various frequencies in the investigated specimens. The choice of the carrier frequency  
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Figure 3.10 Set of wave propagation signals (in the form of signal envelopes) collected during experiments 

for different carrier frequency of excitation for the free rod 

 

 

Figure 3.11 Set of reflections from anchorage collected during experiments for different carrier frequency 

of excitation for anchor with bonding length equal to: a) 20 cm, b) 40 cm 
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was influenced by the amplitude of the characteristic peaks values, the number of possible 

modes which can be excited in specimen and legibility of a signal. Exemplary tunning test 

is described in [236]. During investigations different excitation frequencies have been 

tested with the aim to select the most sensitive frequency for detection of border of media. 

In Figure 3.10 and Figure 3.11 envelopes of signals obtained for a free rod and for two 

anchors with different bonding lengths are presented. Envelopes of wave propagation 

signals created using the Hilbert transform. 

The envelopes of the vibration velocity signals were normalized with respect 

to the input wave amplitude by the following formula: 

 
 

ˆ( )
ˆ ( )

ˆmax ( )
n

v t
v t

v t
   (3.15) 

where ˆ( )v t  is the spectrum of the Hilbert transform of velocity signal ( )v t . It can 

be observed that the amplitude of the first and second reflections from the end of the rod 

varies with the change of frequency of an incident wave. Even though reflections for all 

considered frequencies are clear, a significant difference between amplitude values 

for different carrier frequencies can be observed. With the increase of the excitation 

frequency, the increase of the first and second reflection can be observed. The maximum 

value was archived for the frequency of 90 kHz, while some frequencies (compare results 

registered for 30 and 40 kHz) brought the reflections from the end of the rod (Figure 3.10) 

or from the anchorage (Figure 3.11) are almost invisible. 
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CHAPTER 4 

Equation Section (Next) 

 

 

 

4  Wave propagation in undamaged ground anchor 

Wave propagation in undamaged ground anchors 

4.1 Introduction 
 

As mentioned in Chapter 1 rock bolts and ground anchors are widely used in mining, 

tunnelling and geotechnical engineering to prevent the movement of rock or ground strata. 

They are subjected to continuous state deterioration due to the exposure to corrosive 

environments or excessive loads ([65],[98]), thus the real problems of such permanent 

structural elements concerns their durability. Since visual inspection of anchors 

is not possible and the conventional pull-out tests are destructive, expensive and time 

consuming, various non-invasive testing methods and monitoring techniques have been 

recently developed ([151],[152]). 

As mentioned in paragraph 1.2 ground anchors are structures especially threatened 

by damages caused by corrosive environment or excessive loads. However, even a healthy 

undamaged ground anchor brings a significant threat for the safety and durability 

of a whole supporting structure if the anchor was performed out of design assumptions 

or its dimensions differ from the design anchor dimensions. The main issue 

for the geotechnicians is the inability to verify real fulfilment of design assumptions 

and the anchor dimensions consistency check with the project. The quality 

of manufacturing can be tested during the pull-out tests, however, due to many drawbacks 

of this destructive method, there is a need to develop less invasive techniques which would 

be employed in the diagnostics of all performed anchors, not just a few selected ones. 

Two major groups of nondestructive testing methods of anchor structures include 

vibration methods (e.g. [96],[161]) and wave propagation methods (e.g. 

[24],[39],[40],[118],[210],[221],[229],[242],[243],[244]). The design and dynamic analysis 
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of an impulse generating device for the condition assessment of ground anchors have been 

developed by Neilson et al. [161]. Both impulse and sine excitations to estimate a total bolt 

length were investigated by Ivanović and Neilson [96]. Beard and Lowe [24] applied 

guided waves to determine a bolt length and to identify major defects in rock bolts. Zhang 

et al. [229] analysed numerically the characteristics of guided waves in free and grouted 

rock bolts as well as the effect of mesh density and wave frequency on the obtained results. 

Numerical simulations of wave attenuation and group velocity in rock bolts were 

conducted by Cui and Zou [39]. They proposed a method to determine boundary effects 

on the attenuation at the bolt ends. The behaviour of guided waves in free and grouted rock 

bolts was also studied by Zou et al. [242]. In the paper, attenuation and group velocity 

of guided waves were tested experimentally, with respect to frequency and the grouted 

length. Experimental and numerical investigations of wave propagation in rock bolts 

for different frequencies of excitation were conducted by Wang et al. [210]. They also 

presented results for grouted rock bolts at various curing times and investigated 

the formation of the interface wave. Zou et al. [243] investigated the correlation between 

the group velocity and the attenuation of captured signals and the grout quality, 

in particular the air content in the grout and the grout compressive strength. Zou and Cui 

[244] proposed a field test method of installing a receiving transducer on the grout surface 

of the bolt. The application of Fourier and wavelet transforms for the evaluation of rock 

bolt integrity was performed by Lee et al. [118]. Wu et al. [221] described 

and experimentally tested nondestructive determination of bolt length, anchoring length 

and body forces by means of stress waves. Cui and Zou [39] conducted numerical 

simulations and laboratory tests of wave attenuation and the group velocity in fully grouted 

rock bolts and bolts with grout voids or insufficient rebar length.  

The previous studies indicate a large potential of the use of guided wave propagation 

techniques in diagnostic applications of anchored systems. However, most of the above 

reported works deal with the diagnostics of rock bolts. This Chapter is focused 

on nondestructive inspection of ground anchors, much more complex than the rock bolts, 

despite many similarities. The main difference is the presence of the so-called anchor body 

of a possible significant diameter compared to the fixed zone of rock bolts. 

The Chapter describes wave propagation phenomena in a healthy ground anchor. 

Particular attention is paid to the characteristic features of guided waves propagating 

in free and embedded parts of the tendon, at the interface between the tendon and the 

surrounding anchor body as well as waves diffracted on the start of the anchor body. 
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The anchors with variable length and diameter of the anchor body and the anchors 

with non-reflecting boundary conditions are analyzed numerically. Experimental 

measurements are conducted on ground anchors variable in the fixed length. The study 

shows that the detailed recognition of the phenomenon of the transfer of wave energy 

between the tendon and the anchor body is crucial for the appropriate application of guided 

wave propagation method for nondestructive inspection of ground anchors. 

Both, experimental and numerical results clearly indicate that three decisive 

geometric parameters (anchor body length, free length of steel tendon and diameter 

of the anchor body) can be successfully determined on the basis of the registered signals. 

The results presented in this Chapter were published in [239]. 

 

4.2 Theoretical background of wave propagation in healthy 

ground anchor 

4.2.1 Multimode propagation in free and embedded bar 

A ground anchor consists of three parts: an anchor head, a tendon and an anchor 

body ([86],[222]). A schematic sketch of components of the ground anchor is given 

in Figure 4.1. The tendon can be made of a steel bar, a multi-wire strand, drill-hollow 

systems or a cable. The total length of the tendon can be divided into the free length 

and the bond length. The anchor body is formed in the subsoil by cement grout injection. 

The wave excited at the free end of the tendon, propagates along its free length and next, 

along the fixed length. At the interface between the tendon and the anchor body the wave 

leakage occurs. Moreover, at the starting point of the tendon fixing in the anchor body, 

wave diffraction takes place. In this section, characteristic features of waves propagating 

in ground anchors are investigated. 

As mentioned above wave excited at the free end of the tendon propagates along 

single-layer steel bar. Due to grout surrounding the steel core along a fixed length 

the problem of wave propagation becomes more complicated and there is a need 

to consider wave propagation in multilayered rods. D
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Figure 4.1. Schematic sketch of ground anchor components 

 

 

Figure 4.2 Group velocity dispersion curves of a) 2 cm diameter steel bar (E = 210 GPa, v = 0.2, 

ρ = 7820 kg/m
3
) and b) for a steel 2 cm diameter bar (E = 210 GPa, v = 0.3, ρ = 7820 kg/m

3
) embedded 

in 4 cm thickness cover (E = 26 GPa, v = 0.2, ρ = 2084 kg/m
3
) 
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Figure 4.2a illustrates the group velocity dispersion curves for a bar of a circular 

cross-section with a 2 cm diameter which is considered in the next part of the Chapter. 

In the presented frequency range 0–240 kHz three longitudinal modes propagate, 

i.e. the fundamental mode L(0,1) and two higher L(0,2) and L(0,3) modes appearing above 

their cut-off frequencies. The dispersion curves calculated by solving the Pochhammer 

equation (2.122) are compared with the experimental data in the range 40–120 kHz. 

In the case of a bar embedded in the material of different physical properties, 

it is necessary to calculate the dispersion relations for a multilayered elastic solid cylinder. 

The ground anchor can be considered a two-layer axially symmetric system consisting 

of a layer of steel and a layer of the cement grout.  

It can be seen in Figure 4.2b that the presence of additional 4 cm layer of the grout 

causes a significant increase of the number of propagating modes and thus the increase 

in the complexity of the occurring phenomena. The cut-off frequencies of higher-order 

modes have lower values than for the free bar, thus in the considered frequency range 

the number of propagating modes significantly increases. Moreover, the velocity 

of the fastest L(0,1) mode in the free bar is significantly higher than the velocity of L(0,1) 

mode in the bar with the cover. Experimental results are marked in Figure 4.2b by dots. 

They were determined in the frequency range 30–110 kHz, exhibiting multimode 

propagation. Calculation of the wave velocity was based on the time-of-flight (Figure 4.3). 

In the measured signal the first reflection from the end of the specimen has been identified 

and the wave velocity was determined on the basis of time-of-flight registered for this 

wave packet. This approach brings about the velocity of the fastest mode for a given 

frequency only. The other slower wave modes were not identified. 

 

 

Figure 4.3 Scheme of the signal and time-of-flight determining 
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4.2.2 Wave propagation at the bar/anchor body and the anchor body/ground 

interface  

Considering a wave that passes through the interface between media with different 

physical properties (i.e. mass density   and modulus of elasticity E ), two phenomena 

may occur, i.e. reflection from the interface or transmission into the second medium. 

The intensity of reflection and transmission occurring at the media boundary depends 

on the acoustic impedance Z , which is an inherent property of a medium [71]: 

 
PZ c E   . (4.1) 

The reflection coefficient R  and the transmission coefficient T  can be defined 

on the basis of acoustic impedances [180]: 

 
(2) (1)

2 2 1 1

(1) (2)

1 1 2 2

c cZ Z
R

Z Z c c

 

 


 

 
  (4.2) 

 
(2)

2 2

(1) (2)

1 1 2 2

22 cZ
T

Z Z c c



 
 

 
  (4.3) 

The transmission and reflection coefficients are parameters describing the extend 

of wave energy reflected from the media boundary and the extend of energy transferred 

into the second medium. When the acoustic impedances of both media are equal, 

the transmitted wave is identical to the incident wave and the presence of the interface 

does not affect the incoming wave.  

 

 

 

Figure 4.4 Wave reflecting and passing through the boundary between media 
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Figure 4.5. Wave leakage at the interface between steel bar and surrounding anchor body 

 

In the case of two media with different values of the acoustic impedance only 

the part of the wave energy passes into the second medium, while the remaining part 

is reflected. For 
(2) (1)Z Z , the reflected wave is much weaker than the transmitted wave. 

While 
(2) (1)Z Z  the reflected wave is much stronger than the transmitted wave. 

The acoustic impedance of the second medium close to zero results in a complete wave 

reflection. 

Ground anchors consist of two layers made of different materials: a steel bar 

and a surrounding anchor body. The longitudinal guided wave excited in the bar 

propagates along its length. In the fixed part, the wave transmitted along the bar leaks 

into the anchor body (Figure 4.5). The intensity of the leakage of the wave energy depends 

not only on the material parameters of two media but also on the quality of the bond 

between the bar and the anchor body. If the bonding quality is high, the energy transfer 

from the bar to the surrounding medium is strong, producing a large wave leakage. 

In the case of weak bonding the wave leakage is less effective. 

The ground anchor bodies are manufactured in a pre-drilled hole in the ground 

by grouting. Due to the parameters of the surrounding ground and the connection between 

the grout and the ground, two phenomena can occur. When the impedances of the soil 

and the grout are similar or the anchor body strongly interact with the surrounding ground 

in a large area, the wave reaching the media boundary is transferred into the ground where 

is damped rapidly. On the other side, when the anchor body borders with the soil 

of considerably different material parameters from the injected grout or the connection 
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between the anchor body and the ground is weak, a significant amount of wave energy 

is reflected at anchor body/ground interface, so the anchor can be considered a two-layer 

system. 

4.2.3 Wave diffraction on the start of the anchor body 

Injected grout tends to cause expansion, triggering pressure to the surrounding ground. 

Thus the anchor diameter largely depends on material parameters of the ground. Soil 

parameters are determined solely on the basis of several sample parameters from an area 

where anchors are often not performed. The designer estimates the diameter of the anchor 

based on the diameter of the borehole and soil parameters, while the actual diameter may 

differ materially from the design assumptions. In extreme cases infiltration of liquid inject 

into the ground can be so intense that the diameter of the anchor grows to an immense size, 

much larger than the designed one. Due to significant differences in the size of the anchor 

bodies, two cases need to be considered: the model of anchor with infinite and definite 

diameter. 

The character of the wave propagation in the anchor body depends on its size. 

When the anchor body is relatively large in thickness compared to the wavelength, 

the description of the wave propagation phenomenon will be analogous to the wave 

propagation in the bar embedded in the semi-infinite medium. The wave excited at the free 

end of the bar propagates along its length, diffracting at the start of the anchor body 

(Figure 4.6a). After diffraction and mode conversion, the surface wave, the antisymmetric 

mode and the symmetric mode propagate in the semi-infinite medium. Part of the wave 

energy not leaking into the surrounding medium propagates in the fixed length of the steel 

bar in the form of particular modes. The number of propagating modes depends 

on the excitation frequency. As a result, in a signal registered at the free end of the bar, 

the diffracted wave and possible reflections of subsequent modes from the embedded 

end of the bar may be registered. 

If the anchor body has the thickness comparable to the wavelength of the excited 

guided wave, the occurring diffraction phenomenon is more complicated (Figure 4.6b). 

The excited wave propagates to the start of the anchor body and then it diffracts 

in accordance with the Huygens principle (phase I in Figure 4.6b). The diffracted wave 

(phase II in Figure 4.6b) propagates back to the free end of the bar and it also transmits 

into the anchor body. As it reaches the outer surface of the anchor body, it diffracts again 

and propagates to the bar (phase III in Figure 4.6b). The reflection from the start 
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of the anchor body after the first wave diffraction displays a relatively small amplitude, 

so in the case of small diameters of the anchor body it interferes with the reflection 

from the outer surface of the anchor body. 

 

 

Figure 4.6. Wave diffraction at start of anchor body: a) anchor body thickness much smaller than the excited 

wavelength; b) anchor body thickness comparable with the excited wavelength 

 

4.3 Experimental and numerical investigations of wave 

propagation in undamaged ground anchors 

4.3.1 Description of specimens 

Wave propagation investigations were carried out on laboratory models of ground 

anchors. The specimens were made of a steel circular bars of a diameter d  = 2 cm 

and a length 150 cm embedded centrally in a cylindrical block with an outer diameter 

of ad  = 10 cm, constituting a concrete cover with a thickness of h  = 4 cm. The material 

parameters of steel were: E  = 210 GPa;   = 0,3;   = 7820 kg/m
3
. The anchor body 

was made of C30/37 concrete of the following material parameters: E  = 26 GPa;   = 0,2; 

  = 2084 kg/m
3
. The test specimens included a free bar and eight anchors of a variable 

bond length. The anchor length L  consists of the free length fL  and the bond length bL  

(the length of the concrete cover). The length xL  results from technological aspects 

of preparing specimens. The geometry of a typical specimen is presented in Figure 4.7 

and the dimensions of individual ground anchors are specified in Table 4.1. 
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Figure 4.7. Geometry of the laboratory model of ground anchor 

 

Table 4.1. Dimensions of ground anchor specimens with different bond lengths 

Specimen 
Length [cm] 

Lf [cm] Lb [cm] Lx [cm] 

Free bar 150 - - 

Anchor #1 137 10.5 2.5 

Anchor #2 127 20.5 2.5 

Anchor #3 117.5 30 2.5 

Anchor #4 107 40.5 2.5 

Anchor #5 98.5 50 1.5 

Anchor #6 87 60.5 2.5 

Anchor #7 67 80.5 2.5 

Anchor #8 47.5 100 2.5 

 

4.3.2 Experimental procedure 

Figure 4.8a presents the set-up for wave propagation experiment in laboratory 

models of ground anchors. A wave packet consisting of a ten-cycle sine function 

with a carrier frequency of 80 kHz modulated by the Hanning window was applied 

as the excitation signal. According to Figure 4.2 this excitation frequency allows for single 

mode propagation in the steel bar and a multimode propagation in the two-layer cylinder. 

Due to multimode propagation, the observation of separation of modes travelling 

with different velocities and mode conversion was possible. 

The configuration of measurement points is illustrated in Figure 4.8b. The piezo 

actuator (denoted as A in Figure 4.8b) was attached to the free end of the steel bar in order 

to induce guided waves along the bar length. Two sensors (sensor 1 and sensor 2) 

were positioned on both free and embedded ends of the bar to measure longitudinal waves. 

The additional sensors (sensor 3 and sensor 4) were attached to the bar at the start 

and at the end of the anchor body. 
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Figure 4.8. Experimental set-up: a) equipment and laboratory models of ground anchors with different bond 

lengths; b) distribution of measurement points and excitation signal 

 

4.3.3 Parameters of FEM analysis 

Several cases of ground anchors were analysed numerically. The first group 

of numerical models included anchors with a variable anchor body length 
bL  from 0 cm 

to 100 cm with a 1 cm step. The second group was made of anchors with a fixed length 

of the anchor body 
bL  = 80.5 cm (the length of the anchor#7) but with a variable cover 

thickness from 0 cm to 100 cm with a 1 cm step. The third group included models 

with identical geometry to the experimental specimens. In this case, additional analysis 

was conducted, taking into consideration the presence of the medium surrounding 

the anchor body by means of infinite elements. In these numerical models a layer of 4-node 

axisymmetric infinite finite elements (CINAX4) with a thickness of 4 cm was introduced. 

 

4.4 Results 

4.4.1 Analysis of wave propagation in ground anchors 

Figure 4.9a presents numerical results for ground anchor #4 (cf. Table 4.1), 

with the bonding length equal to 40.5 cm. The snapshots at selected time instants illustrate 

the magnitude of acceleration and the deformation of the specimen. At the beginning, 

only a longitudinal mode L(0,1) propagates along the bar as a single wave packet (Figure 

4.9a, t = 0.15 ms and t = 0.19 ms). When the wave packet reaches the start of the anchor 

body (t = 0.27 ms), it diffracts. Part of the wave energy propagates back along the free bar, 

while the remaining part propagates in the bar embedded in concrete. In the case 

of considered frequency of excitation equal to 80 kHz, five longitudinal modes 
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can propagate in the part of the bar with the concrete cover (cf. Figure 4.2b). 

At the beginning of propagation in the two-layer specimen, a single wave packet 

containing all modes is visible only. However, due to different group velocities 

of particular modes, they separate during propagation in the anchored length 

of the specimen. The longer the multilayered part, the longer time interval between 

particular modes can be achieved and more clear separation can be observed. 

At t = 0.36 ms, two wave packets can be distinguished only. Particular wave packets 

reflecting from the end of the specimen propagate back to reach the free part of the bar. 

Next, they are converted into modes, bound to propagate for a given frequency in the free 

bar. In the presented example of anchor #3 two separated wave packets are converted 

into L(0,1) mode which travels in the form of two single wave packets (t = 0.70 ms). 

Similar maps are given for anchor #7 with a longer bonding length equal to 80.5 cm 

(Figure 4.9b). In this case the wave diffraction at the start of the anchor body 

can be observed earlier, at t = 0.19 ms. The distance showing five modes propagate 

in a two-layer specimen is longer, therefore separation of modes into three wave packets 

is visible at t = 0.70 ms. 

 

 

Figure 4.9. Snapshots of propagating waves (magnitude of acceleration) in anchor #4 at selected time 

instants: a) t =0.15 ms; b) t =0.19 ms ; c) t =0.27 ms; d) t = 0.36 ms; e) t = 0.46 ms; f) t = 0.70 ms 
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Figure 4.10 shows wave propagation signals registered at the free end 

and the embedded end of the bar in the form of 3D surface charts. The time responses, 

in the form of the envelopes of the magnitude of acceleration, were calculated 

for the anchor with variable anchor body length varying from 0 cm to 100 cm with a step 

equal to 1 cm. Thus, each chart presents 101 numerical signals. In both charts, some 

characteristic wave packets were identified. The input wave packet (scaled by a factor 0.02 

for better visibility) can be observed in the initial part of signals registered at point #1 

situated at the free end of the rod (Figure 4.10a). Next, the wave diffracted at the start 

of the anchor body is visible. Its amplitude is relatively small and for small length 

of a concrete cover it interferes with the reflection from the embedded end of the bar making 

it impossible to identify of particular wave packets. Near the reflection from the end 

of the specimen, the separation of additional L(0,1) mode propagating in the free part of bar 

is very clearly visible. The increase of the anchor body length causes the increase of time 

interval between propagating L(0,1) modes. 

In the signals registered at an embedded end of the bar (point #2), the reflections 

from the end of the anchor can be indicated (Figure 4.10b). The time interval between 

the beginning of propagation and the first reflection increases proportionally to the anchor 

body length. While the bond length increases, the first reflection containing all five modes 

propagating in the part of the bar embedded in concrete, splits into two additional wave 

packets containing separated modes. It is clearly visible that the amplitude of the reflection 

from the end of the anchor changes periodically and it is characterized by numerous local 

maxima and minima for different bonding lengths bL , but in general trend of amplitude-

anchor body length function is characterized by a low tendency to decline 

with the increasing length of the concrete cover. The same effect is observed 

for the reflection from the end of the bar registered at point#1 (Figure 4.10a), but these 

variations in amplitude values are not as regular as in the previous case. Two effects 

are visible here: the decreasing trend in the amplitude is caused by the wave energy 

leakage (wave damping). Local maxima and minima of the amplitude may be caused 

by constructive and destructive interferences of several types of waves and their reflections 

propagating in the anchor body. Thus, it can be concluded that the decrease in amplitude 

is not only a result of wave leakage but is also affected by wave interference. 

For this reason a frequent conclusion saying that the longer boning length, the greater 
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amplitude decrease (e.g. [229],[242],[210]), is not always true, especially in the case 

of small variations in bonding length. 

 

 

Figure 4.10. Time response of propagating waves (magnitude of acceleration) depending on the anchor body 

length: a) signal registered at free end of the bar (point #1); b) signal registered at embedded end of the bar 

(point #2) 

 

4.4.2 Influence of anchor body diameter 

While for rock bolts the thickness of the grouting layer between steel bar 

and the embedding rock is usually small and it amounts to a few millimeters, the size 

of the body of ground anchors can achieve a significant size. Thus the character of wave 

propagation in these two types of supporting systems is different. The thickness 

of the anchor body acts greatly upon on the phenomena of multimode propagation 

in the cover part of the ground anchor. Figure 4.11 presents dispersion curves 

for longitudinal modes to be excited in the anchor body with variable thickness of the grout 

cover. 

It should be noted that the number of dispersion curves and their shapes are very 

sensitive to variations in cladding thickness. With an increase of cover thickness 
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the number of possible modes increases, too. It means that interpretation of signal 

registered for anchor of large size could be hindered by mode separations and numerous 

conversions. 

It can be observed that the velocity for low frequencies of the first mode decreases 

with the increase of the cover thickness. The dispersion curve for an anchor with 1 cm 

cover thickness indicates that in the 0 kHz case the group velocity is equal to above 4500 

m/s. For a 5 cm thickness cover the group velocity in the 0 kHz case is equal to about 3700 

m/s, while for thickness of 20 cm and 50 cm the difference is almost invisible 

and the velocity in the 0 kHz case is about 3500 m/s. While the diameter of an anchor body 

is large, the velocity of the fastest mode for a particular frequency tends to the velocity 

of the first mode in the 0 kHz case. It can be concluded that for large-size specimens group 

velocity for any frequency can be easily estimated on the basis of the starting point 

of the first curve. 

 

 

Figure 4.11 Dispersion curves for longitudinal modes for steel rod with diameter of 2 cm embedded 

in concrete cover with thickness of a) 1 cm, b) 5 cm, c) 20 cm and d) 50 cm 

 

In order to observe propagation of particular waves in the ground anchor body, 

the specimen with the bond length equal to 80.5 cm and the cover thickness equal to 80 cm 

were analysed numerically. A large size of the anchor body allows to observe occurring  
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Figure 4.12. Snapshots of propagating waves (magnitude of acceleration) in ground anchor with 80 cm cover 

thickness at selected time instants: a) t =0.15 ms ; b) t =0.24 ms ; c) t =0.36 ms ; d) t =0.42 ms; e) t = 0.54 

ms; f) t = 0.60 ms; g) t = 0.70 ms; h) t = 0.81 ms; i) t = 0.93 ms; j) t =0.98 ms 

 

phenomena in detail. The snapshots of the acceleration magnitude and the specimen 

deformations at selected time instants are presented in Figure 4.12. Initially, longitudinal 

L(0,1) mode propagates along the free length of the bar (Figure 4.12a).  

After wave diffraction, in the anchor body two groups of modes and the surface wave 

start propagating (Figure 4.12b). The diffracted wave propagates back along the steel bar 
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(Figure 4.12c), next it is reflected from the free end of the bar (Figure 4.12d). The first 

group of modes propagating in the anchor body is reflected from the outer surface 

of the anchor body and from the end of the specimen (Figure 4.12d and e). In the presented 

example these reflections occur simultaneously due to similar length and thickness 

of the anchor body. Part of the energy of these waves is reflected from the border 

of the steel and concrete cover (Figure 4.12f) while another part propagates 

as the interference wave along the steel bar (Figure 4.12g). At the same time multiple 

reflections of the second group of modes from the boundaries are observed (Figure 4.12e-

h). After reflection from the end of the specimen (Figure 4.12h) both group of modes 

propagate back in the direction of the start of the anchor body (Figure 4.12i and j). 

The reflection and diffraction of the surface wave are visible in Figure 4.12f and Figure 

4.12g. The reflected surface wave propagates perpendicularly to the anchor axis 

and at the end it transmits into the steel bar. Moreover, in the presented example, 

the surface wave interferes with the subsequent reflection of the first group of modes 

from the end of the specimen (Figure 4.12j). 

In order to determine the influence of the variable anchor body size on wave patterns, 

several numerical models with a bond length equal to 80.5 cm and variable-thickness 

concrete cover have been performed. Acceleration signals were registered at the free end 

of the bar. The results are presented in Figure 4.13 as a 3D surface chart. The signals 

were calculated for the anchor with an anchor body thickness varying from 0 cm to 100 cm 

with a 1 cm step (globally 101 numerical signals). Accordingly to Figure 4.6 and Figure 

4.12, when the incident wave reaches the part embedded in concrete, it reflects from 

the start of the anchor body and from its outer surfaces. Those reflections were identified 

and indicated in Figure 4.13. In each case of anchor body thickness, the diffracted wave 

occurs at the same time and its amplitude is constant due to a constant anchor body length. 

The reflection time of the surface wave from the outer surface of the anchor body 

is proportional to the cover thickness. The reflection from the end of the anchor is easy 

to identify only for a relatively small thickness of the anchor body, not exceeding 5 cm. 

For a 5-45 cm thickness range reflections are characterized by very low amplitudes 

and their identification is difficult. Next, the amplitude is greatly increased for a thickness 

exceeding 45 cm. The explanation may be the occurrence of constructive interferences, 

which appear when the cover thickness is comparable with the bond length (cf. Figure 

4.12i and j). It should be noted that even though some reflections can be observed 

in snapshots in Figure 4.12 – e.g. the wave raised after the second diffraction at the start 
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of the anchor body (Figure 4.12e) or the wave travelling after interference of modes 

reflected from boundaries (Figure 4.12g) – they are difficult to recognize in the registered 

wave propagation time histories. Moreover, as the cover thickness increases, a gradual 

decrease in the amplitude of the reflected waves from the end of the anchor is observable. 

This results from the increasing intensity of the energy leakage into the cover, but also 

from wave propagation over increasingly longer distances, which causes spreading 

of the input wave packet and the decrease of the signal amplitude. 

 

 

Figure 4.13. Time response of propagating waves (magnitude of acceleration) depending on the anchor body 

thickness (signal registered at free end of the bar) 

 

4.4.3 Influence of infinite boundary conditions 

As mentioned in paragraph 4.2.3 the ground anchor bodies are manufactured in soil 

by means of grout pressurized injection. Injected grout tends to cause expansion, which 

applies pressure to the surrounding ground, so the anchor body interacts 

with the surrounding ground medium. Part of the inject penetrates into ground 

so as a consequence at the border of media grout and soil can be mixed with one another. 

Irregular shape of ground anchor body and slurred border of media may act significantly 

on the intensity of the energy leakage and the energy dissipation, which greatly hinders 

the acquisition and interpretation of wave propagation signals. Moreover, due 

to the infiltration of inject into the surrounding ground, the shape of the anchor body 

is often irregular and it varies in thickness throughout its length. Wave reflection from 

irregular boundaries results in a much more intensive energy dissipation. In order 

to simulate the interaction of the anchor body with a surrounding medium and the shape 
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irregularity, the non-reflecting boundary conditions are assumed in numerical models 

by means of introducing infinite finite elements along the outer surface of the anchor body. 

The evolution of wave propagation through the anchor with 
bL  = 80.5 cm and non-

reflecting boundary conditions is presented in Figure 4.14. The introduction of infinite 

conditions along the boundaries of the anchor body results in the lack of reflections 

of the surface wave from the boundaries (Figure 4.14b). Additionally, in the infinite 

elements area no disturbance is observed. As a consequence, after the wave diffraction 

at the start of the anchor body, part of the energy propagates back (Figure 4.14c and Figure 

4.14d) and the other part propagates along the anchor, to be rapidly dissipated. In Figure 

4.14e the wave after reflection from the free end of the anchor is diffracted again. Wave 

motion is observable only in a free steel rod, while in the remaining volume of the anchor 

no wave motion is recorded. Subsequent wave diffractions at the start of the anchor body 

and reflections from the free end of the anchor can be observed until the entire wave 

energy is dissipated. Analysing time histories for anchors with different bonding lengths 

(Figure 4.15), in all registered signals, the wave packets are visible corresponding 

to the wave diffracted at the start point of the anchor body. However, due to infinite 

boundary conditions, the wave is attenuated so fast, that no reflections from the embedded 

end of the bar can be observed, even in the case of a relatively short bond length. 

 

 

Figure 4.14. Snapshots of propagating waves (magnitude of acceleration) in ground anchor with non-

reflecting boundary conditions at selected time instants a) t =0.13 ms ; b) t =0.21 ms ; c) t =0.32 ms ; 

d) t =0.37 ms ; e) t =0.50 ms ; f) t =0.58 ms ; g) t =0.62 ms 
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Figure 4.15 Acceleration signals registered at the free end of the anchors with infinite boundary conditions 

 

4.4.4 Analysis of wave travel time 

Based on experimental and numerical wave propagation signals for anchors with 

variable anchor body length 
bL , group velocity for the free part of the anchor (

fv ), group 

velocity for the embedded part of the anchor (
bv ) and the average group velocity 

for the whole ground anchor (
av ) was estimated. 

 

 

Figure 4.16. Envelopes of a) experimental wave propagation signals registered by sensor #2, b) numerical 

wave propagation signals registered at point #2 
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The wave velocity in the free part was determined using signals registered by sensors 

#1 and #3, while the velocity in the embedded part by sensors #3 and #4 (see Figure 4.8b). 

In order to identify the velocity for the entire ground anchor, signals registered by sensors 

#1 and #2 were used. Examples of numerical and experimental signals registered by sensor 

#2 are presented in Figure 4.16. In the case of signals registered close to bonded 

end of the anchor (sensors #2 and #4) the first registered wave packet included more than 

a single mode, therefore the identified velocity is the velocity of the fastest group 

of modes. 

Figure 4.17 illustrates the group velocities of waves propagated in particular parts 

of the ground anchor, for experimental specimens and their numerical models 

and for numerical models with infinite elements, depending on the bond length. 

The velocities of waves propagating in the free and bonded parts are constant 

independently of their length (Figure 4.17a and b). The mean velocity value in the free part 

of the bar was identified as: 4751 m/s (experimental), 4721 m/s (numerical), 4721 m/s 

(numerical with infinite elements) and 4729.3 m/s (analytical). In the bonded length 

the determined velocities were: 2946 m/s (experimental), 2738 m/s (numerical), 3576 m/s 

(numerical with infinite elements) and 3141 m/s (analytical for the fastest mode). 

The velocity for the model with infinite elements is greater than the velocity for the model 

corresponding to experimental specimens. 

While the group velocities in particular parts of the ground anchor are known, 

the relationship between the average group velocity 
av  in a function of the anchor body 

length 
bL  or a ratio /b fL L  can be written as: 

  
 

a b f

a b

a b b f b

L c c
c L

L c L v c


 
, (4.4) 

 

1 b
b f

fb
a

bf
f b

f

L
c c

LL
c

LL
c c

L

 
     

  
  

. (4.5) 

In Figure 4.17c the relationship given by Eq. (4.4) is plotted by a dashed line. 

Experimental and numerical results were marked at particular points corresponding 

to bond lengths. It can be seen that the average group velocity 
av  decreases 

with the increase of the bond length. 
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Figure 4.17. Relationships of wave velocities: a) velocity of wave propagated through free length fL ; 

b) velocity of wave propagated through bonded length bL , c) velocity of wave propagated through anchor 

length aL  in a function of bL ; d) velocity of wave propagated through anchor length aL  in a function of 

/b fL L  

Figure 4.17d presents the relationship, given by Eq. (4.5), between the average group 

velocity at the total length of the anchor 
aL  and different ratios of the free length 

to the embedded length ( /b fL L ). In the case of a fully grouted anchor ( /b fL L  ), 

the average velocity 
ac  is close to the velocity 

bc , while for a fully delaminated specimen  

( / 0b fL L  ), the average velocity 
ac  approaches the velocity for a free bar 

fc . 

The obtained results indicate that the average velocity for the entire anchor can be used 

to determine the anchor body length. 

 

4.4.5 Identification of geometric parameters of ground anchors 

Practical assessment of conditions or the identification of geometrical parameters 

in real engineering facilities allows a sole use of signals measured at the free end 

of the tendon. Figure 4.18 presents a set of experimental wave propagation signals together 

with the envelopes of numerical signals registered at the free end of the bar for all 

considered ground anchors. Characteristic reflections from the start of the anchor body 

and from the end of the anchor have been identified and highlighted. The straight lines 

crossing the marked reflections additionally illustrate direct proportionality between 

the registration time of particular wave packets and the bond length. Furthermore, 
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the inclination of the lines points to the difference in the wave velocities in the free and 

multilayered parts. The line passing through the wave packets propagating after diffraction 

is characterized by higher inclination because of a higher wave velocity in the free part 

of the steel bar (cf. Figure 4.17). 

Both numerical and experimental wave propagation histories involve waves 

diffracted at the start of the anchor body. The wave diffracted at the start of the anchor 

body is registered even in the case of intensive energy dissipation. For this reason, the free 

length of the tendon can always be identified. The identification of a free length 

of the examined ground anchors was performed on the basis of a known group velocity 

in the free part of steel bar 
fc  and the determined time-of-flight (TOF) between the input 

wave packet and the diffracted wave 
ft : 

 
2

f fTOF

f

c t
L    (4.6) 

The results obtained for experimental specimens and for numerical models 

are summarized in Table 4.2.  

 

Table 4.2. Identification of free length based on Eq. (4.6) 

Specimen 
fL  

[cm] 

experimental numerical numerical with infinite elements 

TOF

fL  

[cm] 

TOF

f f fL L L    

[cm] 

TOF

fL  

[cm] 

TOF

f f fL L L    

[cm] 

TOF

fL  

[cm] 

TOF

f f fL L L    

[cm] 

Free bar 150 150.2 0.2 150.9 0.9 - - 

Anchor #1 137 153.0 16.0 141.2 4.2 138.1 1.1 

Anchor #2 127 135.2 8.2 132.2 5.2 128.4 1.4 

Anchor #3 117.5 128.0 10.5 122.3 4.8 118.9 1.4 

Anchor #4 107 117.9 10.9 112.8 5.8 108.4 1.4 

Anchor #5 98.5 103.1 4.6 104.6 6.1 99.9 1.4 

Anchor #6 87 91.7 4.7 93.0 6.0 88.4 1.4 

Anchor #7 67 73.4 6.4 71.5 4.5 68.4 1.4 

Anchor #8 47.5 55.6 8.1 53.8 6.3 48.9 1.4 
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Figure 4.18. Set of experimental signals and envelopes of numerical signals for ground anchors with different 

bond lengths 

 

The discrepancies between the real free lengths 
fL  and the lengths calculated 

on the basis of the time-of-flight 
TOF

fL  ranged from 4.6 cm to 16 cm for experimental 

signals and from 4.2 cm to 6.3 cm for numerical signals. In all cases the identified length 

based on the time-of-flight is longer than the real length. The main reason for this 

discrepancy is the interference of the diffracted wave and the wave reflected 

from the boundaries. Figure 4.13 shows that in the case of relatively small thickness 
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of the cover, the diffracted wave and the wave reflected from the boundaries of the anchor 

body overlap, making it difficult to calculate the time-of-flight. This explanation 

is additionally confirmed by the results obtained for numerical models with non-reflecting 

boundary conditions. The absolute error in the estimation of free lengths is close for all 

considered anchors and its value is about 1 cm. Infinite boundary conditions inhibit 

the reflection of the surface wave from the anchor body boundaries and as a consequence 

only diffracted waves are registered in signals. 

In general, the thickness of the anchor body can be precisely determined only 

for anchors with relatively large cover thickness, making the diffracted wave not overlap 

with the surface wave reflected from the boundaries of the anchor body. The anchor body 

thickness can be calculated based on a prior-known velocity of the surface wave 
Rc  

(Rayleigh wave velocity) and the time-of-flight between 
Rt  the diffracted wave 

and the reflection from the outer surface of the anchor body (cf. Figure 4.13 and Figure 

4.14): 

 
2

R Rc t
h    (4.7) 

where 

 
0,87 1,12

1
R S

v
c c

v

 
  

 
  (4.8) 

In this thesis, experimental investigations were performed for anchors of a relatively 

small thickness of the cover, making the diffracted wave and the wave reflected 

from the boundaries of the anchor body overlap, thus making it difficult to calculate the 

time-of-flight (cf. Figure 4.13). This situation makes it impossible to perform a direct 

identification of the cover thickness. However, the obtained results include information 

about the cover thickness is included in the difference between the free length identified 

using the time-of flight and the real free length fL . The cover thickness can be roughly 

estimated as: 

 R
f

f

c
h L

c
    (4.9) 
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Table 4.3 Identification of cover thickness based on Eq. (4.9) 

Specimen 
experimental numerical 

h [cm] h [cm] 

Anchor #1 7.0 1.8 

Anchor #2 3.6 2.3 

Anchor #3 4.6 2.1 

Anchor #4 4.8 2.6 

Anchor #5 2.0 2.7 

Anchor #6 2.1 2.6 

Anchor #7 2.8 2.0 

Anchor #8 3.5 2.8 

 

The identified values of the cover thickness are presented in Table 4.3 The bonding 

length can be determined on the basis of a known group velocity in the fixed length 
bc  

and the identified time-of-flight between the diffracted wave and the reflection from 

the end of the anchor 
bt : 

 
2

TOF b b
b

c t
L    (4.10) 

The identified bond length values obtained for experimental and numerical anchors 

are given in Table 4.4. The discrepancies between the real bond lengths 
bL  and the lengths 

calculated on the basis of time-of-flight TOF

bL  ranged from 0.1 cm to 10.5 cm 

for experimental signals and from 2.1 cm to 9.7 cm for numerical signals. As in the case 

of the free length identification, this discrepancy is mainly caused by overlapping 

of the diffracted wave and the wave reflected from the boundaries of the anchor body. 

 

Table 4.4. Identification of bonding length based on Eq. (4.10) 

Specimen bL  [cm] 

experimental numerical 

TOF

bL  [cm] 
TOF

b b bL L L    [cm] TOF

bL  [cm] 
TOF

b b bL L L    [cm] 

Anchor #1 10.5 0 10.5 13.7 3.2 

Anchor #2 20.5 15.5 5.0 17.5 3.0 

Anchor #3 30 24.3 5.7 27.9 2.1 

Anchor #4 40.5 34.5 4.0 34.8 5.7 

Anchor #5 50 50.1 0.1 45.0 5.0 

Anchor #6 60.5 62.0 1.5 55.9 4.7 

Anchor #7 80.5 77.3 3.2 73.2 7.3 

Anchor #8 100 103.1 3.1 90.4 9.7 
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As a new approach, the bond length can be identified based on the relation describing 

the average velocity for an entire anchor (derived in paragraph 4.4.4). 

 
( 2 )

2( )

b a f aTOF

b

f b

c t c L
L

c c





  (4.11) 

The feature of this approach is the fact, that the identification is based on the time-of-flight 

at  not involving the time-of-flight 
ft  and 

bt , so all the most important geometric 

parameters of the anchor can be determined on the basis of signal registered on the free 

length of the anchor only. The identified bond length values obtained for experimental 

and numerical anchors are given in Table 4.5. The discrepancies between the real bond 

lengths 
bL  and the lengths calculated on the basis of time-of-flight TOF

bL  ranged from 1.9 

cm to 17.3 cm for experimental signals and from 1.9 cm to 17.7 cm for numerical signals. 

 

Table 4.5. Identification of bonding length based on Eq. (4.11) 

Specimen bL  [cm] 

experimental numerical 

TOF

bL  [cm] 
TOF

b b bL L L    [cm] t

bL
 [cm] 

TOF

b b bL L L    [cm] 

Anchor #1 10.5 4.9 5.6 20.4 9.9 

Anchor #2 20.5 16.5 4.0 17.1 3.4 

Anchor #3 30 28.1 1.9 28.2 1.8 

Anchor #4 40.5 43.6 3.1 31.5 9.0 

Anchor #5 50 55.3 5.3 44.5 5.5 

Anchor #6 60.5 68.1 7.6 54.3 6.2 

Anchor #7 80.5 78.5 2.0 66.0 14.5 

Anchor #8 100 117.3 17.3 82.3 17.7 

 

4.5 Summary and conclusions 
 

In this Chapter numerical and experimental investigations of guided wave 

propagation in ground anchors were carried out. Anchors with variable length and diameter 

of the anchor body, as well as anchors with non-reflecting boundary conditions were 

analysed here. The study was focused on the recognition of the phenomenon of wave 

energy transfer between a steel tendon and a anchor body, because this aspect is crucial 

for the development of monitoring systems based on guided wave propagation. 

The presence of the anchor body affects the average group velocity of waves propagating 

in the anchor, the amplitude of vibrations in the registered signals and additionally, 
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in the case of multimode propagation, on the separation of particular wave modes 

and the mode conversion. The results of numerical simulations allowed to observe mode 

separation along the anchor body length. The wave separation increased with the increase 

of anchor body length and with the increase of difference between velocities of particular 

modes. Wave conversion was observable due to two distinct anchor parts (free part and 

two-layer part), displaying various propagation wave modes. The modes in free bar 

were converted into modes in two-layer part, and conversely, modes in two-layer part 

were converted into modes propagating in free bar. These two phenomena, the mode 

separation and the mode conversion, are indispensable elements of wave propagation in 

ground anchors and they greatly complicate the interpretation of wave propagation signals. 

The presented investigations indicated both potentials and limitations of a guided 

wave propagation technique in the diagnostics of ground anchors. It was observed 

that the three most important geometric parameters, i.e. the free length of the tendon, 

the anchor body length and the thickness of the anchor body, can be determined 

on the basis of wave propagation signals recorded at the free end of the anchor. 

Both numerical and experimental wave propagation histories include waves diffracted 

in the regions of variable geometry. The wave diffracted at the start of the anchor body 

was registered even in the case of intensive energy dissipation. For this reason, the free 

length of the tendon can be always identified on the basis of a known group velocity 

in the tendon and the determined time-of-flight between the input wave packet 

and the diffracted wave. However, in the case of anchors with relatively small diameter 

of the anchor body the identified free length are slightly variable due to the interference 

of the diffracted wave and the wave reflected from the boundaries of the anchor body. 

The anchor body thickness can be determined on the basis of a known velocity 

of the surface wave and the time-of-flight between the diffracted wave and the reflection 

from the outer surface of the anchor body. In the case of anchors with relatively large 

thickness of the cover these wave packets propagate separately and they are easy 

to identify. However, for a relatively small diameter of the anchor body the diffracted wave 

and the wave reflected from the boundaries of the anchor body overlap making 

the identification of the cover thickness impossible. 

The bonding length was determined in two ways. At first, the bond length 

was calculated on the basis of a known group velocity in the fixed length and the identified 

time-of-flight between the diffracted wave and the reflection from the end of the anchor. 

As a new approach, the bonding length was identified based on the relation describing 
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the average velocity for an entire anchor. In both approaches identification of the bond 

length in the anchor with a relatively small diameter of the anchor body led to slight 

discrepancies between the real bond length and the length calculated on the basis 

of the time-of-flight due to overlapping of the diffracted wave and the wave reflected 

from the boundaries of the anchor body. On the other hand, in the case of a large-diameter 

anchor body or the anchor body strongly interacting with the surrounding ground, 

the identification of the reflection from the end of the anchor may be difficult or even 

impossible. It was shown that due to infinite boundary conditions assumed around 

the anchor body in numerical models, the wave was attenuated so fast, that reflection 

from the embedded end of the bar was observable only in the case of the anchor 

with the shortest bond lengths. 
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CHAPTER 5 

Equation Section (Next) 

 

5 Wave propagation in embedded bars with 

debonding 

Wave propagation in ground anchors 

with debonding 

5.1 Introduction 
 

In general ground anchors works as active support systems. It means that after 

performing the anchor, it is additionally pre-stressed. They are adapted to transmit 

significant tensile and shear forces from the bar through the bar/grout interface 

to the surrounding ground. Thus the bond between a tendon and grout is a critical aspect 

of the anchor load-carrying capacity and a proper load transferring. Moreover, the grout 

cover additionally provides corrosion protection of a steel tendon. Inaccurate cover may 

be the cause of corrosion spot and in consequence may lead to serious damage 

to the anchor and entire supporting system. Since interface damage can be a potential 

threat to proper operation, the analysis of effects of debonding between the bar and grout 

has been investigated to improve the reliability and safety of ground anchors. Benmokrane 

et al. [26] presented a study of the behaviour of cement-grouted ground anchors subjected 

to tensile loading. Strains were measured by vibrating-wire gauges welded at certain 

intervals to the surface of a steel bar. Next, three types of tests including loading 

and unloading test, creep test and long-term test were conducted and the load distribution 

along the anchor length was monitored. An analytical model of rock bolts subjected 

to tensile load was presented by Ma et al [134]. They presented derivations for load-

displacement curves, shear stress distribution at the interface between bolt and grout and 

axial load distribution in the bolt in pull-out tests. Ivanović and Neilson [95] proposed 

a model to capture static and dynamic effects of debonding in terms of static load 

distribution and dynamic response to transient loading. The influence of pre-existing 
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debonding in ground anchors on the load carrying capacity was examined by means 

of pull-out tests by Akisanya and Ivanović [6]. 

In recent years, a growing interest has arisen in the use of nondestructive testing 

methods for condition assessment of ground anchors. The previous works indicate a large 

potential of the use of guided waves in diagnostics of ground anchors, especially to assess 

the effects of insufficient rebar and missing grout ([40],[225]), the identification of a free 

length of an anchor [236] and the evaluation of grout quality ([243],[210]). However, 

the number of studies on the application of guided waves for the detection of debonding 

between steel and concrete is limited. Na et al. [159] considered a steel bar embedded 

in a rectangular block of concrete with 0%, 25%, 50% and 75% delaminated interface 

situated at one end of the bar. Lamb wave measurements were performed by a pitch-catch 

method using a transmitter and a receiver located at both ends of the bar or the concrete 

block. Concrete beams with a steel reinforcing bar embedded in the middle of the beam 

were investigated by Wu and Chang ([219],[220]). Debonding of different lengths 

was introduced at the centre part of the beam. Eight PZT actuators and sensors were 

mounted to the bar surface, then variations in signal amplitude and time of arrival were 

monitored. It was experimentally observed, that the amplitude of wave propagation signals 

increases with the increased debond length however, there were no significant changes 

in the time of signal arrival [219], this fact was confirmed later by FEM simulations [220]. 

Zima and Rucka [237] applied guided waves for the assessment of adhesive bonding 

in double-layer cylindrical specimens made of a steel bar embedded in concrete. They 

investigated numerically the impact of a bonding length on the excitation of multiple 

modes of longitudinal guided waves. 

This Chapter deals with guided wave propagation in steel bars partially embedded 

in grout. The first part of the study concerns theoretical and numerical investigations 

of longitudinal guided modes in multilayered cylindrical bars with pre-existing debonding, 

including the influence of debonding location and its length on the separation of modes, 

their conversion and diffraction as well as the average wave velocity. The second part 

of the Chapter presents experimental results of both nondestructive testing using guided 

waves and destructive pull-out tests conducted on laboratory models of ground anchors 

with variable debonding length and location. Three locations of debonding and five levels 

of the debonding length are considered. In the previous experimental research debonding 

between the core and cladding was simulated using a section of a PVC pipe around a bar 

what completely separated the bar and concrete (e.g. [159],[219]). However, real 
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debonding may show a significantly smaller size, especially in the case of progressive 

deterioration of the bond. Therefore, in this study debonding is performed by means 

of wrapping the bar in a cellophane film of a very small thickness (about 60 m ). 

The presented approach provides indirect contact between steel and grout, but significantly 

reduces grout adhesion to steel and consequently, there is no continuity of stresses 

and displacements on the contact layer, which is the basic assumption in the model of wave 

propagation in multilayered specimens (compare paragraph 2.2.1). Despite of such small 

thickness of debonding, guided waves appear extremely sensitive in detection of defects in 

adhesive bonding. High sensitivity of guided waves for debonding detection 

was confirmed by the results of pull-out tests for fully debonded specimens. The obtained 

results show that guided waves application may be an effective method for detection 

of adhesive debonding in the early stages of its development. 

A novel element of the conducted investigation is a complex description of the nature 

of the wave phenomena occurring in a debonded element with special emphasis 

on the influence of the damage location on wave conversion and diffraction. The study 

includes the derivation of relationships between average velocities of particular modes 

and the debonding length (Section 5.2.2 and 5.2.3). Moreover, a short background 

for the longitudinal wave propagation in a single waveguide and a multilayered waveguide 

is recalled in paragraph 5.2.  

The results presented in this Chapter were published in [241]. 

 

5.2 Theoretical background of wave propagation in free and 

embedded bar  
 

The conducted investigations are focused on guided wave propagation in a steel bar 

partially embedded in grout (Figure 5.1c) with particular emphasis on the debonding 

between steel and grout. The wave excited along a free bar results in propagation 

of particular number of longitudinal modes in a single waveguide. When the wave reaches 

the part embedded in grout, propagation in a multilayered waveguide occurs.  
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Figure 5.1. Schematic diagram of cylindrical waveguides: a) free bar; b) fully embedded bar; c) partially 

embedded bar 

 

The inquiry presented in this section is related to the case of dispersion curves 

for a 1 cm steel bar embedded in grout with a thickness of 17.5 mm formed in a PVC pipe 

with a thickness of 2.5 mm, however in general they are valid for any case. The excitation 

frequency is 60 kHz to induce multimode propagation and to make observation 

of the mode conversion possible. For a selected frequency value, a single mode can 

propagate in the free bar and two modes with different velocities can propagate 

in the three-layer part of the specimen. Beside considerations based on dispersion curves, 

the results of finite element method (FEM) simulations performed in Abaqus/Explicit 

programme are presented here. Numerical results are presented in the form of snapshots 

illustrating the magnitude of acceleration and the deformation of the specimen at selected 

time instants 

5.2.1 Wave propagation in free and multilayered bar 

Dispersion curves for a multilayered waveguide are an important prerequisite for the 

implementation of the guided wave method for nondestructive testing.  Figure 5.2 presents 

dispersion curves for a single 1 cm steel bar (Figure 5.1a) for a 1 cm steel bar embedded 

in grout with a thickness of 17.5 mm formed in a PVC pipe with a thickness of 2.5 mm, 

(Figure 5.1b). The excitation frequency used in the investigation is 60 kHz. According 

to dispersion curves given in Figure 5.2 for the selected value of frequency, a single mode 

can propagate in the free bar and two modes with different velocities can propagate 

in the three-layer part of the specimen. Thus, multimode excitation makes it possible 

to observe mode conversion. Longitudinal modes excited in multilayered part are denoted 

as standard: (0,1)L , (0,2)L , (0,3)L  etc. while modes in free part are indicated by upper 

index: (0,1)barL , (0,2)barL , (0,3)barL  etc.  
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Figure 5.2. Group velocity dispersion curves of 1 cm diameter steel bar (E = 207 GPa, v = 0.3, ρ = 7894 

kg/m
3
) and dispersion curves of 1 cm diameter steel bar embedded in grout with thickness of 17.5 mm 

(E = 33 GPa, v = 0.2, ρ = 2067 kg/m
3
) formed in PVC pipe with thickness of 2.5 mm (E = 1.5 GPa, v = 0.4, 

ρ = 900 kg/m
3
) 

The velocity of the first (0,1)L  mode is smaller than the velocity of the first mode 

(0,1)barL  for a free bar. The cut-off frequencies of higher-order modes show lower values 

than for the free bar, thus the number of wave modes excited in the three-layer waveguide 

is much larger than for the free bar. It can be also observed that there is a frequency 

interval (from 237 kHz to 413.74 kHz) wherein the wave in the multilayered part 

propagates faster than in the free core. 

In the further part of the Chapter, the phenomenon of the wave mode conversion 

is described. In order to systematize the names of modes, the following way of naming 

is adopted. The waves in the free bar are called (0,1)barL , (0,2)barL  etc. Waves 

in the multilayered bar are called (0,1)L , (0,2)L  etc. Waves in the tube are called 

(0,1)tubeL , (0,2)tubeL  etc. If a mode is converted, a low subscript is added and then 

for example label  
(0,1)

(0,1)bar

L
L  means that the mode in the free bar (0,1)barL  

was converted from the mode of the multilayered bar (0,1)L . 

 

5.2.2 Wave propagation in partially embedded bars with perfect bonding 

As the wave travels through the free length fL  of the bar, only the (0,1)barL  mode 

may propagate (Figure 5.3a), with the group velocity bar
gc  equal to 5071.9 m/s (cf. Figure 

5.2). After the wave diffraction at the proximal end of the embedded part 

(i.e. at the anchorage), this mode propagates back to be recognized as the diffracted wave 

in the signal registered by sensor A (Figure 5.3b). Identification of this wave packet and 

assessment of its registration time 
A
dt  allows to determine the length of the uncoated bar: 
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2

bar A
g d

f

c t
L  . (5.1) 

The diffracted wave is reflected from the free end of the bar and can be diffracted 

again at the proximal end of the embedded part. This multiple diffraction can be visible 

in the signal until its energy is dissipated. The second diffraction is marked in the signal 

from sensor A by dashed line (Figure 5.3d). The time interval between the input wave 

packet and the diffracted wave is the same as the time interval between subsequent 

diffractions.  

 

 

Figure 5.3. Wave propagation in a partially embedded bar, perfectly bonded with grout cover: a) wave 

diffraction at the proximal end of the embedded part, b) multimode propagation and mode separation 

at embedded part of bar, c) mode conversion at free part of bar, d) schemes of signals registered at both ends 

of the specimen 
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As the wave travels through the embedded part of the bar 
bL , its energy is separated 

into particular modes which may propagate in the multilayered waveguide with different 

group velocities 
igc . In the considered case the faster mode (0,2)L  propagates 

with the group velocity 
2gc = 2132.2 m/s, and the slower mode (0,1)L  propagates 

with the group velocity  
1gc  = 1031.2 m/s (Figure 5.2 and Figure 5.3b). Particular wave 

packets corresponding to modes (0,1)L  and (0,2)L  can be registered by a sensor B when 

they reflect from the distal end of the embedded part of the specimen. Because 

of the difference in the group velocities, the mode (0,2)L  is registered earlier than (0,1)L  

mode. The registration times of individual wave packets registered by a sensor B after 

passing the distance equal to the length of the specimen 
f bL L L   are: 

 

i

fB b
i bar

g g

L L
t

c c
  . (5.2) 

The time interval between registration times of particular modes i and j in the signal 

registered by sensor B can be expressed by the formula: 

 
( )

j i

i j

b g gB
i j

g g

L c c
t

c c



  . (5.3) 

The reflected modes propagate back along the coated bar. At the proximal end 

of the multilayered bar, after a repeated diffraction, they are subsequently converted into 

two (0,1)barL  modes existing in the free bar (Figure 5.3c). As the first (0,2)L  mode 

is converted into  
(0,2)

(0,1)bar

L
L  mode and then (0,1)L  into  

(0,1)
(0,1)bar

L
L . 

The velocities of modes  
(0,2)

(0,1)bar

L
L  and  

(0,1)
(0,1)bar

L
L  are identical and they 

are equal to bar
gc . The registration times of individual wave packets, to be identified 

in the signal registered by sensor A after passing the double length of the specimen 2L  

are: 

 
2 2

i

fA b
i bar

g g

L L
t

c c
   (5.4) 

the interval between their registration times is equal to: 

 
2 ( )

j i

i j

i j

b g gA

g g

L c c
t

c c


  . (5.5) 
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The average velocity of wave modes passing the double length of the specimen can 

be then calculated as: 

 
2( )2

i

i

i

bar
g f g bav

g A bar
i g g

c l c ll
c

t c c


  . (5.6) 

Formulae (5.3) and (5.5) allow to conclude that with the increase of the bonded 

length bL  and the difference between velocities 
igc  of particular modes, the time interval 

A
i jt   and B

i jt   between modes increases, too. Thus, for a relatively short specimen, 

the mode separation may not be observed and the only mark of multimode propagation 

may be a spread of the input wave packet. Moreover, one can see that dispersion curves 

for a free core and a multilayered waveguide given in Figure 5.2 are an important 

prerequisite for the implementation of guided waves for nondestructive testing 

of embedded bars, because depending on the value of excitation frequency, the average 

velocity of the guided wave propagating through the total anchor length with debonding 

can be smaller, grater or the same as the average velocity of the guided wave propagated 

through the healthy anchor. Theoretical considerations have been confirmed by numerical 

calculations results. Figure 5.4 presents FEM results for the partially embedded bar 

with perfect bonding.  

 

 

Figure 5.4. FEM results of wave propagation in the partially embedded specimen with perfect bonding: 

a) 0.1 ms; b) 0.16 ms; c) 0.25 ms; d) 0.38 ms; e) 0.59 ms; f) 0.73 ms 
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The magnitude of acceleration and the deformation of the specimen are illustrated 

in the snapshots at selected time instants. At the beginning, only longitudinal mode 

(0,1)barL  propagates along the bar as a single wave packet (Figure 5.4a). The wave 

diffraction at the proximal end of the embedded part is visible at t = 0.16 ms (Figure 5.4b). 

After diffraction, the wave is separated into two waves travelling in opposite directions 

(Figure 5.4c). The wave packet travelling along the steel bar contains the (0,1)barL  mode 

only, while in the part of the grouted bar two longitudinal modes can propagate. 

At the beginning of propagation in the three-layer specimen, a single wave packet 

containing both modes is visible solely (Figure 5.4c). However, due to different group 

velocities of particular modes, they separate during propagation in the anchored length 

of the specimen. At t = 0.38 ms, two wave packets can be distinguished (Figure 5.4d), 

namely (0,1)L  and (0,2)L . Next, these wave packets are reflected from the end 

of the specimen to reach the free part of the bar. Next, they are converted into two 

 
(0,2)

(0,1)bar

L
L  and  

(0,1)
(0,1)bar

L
L  modes, which propagate with the same velocity 

(Figure 5.4f). 

 

5.2.3 Wave propagation in partially embedded bars with debonding 

In this section three damage scenarios differing in debonding locations 

(i.e. debonding at the beginning, at the middle and at the end of the embedded part 

of the three-layer specimen) are analysed. The influence of the location of debonding 

on a registered wave propagation signals is investigated here. 

 

 

Figure 5.5. Group velocity dispersion curves of 1 cm diameter steel bar (E = 207 GPa, v = 0.3, 

ρ = 7894 kg/m
3
) embedded in grout with thickness of 17.5 mm (E = 33 GPa, v = 0.2, ρ = 2067 kg/m

3
) formed 

in PVC pipe with thickness of 2.5 mm (E = 1.5 GPa, v = 0.4, ρ = 900 kg/m
3
) and dispersion curves of two-

layer grout-PVC hollow cylinder with removed steel core 
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With the development of debonding between the steel core and the grout cover, 

the debonded cladding becomes actually a two-layer hollow cylinder and the steel core 

inside can be considered as the free element. The velocity of wave propagating 

in separated grout-PVC system is determined from the dispersion relations corresponding 

to the multilayered hollow cylindrical waveguide. Dispersion curves for the tube consisting 

of grout and PVC mould are given in Figure 5.5. Additionally, modes for perfectly bonded 

three-layer system are traced by dashed lines.  

It can be seen that removing the steel core acts on velocities of particular modes 

at some frequency ranges. For the considered excitation frequency equal to 60 kHz, both 

tube modes (0,1)tubeL  and (0,2)tubeL  propagate faster in a debonded grout/pipe system 

than the three-layer bar modes (0,1)L  and (0,2)L . 

 

5.2.3.1 Debonding at the beginning of the embedded part 

The first damage scenario concerns debonding located at the beginning 

of the embedded part. The phenomenon of wave propagation resembles the case 

of a specimen without debonding. After wave excitation, at the debonded part of length dL  

a single mode (0,1)barL  can propagate solely. As the wave reaches the location of where 

the bar embedded in grout, it diffracts (Figure 5.6a). The part of the wave energy 

propagates back along the free bar and it is registered as the diffracted wave and the other 

part propagates in the separated cladding as (0,1)tubeL  and (0,2)tubeL  modes as well as 

in the three-layer composite part as (0,1)L  and (0,2)L  modes (Figure 5.6b). While 

the uncovered part of the bar fL  is longer than in the case of perfect bonding, the wave 

diffracted at the anchorage is registered later. Accordingly to Eq. (5.4) the shortening 

of the multilayered part bL  causes that modes separation is poorly visible. 

The schemes of signals registered at both ends of the bar are presented in Figure 

5.6c. Additionally, the signals for fully bonded specimen are imposed to illustrate shifting 

of characteristic wave packets. The first reflection from the end of the specimen 

is registered at a point A after the time interval A

it  described by Eq. (5.4). In the presented 

case, the group velocity of the first mode in the free bar bar
gc  is higher than the velocity 

of the fastest mode in the coated bar ,maxgc . The increase of the length of the free part, 

resulting from the debonding occurrence, causes that the reflection from the end 

of the specimen is recorded faster than for the healthy specimen. 
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Figure 5.6. Wave propagation in the partially embedded bar with debonding at the beginning 

of the embedded part: a) wave diffraction at the debonding end; b) multimode propagation in coated part; 

c) schemes of signals registered at both ends of the specimen 

 

The difference in the time of registration between the damaged specimen 

with debonding of length dL  and the healthy specimen equals: 

 
 ,max

,max

2 bar
d g g

d bar
g g

L c c
t

c c


  . (5.7) 

The increase in the length of the defective connection shortens the time-of-flight 

( 
dt  is positive). This relationship is valid only when free bar modes propagate faster than 

multilayered bar modes ( ,max

bar

g gc c , c.f. Figure 5.2). In the case of frequency ranges 

corresponding to the fastest multilayered bar mode propagates faster than free bar modes 

( ,max

bar

g gc c ), the damaged bonding causes the increase of registration time of the first 

reflection from the end of the anchor (
dt  is negative). When the fastest multilayered bar 

mode propagates with the same group velocity as the free bar modes ( ,max

bar

g gc c ), 

the increase of bonding length does not change the time-of-flight of reflection from the end 
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of the anchor (
dt  is equal to zero). The length of debonding can be estimated on the basis 

of the average wave velocity of reflections from the end provided known dispersion curves 

for the free core and for the cladding. The selection of appropriate excitation frequency 

affects the effectiveness of the assessment of the debonding length. The greater 

the difference between the fastest mode propagating in the free bar and the fastest mode 

in the coated bar, the greater the variation of the average wave velocity due 

to the debonding occurrence. 

The results of FEM calculations for the specimen with debonding of length of 20 cm 

at the beginning of the embedded part are illustrated in Figure 5.7. Initially, the wave 

propagates in the uncovered bar (Figure 5.7a, b).  

After being diffracted, part of the energy is transmitted into a separated grout part 

(Figure 5.7c) and it propagates back. Due to a shorter multilayered part comparing 

with the undamaged specimen (Figure 5.4), particular longitudinal modes (0,1)L  

and (0,2)L  cannot be distinguished, thus they are visible as a single wave packet 

containing both longitudinal forms. 

 

Figure 5.7. FEM results of wave propagation in a partially embedded specimen with debonding 

at the beginning of the embedded part: a) 0.1 ms, b) 0.19 ms, c) 0.27 ms, d) 0.46 ms 

 

Figure 5.8 shows numerical acceleration signals registered at four nodes (s1 to s4): 

at the beginning of the specimen (Figure 5.8a), at the end of the free length Figure 5.8b), 

in the middle of the anchor body (Figure 5.8c) and at the end of the specimen (Figure 

5.8d). Vibrations accelerations of were registered along the bar in longitudinal direction. 

The shape of numerically obtained signals corresponds to theoretical signal schemes 

shown in Figure 5.6c. 
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Figure 5.8. FEM results of wave propagation in a partially embedded specimen with 20 cm debonding 

at the beginning of the embedded part in the form of time-domain signals registered at nodes: a) s1; b) s2; c) s3 

and d) s4 

 

5.2.3.2 Debonding in the middle of the embedded part 

The second damage scenario concerns debonding located in the middle 

of the embedded part of the specimen (Figure 5.9). After wave excitation and diffraction 

at the proximal end of the embedded part, two modes propagate along the bonded length 

1b
L  (a). When the wave reaches the start of debonding, it diffracts. Along the free part fL  

the first mode existing in the free bar (0,1)barL  may propagate solely. Moreover, a part 

of energy propagates in the separated cladding as wave packets containing four modes 

 
(0,1)

(0,1)tube

L
L ,  

(0,1)
(0,2)tube

L
L ,  

(0,2)
(0,1)tube

L
L and  

(0,2)
(0,2)tube

L
L  (Figure 5.9b). 

In the debonded steel core two modes exist:  
(0,2)

(0,1)bar

L
L  and  

(0,1)
(0,1)bar

L
L . Four 

modes travelling in the separated cladding and two modes travelling in the debonded steel 

core reach the end of debonding and there they are again diffracted (Figure 5.9c) 

After the diffraction each mode is converted into two modes propagating along 

the bonded length 
2bL . As a consequence along 

2bL  at least twelve modes start travelling. 

Four modes  
(0,1)

(0,1) barL
L ,  

(0,2)
(0,1) barL

L ,  
(0,1)

(0,2) barL
L  and  

(0,2)
(0,2) barL

L  were 

excited after diffraction of  
(0,2)

(0,1)bar

L
L  and  

(0,1)
(0,1)bar

L
L  while next eight modes 
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  
(0,1)

(0,1)
(0,1) tube

L
L

L ,   
(0,1)

(0,1)
(0,2) tube

L
L

L ,   
(0,2)

(0,1)
(0,1) tube

L
L

L ,   
(0,2)

(0,1)
(0,2) tube

L
L

L ,

  
(0,1)

(0,2)
(0,1) tube

L
L

L ,   
(0,1)

(0,2)
(0,2) tube

L
L

L ,   
(0,2)

(0,2)
(0,1) tube

L
L

L ,   
(0,2)

(0,2)
(0,2) tube

L
L

L  

were excited after the diffraction of modes travelling in the separated cladding. According 

to dispersion curves given in Figure 5.2 and Figure 5.5, the converted bar modes travel 

faster than the converted tube modes. 

 

 

Figure 5.9. Wave propagation in a partially embedded bar with debonding at the middle of the embedded 

part: a) wave diffraction at the proximal end of the embedded part, b) multimode propagation in coated part, 

second diffraction at the beginning of debonding, c) mode conversion in separated free rod and third 

diffraction at the end of debonding, d) mode conversion and multimode propagation in coated part 
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The converted free bar modes are represented in Figure 5.9d by a solid line, while 

converted tube modes by a dashed line. 

The results of FEM analysis are presented in Figure 5.10 and Figure 5.11. Figure 

5.10 presents graphical visualization of wave propagation while time-domain signals 

are given in Figure 5.11. The travelling wave (Figure 5.10a) diffracts at the anchorage 

(Figure 5.10b) and again at the start of debonding (Figure 5.10c).  

 

 

Figure 5.10. FEM results of wave propagation in a partially embedded specimen with debonding 

at the middle of the embedded part: a) 0.1 ms, b) 0.16 ms, c) 0.24 ms, d) 0.26 ms, e) 0.38 ms 

 

The visualization in Figure 5.10c clearly indicates that after diffraction the wave 

energy is divided into (0,1)barL  mode propagating in the free bar and waves travelling 

in the separated grout part. Group velocities of these wave modes differ. As a consequence, 

the wave which propagates in the free bar reaches the end of debonding first, 

where is diffracted again (Figure 5.10d). The next wave diffraction at the debonding end 

causes that in the middle part of the separated cover both forward and backward waves 

interfere with each other. The complexity of the phenomena greatly hinders 

the interpretation and recognition of individual wave modes. 
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Figure 5.11. FEM results of wave propagation in a partially embedded specimen with 20 cm debonding in the 

middle of the embedded part in the form of time-domain signals registered at nodes: a) s1; b) s2; c) s3 

and d) s4 

 

5.2.3.3 Debonding at the end of embedded bar 

The last damage scenario refers to the case of a debonding occurring at the end 

of the three-layer composite bar. The single mode (0,1)barL  propagates along the free bar 

(Figure 5.12a). In the three-layer part of length 
1b

L  two longitudinal modes propagate 

and after diffraction they are converted into  
(0,2)

(0,1)bar

L
L  and  

(0,1)
(0,1)bar

L
L  modes 

propagating in the free bar and into modes propagated in the two-layer separated cladding 

 
(0,1)

(0,1)tube

L
L ,  

(0,1)
(0,2)tube

L
L ,  

(0,2)
(0,1)tube

L
L and  

(0,2)
(0,2)tube

L
L  (Figure 5.12b 

and c). Waves are reflected from the end of the specimen and during propagation along 

bonded part are converted into twelve longitudinal modes (Figure 5.12d): six (0,1)L  

and six (0,2)L  (Figure 5.12d). 
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Figure 5.12. Wave propagation in a partially embedded bar, with debonding at the end of the grout part: 

a) wave diffraction at the distal end of the embedded part, b) multimode propagation in coated part, second 

diffraction at the start of debonding, c) mode conversion in separated free rod and third diffraction 

at the end of debonding, d) reflection from the end of the anchor, third diffraction at the start of debonding, 

mode conversion and multimode propagation in coated part 
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Figure 5.13. FEM results of wave propagation in the in the partially embedded specimen with debonding at 

the distal end of the embedded part: a) 0.1 ms, b) 0.16 ms, c) 0.22 ms, d) 0.24 ms and e) 0.27 ms 

 

Figure 5.13 shows the results of FEM analysis. The excited wave is diffracted both 

at the proximal end of the embedded part and at the start of debonding. Before the second 

diffraction it propagates in the covered rod with perfect bonding between layers. 

The length of the multilayered part of perfect inter-layer bonding is equal to 30 cm 

and it is too short to allow for separation of (0,1)L  and (0,2)L  modes. Thus, only one 

wave packet is initially visible. After t = 0.24 ms the diffracted wave is transmitted 

into grout and into the steel bar (Figure 5.13c). The wave in the steel core propagates faster 

than the wave in the two-layer separated tube and reaches the end of the specimen after t = 

0.27 ms. The wave travelling in grout is reflected from the distal end of the specimen 

and it propagates back. Numerical signals registered at four nodes along the anchor FEM 

model are given in Figure 5.14. 

The theoretical consideration presented in above paragraphs 5.2.3.1-5.2.3.3 indicates 

that the presence of debonding affects the wave propagation in a multilayered specimen, 

inter alia, the number of travelling modes, their velocities, conversions and diffractions. 

In order to consider the phenomenon of wave propagation in bars partially embedded 

in grout with debonding at steel/grout interface, dispersion curves for multilayered bars, 

hollow cylinders and free bars need additional inquiry. 
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Figure 5.14. FEM results of wave propagation in a partially embedded specimen with 20 cm debonding 

at the end of the embedded part in the form of time-domain signals registered at point: a) s1; b) s2; c) s3 

and d) s4 

 

5.3 Experimental investigations on partially embedded bars 

with pre-existing debonding 

5.3.1 Description of specimens 

Experimental investigations were carried out on laboratory models of ground anchors. 

The specimens were made of a steel circular bar with a diameter of d  = 1 cm and a length 

of 100 cm, embedded in a cylindrical grout block performed in a PVC mould having 

an outer diameter of ad  = 5 cm. The thickness of the mould wall was 2.5 mm. 

The material parameters are: E  = 207 GPa;   = 0,3;   = 7894 kg/m
3
 (steel), E  = 33 

GPa,   = 0.2,   = 2067 kg/m
3
 (grout), E  = 1.5 GPa;   = 0,4;   = 900 kg/m

3
 (PVC). 

Prior to experimental tests the specimens were left to cure in order to obtain the full grout 

strength.  

The test specimens included one pristine anchor and thirteen anchors with various 

damage scenarios, collected into five groups (from #A to #E), as shown in Figure 5.15. 

Groups #A, #B, and #C contain specimens with debonding located at the beginning, 
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in the middle and at the end of the multilayered part of the anchor. Within each of groups 

#A–C four different specimens were prepared of different length of the debonded part ( dL  

= 10, 20, 30 and 40 cm). Additionally, one fully debonded (#D) and one fully bonded (#E) 

specimens were performed. The defect in the form of debonding was introduced using 

a cellophane film with a thickness of about 30 micrometers. Two layers of the film 

were attached to the bar only at its edge and tightly wrapped around the bar. 

 

 

Figure 5.15. Schemes of investigated specimens: a) group #A with debonding at the beginning 

of the embedded part; b) group #B with debonding in the middle of the embedded part; c) group #C 

with debonding at the end of the embedded part; d) fully debonded anchor #D; e) fully bonded anchor #E 

 

5.3.2 Experimental procedure 

The prepared specimens were subjected to both nondestructive and destructive tests. 

In the first stage, ultrasonic guided waves were generated and propagated though 

the anchors. The experimental set-up for wave propagation measurements is presented 

in Figure 5.16a. Three plate piezo transducers Noliac NAC2011 used for both actuation 

and sensing of guided waves. Two transducers were attached to the free end of the bar, 

i.e. the actuator and sensor A while one transducer (sensor B) was attached to the fixed 

end of the bar. The excitation signal was a wave packet represented by a ten-cycle sine 

function with a carrier frequency of 60 kHz modulated by the Hanning window.  
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In the second stage, all specimens were subjected to destructive tests (Figure 5.16b) 

in order to investigate the influence of pre-existing debonding on the load capacity 

of the connection between steel and grout. The specimen was inserted in the steel frame 

to ensure that the tensile load is applied axially. The pull-out tests were carried out 

in a testing machine Zwick/Roell Z400 using displacement control with the cross-head 

speed equal 3 mm/min. 

 

 

Figure 5.16. Experimental set-up: a) equipment for guided wave propagation and the tested specimen 

with a detail of actuator and sensor attached to the free end of the bar; b) pulled-out specimen mounted 

on the testing machine 

 

5.4 Results 

5.4.1 Results of guided wave propagation 

Experimental wave propagation signals acquired for anchors with a variable length 

of a defect are presented in Figures 5.17 to 5.19 for specimens showing debonding part 

at the start, in the middle and at the other end of the embedded part, respectively. 

All measured signals were normalized to achieve the maximum amplitude value equal 1. 

The characteristic reflections have been identified and described. Moreover, straight 
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dashed lines led through the highlighted wave packets indicate a linear relationship 

between the time-of-flight of particular reflections and the debonding length. 

 

 

Figure 5.17. Experimental wave propagation signals registered at the free end of the bar with debonding 

at the beginning of the embedded part: a) fully bonded specimen #E, specimen #A with debonding of length 

of b) 10 cm, c) 20 cm, d) 30 cm, e) 40 cm and f) fully debonded specimen #D 
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Figure 5.17 presents signals for the case of specimen with debonding at the start 

of the embedded part. Line no. 1 passes through highlighted wave packets diffracted 

at the anchorage and line no. 2 crosses the wave packets corresponding to the second 

diffraction. Additionally, in the signal for the fully bonded specimen case, a third diffraction 

can be observed. This is the case of the shortest distance between the excitation point 

and the anchorage and the energy dissipation intensity is low. In other specimens the third 

diffraction cannot be identified due to its interference with other wave packets. For each 

signal the distance between the lines no. 1 and no. 2 is the same as the distance between 

the line no. 1 and the input wave. Another group of identified wave packets comes from 

the reflections from the end of the specimen. Due to specimens with a relatively long fully 

bonded part two modes can be clearly indicated. The line no. 3 indicates a mode propagating 

in a free bar  
(0,2)

(0,1)bar

L
L  originated from the reflection of (0,2)L  mode at the end 

of the specimen. Similarly, line no. 4 indicates a  
(0,1)

(0,1)bar

L
L  mode. While the debonding 

length is not larger than 30 cm these two modes are registered as a single wave packet 

and they are difficult to identify in registered signals. The time-of-flight of reflections from 

the anchorage increases with the debonding length until it coincides with the reflection from 

the end of the specimen registered for a fully debonded anchor #D. The registration time 

of reflections from the end of the specimen decreases proportionally to the increase 

of debonding length damage according to Eq. (5.3). The difference in the angle of inclination 

for the lines no. 3 and 4, passing through the wave packets reflected from the end 

of the specimen is caused by difference in wave velocity of particular modes, i.e. (0,2)L  

mode is characterized by a higher group velocity than (0,1)L  mode and consequently, 

the line connecting subsequent reflections of (0,2)L  has the higher angle of inclination. 

Figure 5.18 shows results for the specimens with debonding in the middle of the embedded 

part. Because deboning is located within the three-layer part, in each signal the diffracted 

wave is observed at the same time independently of the debonding length. Therefore, lines 

no. 1 and no. 2 are vertical. In general, only the first diffraction is easy to identify. 

The second diffraction is clearly visible only in the signal gained for anchor #A. The lines 

no. 3 and no. 4 indicate reflections of  
(0,2)

(0,1)bar

L
L  and  

(0,1)
(0,1)bar

L
L  modes, 

respectively. An additional line no. 5 connects reflections from the start of the debonding. 

This reflection interferes with the second diffraction for shorter debonding lengths dL . 

In the case of longer debonding lengths the distance 
1b

L  between the proximal end 
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of the embedded part and the start of debonding shortens and reflections 

from the beginning of debonding interfere with the first diffraction. 

 

 

Figure 5.18. Experimental wave propagation signals registered at the free end of the bar with debonding 

at the middle of the embedded part: a) fully bonded specimen #E, specimen #A with debonding of length 

of b) 10 cm, c) 20 cm, d) 30 cm, e) 40 cm and f) fully debonded specimen #D 
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Figure 5.19. Experimental wave propagation signals registered at the free end of the bar with debonding at 

the end of the embedded part: a) fully bonded specimen #E, specimen #A with debonding of length 

of b) 10 cm, c) 20 cm, d) 30 cm, e) 40 cm and f) fully debonded specimen #D 
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Figure 5.19 presents results for specimens with debonding at the end 

of the embedded part. As previously, reflections from the anchorage are registered 

at the same time and they are indicated by a vertical line no. 1. Reflections from 

the beginning of debonding are visible (line no. 5), but for shorter debonding length they 

interfere with reflections of  
(0,2)

(0,1)bar

L
L  mode from the end of the specimen 

and for longer debonding lengths they interfere with the second (line no. 2) or the first 

diffraction (line no. 1). 

The debonding length dL  is incremented with a step of 10 cm for specimens from 

groups #A, #B and #C. Accordingly, the times of flight of reflections from the end 

of specimens decrease by the same time step in each group. Thus, straight lines no. 4 

and no. 5 passing through reflections of  
(0,2)

(0,1)bar

L
L  and  

(0,1)
(0,1)bar

L
L  

are characterized by the same angle of inclination in each of the three cases. The difference 

between the angle of inclination can be observed for the lines connecting reflections from 

the beginning of debonding (lines no. 5 in Figure 5.18 and Figure 5.19). In particular 

anchors of the group #B the difference in the distance between the PZT sensor 

and the beginning of debonding (
1f bL L ) is equal to 5 cm, while for anchors in group #C 

for the same distance ( f bL L ) the difference is equal to 10 cm. For this reason, the line 

connecting reflections from debonding in group #C is more inclined.  

Figure 5.20 shows signals registered by sensor B plotted in the form of envelopes 

with normalized amplitudes. It can be seen that also in the case of signals registered 

at the fixed end, the time shifting of the first reflection is visible for various lengths 

of debonding. Between the first and second reflections of (0,2)L  mode from the end 

of the specimen, separated (0,1)L  modes, converted tube modes and flexural modes 

excited as a result of the non-perfect central position of the actuator were registered.  

Figures 5.17 to 5.19 show that the location of debonding does not affect the average 

velocity of a guided wave propagating throughout the anchor, however, it acts strongly 

on the complexity of wave propagation signals and the number of modes excited during 

wave propagation. Debonding located at the beginning of the bonded part of the anchor 

is the easiest to identify because only one diffraction occurs in this case. Debonding 

located in the middle and at the end of the specimen result in numerous diffractions 

and modes conversions what considerably impede signal interpretation. 

Figure 5.21 compares the signals registered in the free bar and in the fully debonded 

specimen. Particular reflections from both bar ends were registered at the same time 
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for both specimens. Thus the wave velocity in the fully debonded anchor identical 

to the wave velocity in the free bar clearly indicates no cooperation between the core 

and cladding. 

 

 

Figure 5.20. Envelopes of experimental wave propagation signals registered at the fixed end of the bar 

with variable length of debonding located at a) the beginning, b) in the middle and c) at the end of specimen 

 

 

Figure 5.21. Comparison of experimental signals recorded for the free rod and the fully debonded specimen 
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The only difference between signals is the wave diffracted at the anchorage which 

was recorded for a fully debonded specimen case. The same diffracted wave is visible 

in the signal for specimen #A with 40 cm debonding at the beginning (Figure 5.17e). 

It is characterized by very low amplitude and it can be hardly identified. This locally 

diffracted wave results from imperfections in specimen manufacturing. 

In order to compare results for anchors with variable debonding locations, amplitude 

values of the first reflection from the end of the specimen have been determined and listed 

in Table 5.1. Amplitudes are given as the percentage of the value of the input amplitude. 

In each column the amplitude with the lowest value has been marked. Despite a small 

number of samples one can observe a tendency. In three of four cases the amplitude 

registered for the anchor with middle-located debonding has the lowest value. In the case 

of debonding with a length of 20 cm the difference between the lowest value and the value 

registered for middle located debonding is insignificant. Not a single reflection only, 

but all the signals for the middle debonding location are characterized by relatively low 

amplitudes what can be observed while Figure 5.18 is compared with Figure 5.17 

and Figure 5.19. In general, the amplitude decrease is caused by wave damping and energy 

transferring into surrounding cladding, being a possible result of multiple diffractions 

or mode separation. As presented in Section 2.3, the damage in the middle of the specimen 

results in multiple wave diffractions, division of energy on modes propagating in the free 

part, which are converted into modes travelling in perfectly bonded part and tube modes 

in a separate cladding. A multitude of phenomena in such damaged elements and a high 

degree of their complexity result in the most intensive energy dissipation. 

 

Table 5.1. Amplitude values of reflections from the end of the specimen for various debonding length 

and position 

Debonding 

position 

Debonding length [cm] 

0 10 20 30 40 50 

beginning 

8.73 

7.93 14.37 46.21 40.71 

70.69 middle 5.68 17.28 6.28 19.56 

end 13.82 42.52 57.36 72.02 

 

5.4.2 Results of the pull-out test 

In this case the failure mechanism is the same for all specimens, involving damage 

of the connection on the grout/bar interface. The photo of the damaged specimen is given 
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in Figure 5.22. The presence of initial debonding introduced in the form of the cellophane 

film at the bar/grout interface act strongly on the load-displacement responses.  

 

 

Figure 5.22. Failure mode of the anchor after pull-out procedure 

 

Figure 5.23 shows the force-displacement curves for all tested specimens 

with variable debonding lengths. Additionally, load-displacement reference responses 

for fully bonded and fully debonded anchors were plotted. The output force-displacement 

curves obtained for the specimens with the same length of debonding, regardless 

of its position, reveal similar features (Figure 5.23). The failure of anchors is accompanied 

by a sudden load drop (Figure 5.23a). For some specimens with a debonding length 

of 20 cm and 30 cm, the load-displacement curves cease to be smooth after reaching 

the maximum applied load, while the bars do not eject uniformly from mortar cover. 

This manifests by numerous local load maxima, but none of them exceeds the value 

of the first occurring peak (Figure 5.23b and c). For anchors with 40 cm debonding at least 

two distinct peaks were recorded. Importantly, in two cases, the global maximum 

was reached after amplification after the first load drop (Figure 5.23d). The same effect 

can be observed for a fully debonded anchor. In this case damage of adhesive bonding 

between the core and cladding already occurred after the first load drop. The increase 

of the load while continuing pull-out test was caused by friction forces between steel 

and grout.  
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Figure 5.23. Load-displacement curves for anchors with pre-existing debonding with length equal to: 

a) 10 cm; b) 20 cm; c) 30 cm; d) 40 cm 

 

Figure 5.23 presents the load capacities of anchors listed and the average load 

capacity of the anchors with the same debonding length determined. The plot 

of the average load capacity of bar/grout connection for anchors with the same debonding 

length is given in Figure 5.24. It is clearly visible that the load capacity decreases 

with the increase of bonding length. 

 

 

Figure 5.24. Average load capacity of anchors with variable debonding length 

The most important observation from destructive tests concerns a fully debonded 

specimen. The maximum load carried by the fully debonded anchor was equal to 6.07 kN, 

which represents more than 25% of load-carrying capacity of a fully bonded anchor, 
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while the wave propagation signal registered for this specimen revealed a complete 

inability to carry shear stresses. It can be therefore concluded that guided waves are 

characterized by high sensitivity to debonding detection. 

 

5.5 Summary and conclusions 
 

In this Chapter theoretical, numerical and experimental investigations of guided 

wave propagation in a steel bar partially embedded in grout with pre-existing debonding 

were carried out. Anchors with variable length and location of debonding were analyzed. 

The study brings a comprehensive description of the nature of wave phenomena occurring 

in a debonded element pointing out the damage location impact on wave conversion 

and diffraction. 

The following concluding remarks can be drawn from the theoretical description 

of guided wave propagation in partially embedded bars with debonding supported 

by the FEM analysis: 

 The phenomenon of wave propagation in bars partially embedded in grout 

with debonding at steel/grout interface requires the regard of dispersion curves 

for multilayered bars, hollow cylinders and free bars, guided wave propagation 

due to different velocities of guided wave propagation through the free length 

of the anchor, the bonded length of the anchor and the separated cover. 

 The presence of debonding affects the wave propagation in a multilayered specimen, 

inter alia, the number of travelling modes, their velocities, conversion 

and diffraction. 

 Dispersion curves for a free core and a multilayered waveguide form an important 

prerequisite for the implementation of guided waves for nondestructive testing 

of partially embedded bars, because depending on the value of the excitation 

frequency, the average velocity of the guided wave propagating through the total 

anchor length with debonding can be smaller, grater or the same as the average 

velocity of the guided wave propagated through the healthy anchor. 

 The debonding length can be estimated on the basis of the average wave velocity 

of the reflections from the end provided that the dispersion curves for the free core 

and for the cladding are known. The selection of appropriate excitation frequency 
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affects the effectiveness of the assessment of the debonding length. The greater 

the difference between the fastest mode propagating in the free bar and the fastest 

mode in the coated bar, the greater variation of the average wave velocity triggered 

by the deboning occurrence. 

 The average velocity in the anchor may be a meaningful indicator of the bonding 

quality only in the case of partially embedded bars while geometry is known. 

In the case of partially embedded bars for which the geometry of the bonded part 

is not precisely known (e.g. real ground anchors or soil nails), guided waves 

with lower frequency should be used, showing the velocity of the first (0,1)L  mode 

in the free bar is higher than do the modes in the covered bar. Next, it is possible 

to assume that the anchor deterioration is associated with the increase in the average 

velocity. In addition, a low frequency range ensures the smallest possible number 

of excited modes, which may facilitate interpretation of the results. The choice 

of high frequency range without the knowledge of the shape of dispersion curves 

for the free and multilayered bar may be decisive for the average velocity of the first 

reflection from the end of the anchor in the case of its state deterioration to increase, 

decrease or remain unchanged. 

 The debonding location does not affect average velocity of a guided wave 

propagating through the anchor, however it has a great influence on the complexity 

of wave propagation signals and the number of modes excited during wave 

propagation. Debonding located at the beginning of the bonded part of the anchor 

is the easiest to identify because only one diffraction occurs in this case. Debonding 

located at the middle and at the end of the specimen results in numerous diffractions 

and modes conversions to considerably impede signal interpretation. 

The experimental investigations of guided wave propagation and pull-out tests 

conducted for partially embedded bars with pre-existed debonding support the following 

conclusions: 

 A wave propagation signal measured at the free end of the bar contains bar modes 

diffracted at the anchorage or defect beginning/end as well as bar modes originated 

from the reflection of multilayered modes from the end of the specimen. Detection 

of debonding based on a signal registered during single measurement can be difficult 

due to the multimode propagation, a plurality of diffractions and therefore, 
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considerable difficulties in the identification of registered wave packets. However, 

the application of guided wave based monitoring system turns out to be an effective 

and promising method to observe of debonding evolution in anchors. Experimental 

signals acquired for specimens of debonding lengths increasing from 0% to 100% 

with a step of 20% of the bonded length, led to identification of debonding. 

The differences between signals for different debonding lengths were clearly visible 

is all analysed cases of damage location. 

 The relative value of the amplitude of the wave reflected from the end of the anchor 

does not only depend on the intensity of wave energy leakage into surrounding 

medium but also on the kind of phenomena during wave propagation. In general, 

the greatest decrease of the amplitude was observed for anchors with debonding 

in the middle of the fixed length. For this defect location the most intensive energy 

dissipation occurs due to multiple wave diffractions, mode conversions and division 

of energy on modes propagating in the free and coated parts. Therefore, 

it can be concluded, that even is the case of the same length of the damaged 

connection between the core and cladding, debonding within the anchor body causes 

the increase of complexity level of registered wave propagation signals. 

 In laboratory models of anchors, debonding was introduced using a cellophane film 

with a total thickness about 60 micrometers. Despite of such small thickness 

of debonding, guided waves appeared extremely sensitive in the detection of defects 

in adhesive bonding and any stress discontinuity at the interface of two layers. 

The wave velocity identified for a fully debonded specimen was equal to the velocity 

for the free bar, so it can be concluded that there was no cooperation between steel 

and the cover. 

 The pull-out tests revealed that the force-displacement curves obtained 

for the specimens with the same length of debonding, regardless of its position, 

showed similar features, including similar load-carrying capacity. High sensitivity 

of guided waves to the detection of debonding was confirmed by pull-out test results 

for a fully debonded specimen. The maximum load carried by a fully debonded 

anchor was equal 6.07 kN, which represents more than 25% of the load-carrying 

capacity of the fully bonded anchor, while the wave propagation signal registered 

for this specimen revealed its complete inability to carry shear stresses. 
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It can be therefore concluded that guided waves may be used as an effective method 

to detect adhesive debonding in early stages of its development. 
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CHAPTER 6 

Equation Section (Next) 

 

 

 

6 Damage detection in ground anchor tendon 

Damage detection in ground anchor tendon 

6.1 Introduction 
 

Ground anchors are intended to in the ground so they are constantly exposed 

to aggressive environment. For this reason one of the most common anchor failure mode 

is corrosion. In extreme cases the localized damage is necking caused by tension 

deformation or corrosion pit. 

A significant potential of the use of guided waves in diagnostics of free and 

embedded bars with localized damage has been presented by many scientists. Research of 

monitoring and defect detection by guided stress wave method in wire strands was 

conducted by Lanza et al. [115]. Experimental and numerical research of detection of 

additional mass in an aluminium bar has been described by Palacz et al. [165]. Rucka [181] 

investigated an influence of different types of discontinuities, namely a notch, an additional 

mass and a weld on wave propagation in steel bars. Lu et al. [131] presented the results 

of experimental works on damage detection in the form of partial material removal 

in a rebar embedded in a concrete beam. A study concerning wave scattering 

from discontinuities of variable length and depth in waveguides were conducted by Pau et 

al. [169]. Lucena and Dos Santos [132] applied a new approach based on the time reversal 

method for damage detection in cracked bars. 

A second group of common damage patterns in bars are uniform defects resulting 

from corrosion of an element surface. Corrosion process takes a long time and usually 

the early corrosion stage is usually not dangerous for a structure. However, in order 

to avoid serious consequences, e.g. replacement of entire structural elements regular 

inspections and continuous updates of the condition assessment are required. Moreover, 
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in the case of reinforced concrete structures corrosion process occurring inside the concrete 

cover cannot be observed directly. Attempts to develop a wireless embedded sensor system 

to monitor and assess corrosion damage in reinforced concrete were taken by Reis et al. 

[177]. Ervin and Reis [60] tested both low and high frequency ranges of ultrasonic waves 

for the monitoring of corrosion damage in reinforced mortar specimens. Longitudinal 

waves of high frequencies were used by Ervin et al [61] to monitor reinforced mortar 

specimens undergoing accelerated uniform and localized corrosion. Two ultrasonic 

techniques of pulse transmission and pulse echo were used to monitor the healthy 

and damaged reinforcing bar in concrete by Sharma and Mukherjee [194]. Fractal analysis 

of guided ultrasonic waves to evaluate the corrosion level in post-tensioned systems 

was proposed by Moustafa et al. [156]. Farhidzadeh and Salamone [62] used dispersion 

curves, continuous wavelet transform and wave velocity measurement in the quantification 

of corrosion damage of multiwire prestressing steel strands. 

All the reported papers greatly illustrate the diversity of works to develop 

nondestructive techniques for damage and corrosion detection in free and embedded bars. 

Despite significant achievements and improvements in the field of structural diagnostics 

there is still a need of constant improvement of existing methods and directing them 

into monitoring of particular types of structures. A fast and effective method of defect 

detection is especially important in the case of structural objects like ground anchors 

(Figure 6.1) which cannot be inspected by standard visual inspection approach. In general 

both, localized and surface damage may develop in any part of the anchor so there 

is a need to create methods allowing to identify any type of damage. In the case of tendons 

cracks and necking are possible failure modes. Moreover, corrosion damage may develop 

along the free part of the tendon or may occur along embedded part as a result of poor 

manufacturing and debonding between the tendon and the anchor body. 

The following Chapter deals with the experimental investigation of point damage 

and corrosion detection in bars by means of guided wave propagation method. 

Experiments are conducted for steel free bars and covered bars embedded in grout, which 

can be treated as laboratory models of a ground anchors. Point defect in the form of notch 

and variable levels of corrosion damage of steel core are investigated. Particular attention 

is paid to influence of damage occurrence on wave propagation phenomena which varies 

with the type of damage and the presence of the additional layer of the grout. Moreover, 

two types of excitation signals were analysed: a broad-band excitation with the use 

of a pulse and a single frequency excitation with the use of a wave packet. The results 
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are presented in the form of spectrograms of pulse induced waves and time-domain signals 

of wave packet induced waves. 

The aim of the investigation is to compare the effectiveness of various wave 

excitations and signal processing procedures in point and corrosion damage detection 

in free and embedded bars. The main elements are detailed description of wave mode 

conversion and separation in multilayered bar with point damage, deriving a formula 

for localizing point damages in multilayered bar on the basis of time-of-flight 

and velocities of the fastest wave modes, performing analytical spectrograms for free 

and multilayered bar with point damage and the comparison of analytical and experimental 

time-frequency representations for bars with point and surface damage. 

 

 

Figure 6.1 Schematic sketch of ground anchor with indicated corrosion traps 

 

6.2 Theoretical background 

6.2.1 Identification of localized damage 

In this section, the interaction of guided waves with crack-type damage 

is investigated, in both free and partially embedded bars. The inquiry presented here 

is related to the case of dispersion curves for free and embedded bar given in Figure 6.2, 

however in general, it is universal. The excitation frequency used in the further part of this 

Chapter was chosen on the basis of tunning test and was equal to 60 kHz for free rod 

and 70 kHz for multilayered rod. The excitation of 60 kHz allows inducing a single 

longitudinal mode in a single-layer bar, while the excitation of 70 kHz results 
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in propagation of two longitudinal modes in multilayered bar. In the presented frequency 

range up to 500 kHz, three longitudinal modes (0,1)barL , (0,2)barL , (0,3)barL  and three 

flexural modes (1,1)barF , (1,2)barF  and (1,3)barF  can be excited in a free bar. Compared 

to these curves (given by dashed black lines in Figure 6.2), the number of both longitudinal 

and flexural modes increases significantly while the bar is covered by additional layers. 

It can be also observed, that in the plot for longitudinal modes there is a frequency interval 

(from about 250 kHz to 395 kHz) to make the wave in the multilayered bar propagates 

faster than in the free bar. In the case of flexural modes, the velocity of any mode does not 

exceed the velocity of the first mode for the free bar (1,1)barF . 

 

 

Figure 6.2. Group velocity dispersion curves of 1 cm diameter steel bar (E = 207 GPa, v = 0.3, 

ρ = 7894 kg/m
3
) embedded in mortar with thickness of 17.5 mm (E = 23.68 GPa, v = 0.2, ρ = 2067 kg/m

3
) 

formed in PVC pipe with thickness of 2.5 mm (E = 1.5 GPa, v = 0.4, ρ = 900 kg/m3): a) longitudinal modes, 

b) flexural modes 

 

 

Figure 6.3. Wave propagation in the free bar by guided wave propagation: a) excitation of wave, single mode 

propagation; b) conversion of modes after wave diffraction by crack 
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Figure 6.3 illustrates interaction of waves with the crack in the free bar. Initially, 

the excited (0,1)barL  mode propagates along the bar. Next, the wave is diffracted 

and transmitted past the crack. Moreover, due to non-symmetrical defect, mode conversion 

is possible resulting in the appearance of the (1,1)barF  mode. 

 

 

Figure 6.4. Wave propagation in a partially embedded bar with crack-type damage: a) excitation of wave, 

single mode propagation in the free bar; b) wave diffraction at the anchorage, multimode propagation 

and mode separation at embedded part of bar, c) conversion of modes after wave diffraction by crack; 

d) multimode propagation in the free bar 
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Figure 6.4 shows the case, when the crack-type damage is located within the coated 

part of a multilayered cylindrical system. The excited (0,1)barL  mode propagates along 

the free part of the bar (Figure 6.3a). After the wave diffraction at the anchorage (Figure 

6.4b), part of the wave energy in the form of a longitudinal mode (0,1)barL  travels back 

along the bar. The remaining wave energy is transferred into the multilayered part (Figure 

6.4b) and after conversion it still travels forward in the form of two longitudinal modes 

(0,1)L  and (0,2)L . Due to the difference in their velocities they separate and according 

to considered dispersion curves (Figure 6.2), the mode (0,2)L  propagates faster. Next, 

both longitudinal modes are diffracted by damage (Figure 6.4c). Similarly to the free bar 

case, the crack occurrence may lead to the mode conversion and as a consequence each 

diffracted longitudinal mode can be converted into four modes, which can propagate 

in a multilayered system: four flexural modes (1,1)F , (1,2)F , (1,3)F , (1,4)F  

and longitudinal modes (0,1)L  and (0,2)L . In Figure 5.3c the flexural modes converted 

from (0,1)L  mode are denoted as 
(0,1){ (1,1)}LF , 

(0,1){ (1,2)}LF  ,
(0,1){ (1,3)}LF  

and 
(0,1){ (1,4)}LF  while modes converted from (0,2)L  mode are 

(0,2){ (1,1)}LF , 

(0,2){ (1,2)}LF  , 
(0,2){ (1,3)}LF  and 

(0,2){ (1,4)}LF . Therefore, after interaction with damage, 

one wave packet with ten converted modes propagates back and another wave packet 

with eight modes propagate along the coated bar, subsequently reflecting from the end 

of the specimen (Figure 6.4d). As the wave packet propagating back reaches the free part 

of the bar, the eight modes are converted into two longitudinal modes (0,2){ (0,1)}bar

LL , 

(0,1){ (0,1)}bar

LL  and eight flexural modes 
(0,2){ (1,3)}{ (1,1)}

L

bar

FF , 
(0,2){ (1,1)}{ (1,1)}

L

bar

FF , 

(0,2){ (1,2)}{ (1,1)}
L

bar

FF , 
(0,2){ (1,4)}{ (1,1)}

L

bar

FF  
(0,1){ (1,3)}{ (1,1)}

L

bar

FF , 
(0,1){ (1,1)}{ (1,1)}

L

bar

FF , 

(0,1){ (1,2)}{ (1,1)}
L

bar

FF , 
(0,1){ (1,4)}{ (1,1)}

L

bar

FF which may exist in the uncoated bar according 

to dispersion solution presented in Figure 6.2. Damage localization can be identified 

on the basis of the signal registered by sensor A, located at left end of the bar (compare 

Figure 6.4). The schemes of wave propagation signals for free and partially embedded bars 

are given in Figure 6.5. As a result of the interaction of the wave with crack-type damage 

in the free bar, an additional wave packet occurs (Figure 6.5a). Location of the defect can 

be easily determined on the basis of the time-of-flight (ToF) 
,D bar

oFt : 

 

,

2

bar D bar

g oF

D

c t
L    (6.1) 

where bar
gc  is the group velocity of the registered wave packet. 
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Figure 6.5. Schemes of wave propagation signals registered for a) free bar and for partially embedded bar 

with different relations of group velocity b) ,max

bar

g gc c ; c) ,max

bar

g gc c  and d) ,max

bar

g gc c  

 

The signal recorded in the multilayered bar contains at least three wave packets: 

the diffraction at the anchorage containing one longitudinal mode (0,1)barL , the diffraction 

at the crack containing eight modes and reflection from the end of the specimen. Damage 

position 
DL  can be determined on the basis of the time-of-flight D

oFt  between the incident 

wave and the diffraction by the crack. For the considered specimen partially embedded 

in mortar, the longitudinal mode in the free bar travels with velocity 
bar

gc  while 

longitudinal modes in the multilayered part travel with velocities 
j

L

gc  (j denotes the number 

of modes, so the first mode travels with velocity 
1

L

gc  and the second mode with velocity 

2

L

gc  ) and flexural modes travel with velocity 
j

F

gc  (
1

F

gc ,
2

F

gc  and 
3

F

gc ). The fastest mode 

travels double length of the free part 
fL  and double distance to damage in the embedded 

part 
DL  before it is registered by the sensor. The time-of-flight of the diffracted wave 

can be calculated as: 

 
,max

2 2fD D
oF bar

g g

L L
t

c c
  , (6.2) 

where 
,maxgc  is group velocity of the fastest mode in the multilayered part 

and in the presented case L(0,2) mode is the fastest. Because modes in the free bar 

are characterized by different velocities than the modes in the covered part, there are some 

differences in registration time of reflections from damage located at the same place 
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for the free and covered bar. The difference in times-of-flight between the free and covered 

bar is: 

 
,max

,max ,max

2 2( ) 2 ( )2
bar

f f D D g gD D
oF bar bar bar

g g g g g

L L L L c cL
t

c c c c c

 
     . (6.3) 

If the velocity of the fastest mode in the free bar is higher than the velocity 

of the fastest mode in the covered bar, the reflection from damage is registered later. 

Otherwise, the reflection is registered earlier. The signals recorded in the multilayered bar 

for different relations between group velocities 
bar

gc  and 
,maxgc  are presented in Figure 

6.5b-d. In order to determine the damage position for the covered bar reformulated Eq. 

(6.3) may be applied: 

 
,max ,max2

2

D bar

oF g g F g

D bar

g

t c c L c
L

c


   (6.4) 

6.2.2 Identification of uniform corrosion damage 

This section addresses guided wave propagation in a uniformly corroded bar. 

The main effects of such corrosion are reduction of the bar diameter and appearance 

of irregularities on the bar surface in the form of wide-spread pitting. 

The reduction in bar diameter acts upon on the velocity of a guided wave. Figure 

6.6a shows dispersion curves of the first longitudinal mode for a steel bar with different 

diameters: 1 mm, 5 mm, 10 mm and 40 mm. It can be observed that in the considered 

frequency range 0–1700 kHz the number of modes decreases with the decrease of the bar 

diameter. Moreover, for the established frequency the wave velocity of particular modes 

changes with the variation of the bar diameter. Considering the first longitudinal mode 

(0,1)L  it can be seen that the frequency corresponding to the minimum value of the group 

velocity increases with the decrease of the bar diameter (Figure 6.6a). The plot 

of the derivative of the group velocity of the first mode L(0,1) with respect to the bar 

diameter /gdc dD  (Figure 6.6b) indicates the frequency range which is the most sensitive 

to changes in the bar diameter. Exemplary, for bars with relatively small diameters (1-10 

mm) mode (0,1)L  detects high sensitivity to changes in the bar diameter for a wide 

frequency range. With the increase of the bar diameter, the width of the zone sensitive 

to bar diameter variation is significantly reduced. 
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Figure 6.6. (a) Group velocity dispersion curves for steel bar (E = 207 GPa, v = 0.3, ρ = 7894 kg/m
3
) 

with different diameters; (b) derivative of the group velocity with respect to the bar diameter for L(0,1) mode 

 

Corrosion is an oxidation-reduction process leading to structural steel deterioration, 

converting main component of steel, iron Fe, into ferrous hydroxide species. 

With the corrosion development, in the bar corrosion pits occur, which locally change 

the structure of a bar surface and cause mass reduction of the bar. The Huygens principle 

states that each point in a wave is a source of secondary waves of the same frequency 

and wavelength, thus in a corroded bar including irregularities multiple diffractions may 

be observed (Figure 6.7). Irregularities of bar surface also lead to mode conversions 

and thereby, to increase of the complexity of the governing phenomena. Another important 

consequence of a rough surface is a higher wave damping. Due to the number 

of diffractions and conversions, the wave energy dissipation is more intense here than 

in the undamaged bar. 

In the case of uniform corrosion of the bar embedded in mortar, corrosion products 

tend to cause expansion, which in consequence apply a pressure to the surrounding mortar. 

This expansion pressure induces tensile stresses in the mortar around the reinforced bar 

consequently leading to cover cracking. 

Additionally, expansion of corrosion products may cause debonding between steel 

and mortar. Due to corrosion, a multilayered perfectly bonded bar may act as a steel core 

with irregular surface and separate cladding, resulting in a faster wave damping, 

the occurrence of reflection from corrosion pits or even change in the wave group velocity. 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


 

 
 

170 

 

 

Figure 6.7. Wave diffractions in corroded bar 

 

6.3 Experimental investigations 

6.3.1 Description of specimens 

Two types of specimens were investigated in this study, namely a free bar 

and a multilayered bar partially embedded in mortar (Figure 6.8). The steel bar 

with the material parameters E  = 207 GPa,   = 0.3,   = 7894 kg/m
3
 of a 1 m length 

and 10 mm diameter. In the process of specimen preparation, the bar was inserted centrally 

in a PVC mould and filled by the fast setting cement-based mortar. The mould was 50 cm 

long, its outer diameter was 5 cm and a wall thickness equal 2.5 mm. The following 

material parameters were taken: E  = 23.68 GPa;   = 0.2;   = 1978.13 kg/m
3
 (mortar), 

E  = 1.5 GPa;   = 0,4;   = 900 kg/m
3
 (PVC). Prior to experimental tests the partially 

embedded bars were left to cure at room temperature for 14 days. 

 

 

Figure 6.8 Geometry of test specimens: a) free bar; b) partially embedded bar 
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6.3.1.1 Preparation of test specimens with crack-type damage 

A crack-type damage was introduced into the bar by making a notch with a depth 

of 5 mm and a width of 1 mm. The defect was situated at a distance of 76 cm from the bar 

left end (Figure 6.9). After ultrasonic tests conducted on the free bar, the bar was covered 

by mortar to make a partially embedded specimen. 

 

 

Figure 6.9. Bar with crack-like damage: a) defect geometry, b) defect localization 

 

6.3.1.2 Preparation of test specimens with corrosion damage 

Corrosion damage was triggered by an accelerated corrosion test (e.g. [62],[177]). 

The specimens were immersed in 5% sodium chloride solution and a direct electric current 

(DC) was impressed to increase the rate of corrosion. The steel bar was an anode 

and another metal bar acted as cathode. Firstly, the free bar was subjected to corrosion. 

The corrosion process was conducted in six stages. At each stage, the bar was immersed 

in the solution for one hour. Before the beginning of the next stage, the solution of NaCl 

was changed so that the electrolyte concentration was the same at the beginning of the each 

stage of the experiment. After each stage of the corrosion process, the uniformly corroded 

bar was left to dry, subjected to nondestructive testing and subjected to electrolysis again. D
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Figure 6.10. Corrosion progress in a steel bar: a) healthy bar and bar after b) 1 hour, c) 2 hours, d) 3 hours, 

e) 4 hours, f) 5 hours, g) 6 hours of corrosion test 

 

Figure 6.10 illustrates corrosion progress in a free bar. It can be seen that the size 

and the number of pits significantly increased and the bar surface was degraded 

considerably. Moreover, the difference in diameter of the corroded bar was observable. 

The mass loss was estimated after each hour as: 

 m M m     (6.5) 
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where M denotes the initial mass of the bar and m is the mass after the considered 

corrosion stage. The obtained relationship between the mass loss and the corrosion time 

(Figure 6.11) stays with agreement with the Faraday’s law of electrolysis. 

 

 

Figure 6.11. Mass loss of the free bar with respect to time of induced corrosion 

 

Next, a partially embedded specimen was prepared with the use of the intact steel 

bars. The specimen was corroded only at the length embedded in mortar so the free part 

of the bar was pristine (Figure 6.12). Five four-hour corrosion stages were carried out. 

The corrosion process was much longer than in the free bar case because the mortar cover 

and PVC pipe ensured a significant anti-corrosion protection. After each stage 

of the corrosion process the specimen was left to dry, subjected to nondestructive testing 

and subjected to electrolysis again. 

 

 

Figure 6.12. Corrosion progress in a steel bar embedded in mortar: a) healthy bar and bar after b) 4 hours, 

c) 8 hours, d) 12 hours, e) 16 hours and f) 20 hours of corrosion test 
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6.3.2 Experimental procedure 

Ultrasonic waves were generated in two ways. In the first case, waves were excited 

by ultrasonic transducers (sending transducer ST) with the use of ultrasonic testing box 

OPBOX-01/100. The pulse width was equal to 3 microseconds. This broad-band excitation 

makes it possible to induce wave propagation with a frequency range up to 500 kHz. 

In the case of a free bar, the pulse-echo approach was applied with the use of a single 

sending/receiving (ST/RT) transducer attached to the left end of the bar. The ultrasonic test 

for a partially embedded bar was conducted in a pitch-catch mode. The signal was sent 

from a sending transducer (ST) at the free end of the specimen and received by a receiving 

transducer (RT) attached to the opposite side, at the embedded end of the specimen (Figure 

6.13a). The change in configuration of both sending and receiving transducers with respect 

to experimental tests of the free bar was caused by the fact that in the case of pusler-

receiver located at the one end, reflection from the anchorage could be registered, 

to possibly disrupt the results in the form of spectrograms presented in the further part 

of the Chapter. 

In the second case, ultrasonic waves were excited by means of a plate piezo actuator 

mounted at the left end of the free bar (Figure 6.13b). The excitation signal was a wave 

packet consisting of a ten-cycle sine function modulated by the Hanning window. A carrier 

frequency of the signal was chosen on the basis of a tunning test and it was equal to 60 

kHz for the free bar and 70 kHz for the multilayered bar. The propagating waves were 

sensed at selected points of the specimen by piezo actuators Noliac NAC2011 acting 

as sensors (S1, S2 and S3). 

 

 

Figure 6.13. Localization of transducers during test with the use of: a) pulse excitation, b) wave packet 

excitation 
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6.4 Results and discussion 

6.4.1 Time-frequency representation of wave propagation signals 

Any time signal can be represented in a time-frequency domain to visualize 

its variable spectrum in time. In previous studies the time-frequency representation 

of wave propagation signals proved an effective tool in corrosion detection (e.g. [177], 

[60]). Such representation can be achieved using Short Time Fourier Transform (STFT). 

According to the STFT idea the signal is divided into a series of overlapping pieces which 

are then windowed and transformed by Fourier transform [37]. The STFT of a time-

domain signal ( )s t  is defined as [37]: 

 1

1
( , ) ( ) ( )

2

iS t e s h t d   








    (6.6) 

where ( )h t   is a window function centered at time t and with length equal to  . 

The energy density of the STFT spectrum is given by [37]: 

 
2

1 1( , ) ( , )E t S t    (6.7) 

and it is called a spectrogram of a transformed signal. 

An analytical time-frequency representation of a wave propagation signal can 

be calculated on the basis of a known wave velocity and the length of the specimen. 

In general, the wave excitation with frequency f results in propagation of n modes 

in the free bar. Velocities of modes in the free bar are equal to 
igc , while i varies from 1 

to n. Then, the time to travel the double length 2L of the specimen for mode i 

can be calculated as: 

 
2

i

bar
oF bar

g

L
t

c
   (6.8) 

While point damage occurs at the distance LD from the excitation point, each of n 

modes is reflected from this point and registered after a time equal: 

 
2

i

D D
oF bar

g

L
t

c
   (6.9) 
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Figure 6.14a presents spectrograms obtained for the intact free bar on the basis 

of the Pochhammer equation solution and Eq. (6.8). The spectrogram was performed 

assuming that the waves are generated and registered at the same end of the bar (compare 

Figure 6.13a). The spectrogram for the bar with a point damage is shown in Figure 6.14b. 

Additional curves, indicated by dashed lines, arise as a result of reflections from damage 

while the time-of-flight was calculated on the basis of Eq. (6.9). 

 

 

Figure 6.14. Analytical time-frequency representation for the free bar with wave excitation and signal 

registration at the same end: a) healthly bar; b) bar with point damage located 76 cm away from excitation 

point 

 

Obtaining the analytical time-frequency representation for a partially embedded bar 

is more complicated because of various velocities of waves propagating along free 

and embedded parts as well as larger number of modes which are converted 

at the anchorage. Let’s consider a general case of a partially embedded bar. Waves 

are excited at the free end and registered at the embedded end of the specimen (cf. Figure 

6.13). The wave excitation with frequency f results in propagation of n modes in the free 

part and each of n modes can be converted into m modes in the multilayered part. 

Velocities of modes in the free part and the multilayered part are equal to 
jgc  and 

igc , 

respectively and i varies from 1 to n while j varies from 1 to m. It means that the time 
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required to travel the length L of the specimen for mode i converted into mode j 

can be calculated as: 

 

ji

L F B
oF bar

gg

L L
t

cc
    (6.10) 

On the basis of Eq. (6.10), analytical results in the form of a graph presenting the 

wave velocity for any frequency can be performed. Figure 6.15a presents the time-

frequency relation for the analysed specimen (
FL   0.5 m and 

BL   0.5 m) on the basis 

of dispersion curves for the free and multilayered parts. An analytical spectrogram seems 

to be illegible, but it should be mentioned that in the considered frequency range three 

longitudinal modes in the free bar can be converted into seventeen modes 

in the multilayered part, thus the spectrogram contains 17 3 51i j     curves. When 

a point damage occurs along the embedded part, the wave reflects from the end 

of specimen, so the reflection from damage can be registered in a signal. A spectrogram 

in Figure 6.15b presents a time-frequency representation for a partially embedded bar 

taking into account a single reflection from damage located 76 cm away from excitation 

point. However in general, wave propagation phenomena may be much more complicated 

due to mode conversions and multiple reflections from damage and the anchorage. 

 

 

Figure 6.15. Analytical time-frequency representation for partially embedded bar with wave excitation and 

signal registration at opposite ends: a) healthy bar, c) bar with point damage located 76 cm away from 

excitation point 
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6.4.2 Crack type damage 

Figure 6.16 shows time-frequency representation of experimental signals obtained 

by the ultrasonic sending/receiving (ST/RT) transducer attached to the left end of the intact 

bar and the bar with the crack. In experimental results for the intact bar (Figure 6.16a), 

the first three modes (0,1)L , (0,2)L  and (0,3)L  can be identified (cf. Figure 6.14a). 

For (0,1)L  mode several curves corresponding to consecutive reflections from the bar 

end are clearly visible. The spectrogram obtained for a bar with the notch (Figure 6.16b) 

is much less readable than the spectrograms for the intact bar (Figure 6.16a), however 

additional curves of (0,1)L  mode can be observed indicating reflection form the crack (cf. 

Figure 6.14b). 

 

 

Figure 6.16. Spectrogram of ultrasonic signals registered in the free bar: a) intact bar, b) bar with crack 

 

The spectrograms for multilayered bars with and without point defects are given 

in Figure 6.17. For the bar with the crack, the density of energy is lower, especially 

for higher frequencies, to probably result from energy dissipation caused by damage 

existence. Despite the fact that there are some differences between the obtained results 

for healthy and damaged rod, any spectrogram resembles results obtained analytically 

(compare Figure 6.15). On the basis of a spectrogram in Figure 6.17b the damage presence 

cannot be stated, thus the notch cannot be localized. 
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Figure 6.17. Spectrogram of ultrasonic signals registered in the partially embedded bar: a) specimen 

with intact bar, b) specimen with bar with crack 

 

Figure 6.18 shows guided wave propagation signals excited by the piezo actuator. 

The signals were registered at the left end of the bar. The amplitude of the signals 

was normalized to 1. The characteristic reflections were identified and indicated. 

In the signal registered for the bar with the crack, additional reflection from damage 

is visible with the time-of-flight equal 0.3056 ms. For the excited wave with a frequency 

of 60 kHz, the analytical group velocity value was equal to 5071.9 m/s (Figure 6.2) 

and the experimental value determined on the basis of the signal registered for the intact 

bar was equal to 4950.5 m/s. The defect position was calculated using Eq. (6.1) 

and its value was equal to 0.775 m (for the analytical group velocity value) and 0.756 m 

(for the experimental group velocity value). The difference between the actual position 

and the position identified by guided waves was 1.97% (for analytical group velocity 

value) and 0.53% (for experimental group velocity value). 

The wave propagation signals registered for the partially embedded specimen 

are presented in Figure 6.19. Additionally, the signal envelopes for a free bar 

with the crack and the partially embedded bar with the intact bar were plotted to compare 

the differences in signals between a free and a multilayered bar. One can see that 

the amplitude values for multilayered specimens are relatively lower than for the free bar 
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as a result of wave energy leakage into the mortar cover. Comparing the results 

for damaged free and embedded specimens, it may be noticed that there is some shifting 

(denoted by D

oFt ) between registration times of reflections from damages. In the free bar 

case the reflection from defect is registered earlier, because the group velocity 

in the multilayered bar is lower than in the free bar case. Damage location can be estimated 

using the time-of-flight of reflection from damage (0.37 ms). The wave velocity 

in the multilayered part determined theoretically was equal to 2407.16 m/s 

and experimentally 2380.95 m/s. The position of damage was identified using Eq. (6.4) 

its values were 0.792 m and 0.80 m, respectively. The difference between the actual 

position and the position identified by guided waves was 4.21% (analytical group velocity 

value) and 5.26% (for experimental group velocity value). 

 

 

Figure 6.18. Experimental wave propagation signals registered for the free bar: a) intact bar, b) bar with crack 

 

 

Figure 6.19. Experimental wave propagation signals registered for partially embedded bar: a) specimen 

with intact bar; b) specimen with bar with crack 
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6.4.3 Corrosion damage 

Figure 6.20 shows time-frequency representation of experimental signals obtained 

by the ultrasonic pulser-receiver for a uniformly corroded bar. The shape of curves 

for the bar after 1 and hours of corrosion (Figure 6.20a and b) is similar to the curves 

for the intact bar (Figure 6.16a). For a longer duration of corrosion process the dispersion 

curves seem to disappear, however at spectrograms received after 3, 4 and 5 hours short 

segments of the dispersion curves of (0,1)L  mode are visible. After 6 hours of corrosion 

and the mass loss equal to 10.145%, in the spectrogram (Figure 6.16a) any curve was left, 

what indicates high sensitivity of this method to mass loss detection. 

 

 

Figure 6.20. Spectrogram of ultrasonic signals registered in the free bar after a) 1 hour, b) 2 hours, c) 3 hours, 

d) 4 hours, e) 5 hours, 6) 6 hours of induced corrosion process 
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Figure 6.21 shows time-frequency representation of experimental signals obtained 

by the ultrasonic pulser-receiver for the corroded multilayered bar. One can see that 

the spectrograms obtained experimentally differ from the results obtained theoretically and 

the dispersion curves cannot be clearly indicated, but the energy density of the STFT 

spectrum is much lower for bars corroded for a longer time. It is clearly visible 

that especially higher frequencies vanish for a longer time duration of a corrosion process. 

 

 

Figure 6.21. Spectrogram of ultrasonic signals registered in the partially embedded bar after a) 0 hour, 

b) 4 hours, c) 8 hours, d) 12 hours, e) 16 hours, f) 20 hours of induced corrosion process 

 

Figure 6.22 presents envelopes of wave propagation signals for the free bar 

with a variable level of corrosion. Two effects of corrosion development can be observed. 

One can see that the amplitude of particular reflections of (0,1)L  mode from the end 

of the bar decreases with the increase of the damage level. The wave attenuation is a result 
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of intense wave damping caused by the occurrence of corrosion pitting at the bar surface. 

The decrease of the amplitude value also applies to the additional converted flexural mode 

registered after 0.7 ms. However, the amplitude of the flexural mode does not decrease 

proportionally to the corrosion level like in the longitudinal mode case. For example 

in the presented case amplitude of (0,1)F  mode in a bar corroded for 6 hours was higher 

than in a bar corroded for 3 and 5 hours. The second effect related with corrosion damage 

concerns the wave propagation velocity. The more bar was destroyed, the shorter time-of-

flight of reflections from the end was obtained. This observation agrees with theoretical 

considerations well. Dispersion curves determined for various diameter of steel bar 

indicate that with the decrease of bar diameter, the velocity of the first longitudinal mode 

increases (Figure 6.6). 

 

 

Figure 6.22. Envelopes of experimental wave propagation signals registered for free bar at different stages 

of corrosion 

On the basis of experimental signals, the wave propagation velocity 
bar

gc  

was determined for each stage of the corrosion process. Next, the diameter 
cD  

of the corroded bar was calculated by means of the Pochhammer equation (Eq. (2.122) ). 

The obtained results were compared with the diameter 
mD  calculated involving the mass 

loss according to the following formula: 

 
4

m

m
D

L 
   (6.11) 
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The comparison of diameter values is given in Table 6.1. The differences 

in percentage mass loss obtained experimentally and theoretically are significant, however, 

in both cases the trend is downward. The results suggest that estimating the level 

of damage caused by corrosion on the basis of wave velocity is not effective and it gives 

the results that deviate significantly from the real ones. In the case of a bar corroded for 6 

hours the percentage mass loss determined experimentally was equal to 10.145% 

while the theoretical analysis indicates the mass loss equal to 63.15%. Thus wave velocity 

may be an indicative parameter, whose variations indicate corrosion occurrence, 

but do not allow for accurate estimation of the mass loss. The first reason for large 

discrepancies of experimental and theoretical results was the choice of excitation 

frequency. A carrier frequency of 60 kHz used in experiment, chosen on the basis 

of tunning test, was insensitive to changes of bar diameter, because the significant changes 

in bar diameter were bound to trigger negligible changes in wave velocity (cf. Figure 6.6b). 

For this reason even small errors in wave velocity estimation may result in significant bar 

diameter variations. A second factor, to act upon diameter determination was an applied 

bar theory. Due to corrosion the bar was covered with a layer of oxides with a tendency 

to expand. Volumetric density of corrosion products is lower than steel density. 

For this reason a corroded bar became a multilayered bar with an external layer 

characterized by much worse material parameters than steel. In the case of multilayered 

bars Pochhammer theory is not valid, thus its use may bring inaccurate diameter 

estimation. The results for a partially embedded bar subjected to corrosion are given 

in Figure 6.23. Single-frequency wave propagation signals were registered at both ends 

of the specimen.  

Table 6.1. Results of experimental and theoretical mass determining 

 
Experiment Theory 

time of 

corrosion 

test [h] 

wave 

velocity 

[m/s] 

bar 

mass 

[g] 

bar 

diameter 

Dm [mm] 

percentage 

mass loss [%] 

Bar 

diameter Dc 

[mm] 

bar 

mass [g] 

percentage 

mass loss [%] 

0 4950.5 620 10 0 17.79 1964.41 - 

1 4975.12 615.2 9.961 0.779 16.6 1708.47 13.03 

2 5000 607.3 9.897 2.041 15.26 1443.78 26.5 

3 5025.13 595.4 9.799 3.974 13.724 1167.76 40.55 

4 5037.78 583.3 9.699 5.922 12.85 1023.76 47.88 

5 5050.51 570.4 9.592 7.994 11.882 875.33 55.44 

6 5063.29 557.1 9.479 10.145 10.806 723.97 63.15 
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Figure 6.23. Signals registered for multilayered bar with variable level of level of corrosion level: a) signals 

registered at the free end of the bar and b) signals registered at the embedded end of bar 

 

The amplitudes were normalized to make the peak value of the input wave is equal 

to 1. The input wave travelled along the free part of the bar. Next, after diffraction 

at the anchorage, part of the wave energy travelled back and was registered at the free end. 

The remaining part of the energy travelled along the embedded part and was registered 

at the embedded end. Each signal registered at the free end of the bar (Figure 6.23a) 

contained reflection from the anchorage and reflection from the end of the specimen. 

The amplitude of the reflection form the anchorage was strongly sensitive to the damage 

level of the anchor. It can be seen that for a longer time of the corrosion process 

the reflection from the anchorage is more visible. It is caused by corrosion pit occurring 

at the media boundary (Figure 6.12d-f). The narrower necking, the more energy 

was reflected, so that the amplitude of the reflections from the anchorage increased. 
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Moreover, in the signals registered after 20 hours of corrosion process multiple reflections 

from the anchorage at the same time intervals were clearly visible. Differences 

in the cross-section between the free bar and the bar embedded in mortar also caused 

the increase of the amplitude of reflection from the anchorage (indicated by straight dashed 

line in Figure 6.23b). In the signals registered at the free end reflections from the end 

of the bar are also indicated. The amplitudes of these reflections became smaller until 

finally, after 16 hours of the corrosion process reflection is not visible. An amplitude 

decrease is caused by energy dissipation at irregularities present on the bar surface. 

It is worth mentioning, that corrosion damage did not act on wave velocity in the presented 

case. 

 

6.5 Conclusions 
 

In this Chapter theoretical and experimental investigations were carried 

out on guided wave propagation in free steel bars and bars partially embedded in grout 

with pre-existing damage. Two groups of damage have been taken into consideration: 

point damage and surface damage in the form of uniform corrosion. The considered point 

damage was visible in the form of the notch. In order to investigate the influence 

of corrosion occurrence on wave propagation, both free and covered bars with variable 

level of corrosion damage were analysed. The results were presented as time-domain 

propagation signals, registered by piezo transducers as well as spectrograms performed 

by Short Time Fourier Transform for signals registered by pulser-receiver. Point defects 

and variable level of corrosion damage in free or embedded bars investigated additionally 

in two different ways allow to denote both advantages and drawbacks of various 

approaches of wave excitations and manners o presenting results. Several conclusions 

can be drawn: 

 Damage detection by the use of time-domain signals is very effective. Single 

frequency used in experiment chosen on the basis of tunning test result in signals 

that are legible and easy to interpret. Damage location was successfully determined 

on the basis of time-of-flight and wave propagation velocity. Despite the fact 

that analytical and experimental velocities differ (the difference was equal to over 

100 m/s) there were no significant results between the outcomes.  
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 Time-frequency representations performed with the use of Short Time Fourier 

Transform stay with very good agreement with analytical time-frequency 

representation for a healthy bar. Additionally, the STFT spectrograms allow 

to determine the presence of point damage. 

 Surface damage of a bar caused by corrosion was successfully detected by guided 

wave propagation method. Time-domain signals were characterized by decreasing 

amplitude values resulting from higher wave energy damping in bars with multiple 

corrosion pits. The diameter decrease of the corroded bar caused the increase 

of wave velocity, confirmed by theoretical considerations. However, the wave 

velocity cannot be used as an indicator parameter to estimate diameter variations. 

Diameters of bar estimated experimentally on the basis of mass of the corroded bar 

and theoretically by the use of wave velocity and Pochhammer dispersion curves 

differ significantly. Significant divergence may result from the insensitivity 

of chosen frequency to diameter changes. In the case of insensitive frequency 

significant changes in bar diameter results in negligible changes in wave velocity, 

leading to significant error is diameter decrease estimation. The second factor, 

to probably act upon on inaccurate diameter estimation is the applied bar theory. 

The result of corrosion process is a layer of oxides covering the bar and expanding. 

Volumetric density of corrosion products is lower than steel density. For this reason 

the corroded bar act as a multilayered bar with an external layer characterized 

by much worse material parameters compared to steel. In the case of multilayered 

bars Pochhammer theory cannot be applied and diameter estimation on its basis 

may be inaccurate. As mentioned above wave propagation velocity cannot be used 

to accurately estimate the diameter of a corroded bar, but it may be an indicative 

parameter, whose changes indicate corrosion occurrence. 

 The STFT spectrograms proved to be very efficient tool for corrosion detection 

of free steel bars. Significant changes in distinctiveness of dispersion curves were 

observed even for small changes in mass of corroded bars. Considerable sensitivity 

of spectrograms results in a complete lack of dispersion curves in spectrogram 

for relatively low mass loss equal to 10.145%. 

 Point damages can be easily detected and localized in multilayered bars on the basis 

of time-domain propagation signals. However, in order to appropriately estimate 
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defect locations it is necessary to determine correctly the wave group velocities 

in particular parts of an embedded bar. 

 For a vast range of excitation frequencies reflection from damage in free bar 

is registered earlier than in the covered bar. However, there exists a range 

of frequencies to show reflection for free bar registered later than for covered bar. 

 The STFT spectrograms can be successfully used in the assessment of corrosion 

damage of embedded bars. Dispersion curves cannot be clearly indicated, 

but the energy density of the STFT spectrum is much lower for bars corroded 

for a longer time. It is clearly visible that especially higher frequencies vanish 

for longer time duration of corrosion process.  

 Corrosion damage acts upon amplitude values of time-domain signals registered 

at both ends of the bar. The amplitude of reflection from the end of the bar registered 

at the free end of the bar decreases because of surface irregularities of a corroded 

rod. At the same time amplitudes of reflections from the anchorage registered at both 

ends of the rod increase with the increase of time duration of a corrosion process. 

The amplitude increase is caused by necking forming at the border between both free 

and multilayered parts. 
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CHAPTER 7 

Equation Section (Next) 

 

 

 

7 Experimental investigation of real ground anchor 

Experimental investigation of ground anchor 

system 

7.1 Introduction 
 

In the majority of the literature cases and in the previous Chapters of the thesis 

the tendon of the anchor is considered as a prismatic steel bar with a constant cross-

sectional shape and without any connections throughout the length. However, tendons 

of ground anchors and soil nails are often fabricated with the use of self-drilling hollow 

bars [249]. Those bars are characterized by left-hand thread for standard percussive drilling 

so the cross-section varies through the bar length (Figure 7.1).  

 

 

Figure 7.1 Scheme of self-drilling systems of ground anchors: a) two drill hollow bars connected 

by the centre stop coupler, b) cross-section of the bar 
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The hollow cross-section allows for simultaneous drilling and grouting. Moreover, 

in the case of long anchors, the tendon often made of debonded bars with partially bonded 

couplers (Figure 7.2). The tendon length can be easily adjusted to design assumptions 

by connecting appropriate number of bars. The guided wave propagation becomes more 

complicated in drill hollow bars than in simple prismatic bars. The major factors 

influencing the phenomena of wave propagation concern complex cross-section of the drill 

bar and the application of couplers.  

 

 

Figure 7.2 Scheme of ground anchor performed with the use of self-drilling systems  

 

This chapter extends the investigations conducted on idealized, laboratory models 

of ground anchors into the ground anchor system DYWI
®
 Drill Hollow Bar System [249]. 

The research contains four stages (Figure 7.3). At the first stage a single section of the bar 

(Figure 7.3a) and two sections connected by the coupler are investigated (Figure 7.3b). 

The main aim of the first study part is to analyse the wave attenuation due 

to discontinuities in the form of mounting connections occurring over the bar length. 

The differences in wave propagation signals registered at a single bar and the system 

of two bars were indicated and discussed. The presence of bonded couplers and their 

influence on wave attenuation has been analysed. Results of this investigation 

are presented in [240]. 

The next stage of the research involves investigation of wave propagation in a small-

scale model of anchor performed in the ground (Figure 7.3c). Firstly, monitoring 

is conducted of a hardening process of the inject forming the anchor body. 
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When the mortar achieved its full strength the ground anchor was excavated and tested 

in laboratory (Figure 7.3d).  

 

 

Figure 7.3 Stages of investigation 

 

7.2 Investigation of drill-hollow bar system 

7.2.1 Dispersion curves for hollow bar 

Aimed at obtaining dispersion curves for a tendon of the anchor made with the use 

of self-drilling system, dispersive relations for the hollow bar are investigated. The group 

velocity dispersion curves for longitudinal modes obtained by PCDISP programme 

and results obtained experimentally are presented in Figure 7.4. Since the self-drilling bar 

has a non-uniform cross-section, the dispersion equation has been solved for the case 

of a hollow bar with regular, smooth internal and external surfaces. The drill bar 

was considered a pipe with the internal diameter equal to the diameter of the bar, 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


 

 
 

192 

 

while the external diameter was equal to the nominal diameter of the drill bar. For this 

reason, the curves presented in Figure 7.4 can be regarded an approximate solution only, 

producing a coarse information about the number of wave modes and their velocities. 

 

 

Figure 7.4 Dispersion curves for steel hollow bar (E = 210 GPa, v = 0.3, ρ = 7938.54 kg/m
3
) with external 

diameter of 38 mm and internal diameter of 19 mm 

 

7.2.2 Experimental model 

The investigations presented in this Chapter were conducted on DYWI
®

 Drill Hollow 

Bar System [249]. The first specimen was a single-section self-drilling hollow bar R38-

550, 1 m long. The technical data for the bar are taken from the manufacturer [249]. 

The nominal thread diameter was equal to 38 mm, the effective external diameter 

was equal to 36.4 mm and the internal diameter equal 19 mm. The density of steel 

was assumed 7938.54 kg/m
3
. The photographs of the drill hollow bar and its cross-section 

are presented in Figure 7.5. 

 

 

Figure 7.5 Photograph of a) single self-drilling hollow bar and b) its cross-section 
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The second experimental model was a self-drilling system containing two R38-550 

equal length bars connected by a centre stop coupler (Figure 7.6). The total length 

of the specimen was 2 m. 

 

 

Figure 7.6 Self-drilling hollow bar system connected by the centre stop coupler 

 

The guided waves were excited and sensed by PZT plate transducers Noliac 

NAC2024. An excitation signal was a ten-cycle sine function modulated by the Hanning 

window. Guided wave propagation tests were conducted for wide range of frequencies, 

however results are presented for the carrier frequency of 60 kHz, producing the most 

legible output signals. 

The configuration of measurement points is given in Figure 7.7 and Figure 7.8, 

for the single bar and the bar system, respectively. In both cases, the waves were excited 

in longitudinal direction by the actuator attached to the left end of the specimen. In the case 

of a single self-drilling hollow bar, vibrations were registered by two PZT sensors, 

attached to both ends of the bar (Figure 7.7).  

 

Figure 7.7 PZT transducers at the single self-drilling hollow bar: a) configuration of actuator and sensors; 

b) detail showing actuator and sensors at the beginning and the end of the bar 
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In the case of a self-drilling hollow bar system three PZT sensors were used. 

Two sensors were attached at both ends of the coupled bar to measure longitudinal waves, 

the third additional sensor was attached to the surface of the coupler between the bars 

to register vibrations perpendicular to the axis of the bar (Figure 7.8). 

 

Figure 7.8 PZT transducers at the self-drilling hollow bar system: a) configuration of actuator and sensors; 

b) detail showing sensor attached to the coupler 

 

7.2.3 Results 

The wave propagation signals registered for a single self-drilling hollow bar 

are presented in Figure 7.9. The first signal (Figure 7.9a) was registered at the end 

the wave was excited (sensor S1), while the signal in Figure 7.9b was registered 

at the opposite end (sensor S2). 

In both signals, the input wave packet and wave packets corresponding 

to consecutive reflections from the ends of the bar can be identified. Particular reflections 

from the bar ends occurred at the same regular time intervals t  and they are characterized 

by a relatively higher value of the amplitude than other waveforms that can be observed 

in signals. These numerous additional low-amplitude peaks may be the outcome 

for the case of a specific cross-section of the bar varying throughout its length. They may 

also result from wave diffraction at the irregularities of the surface. Moreover, the actuator 

was not attached centrally. Imperfect, eccentric actuator location may result in excitation 

not only longitudinal, but also flexural modes. For the chosen carrier frequency equal 60 

kHz, two additional flexural modes could be excited (compare Figure 7.4b). 
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Figure 7.9 Wave propagation signals registered at the single self-drilling hollow bar: a) signal registered 

at the beginning and b) at the end of the bar 

 

 

Figure 7.10 Wave propagation signals registered at the self-drilling hollow bar system: a) signal registered 

at the beginning, b) at the coupler in the middle and c) at end of the bar 
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The experimentally determined group velocity of the longitudinal wave calculated 

on the basis of time-of-flight (2116.4 m/s) differs considerably from the results based 

on dispersion curves for a uniform hollow bar (1029 m/s). This discrepancy confirms 

that the dispersion curves calculated for a smooth hollow cylinder with dimensions 

corresponding to the dimensions of the considered self-drilling hollow bar 

do not accurately reflect the shape of curves for the real bar with a thread. 

The results for the self-drilling hollow bar system are illustrated in Figure 7.10. 

Three signals were registered at the beginning of the bar (sensor S1), in the middle 

at the coupler (sensor S2) and at the other end (sensor S3). The straight line is drawn 

through the first registered wave packets. It can be seen that their registration time 

is proportional to the distance between the sensor and the actuator. The angles 

of inclination of the lines for the single bar and the system of two bars do not significantly 

differ so one can conclude that the presence of a mounting connection does not act 

on the wave propagation velocity. 

The character of the signals differs considerably with the propagation distance. Only 

in the case of the first signal, particular peaks corresponding to reflections from the bar 

ends can be easily identified. In two other cases the interpretation of signals is much more 

difficult and the signals are characterized by numerous wave packets with comparable 

amplitude values. Moreover, it can be seen that the amplitude values differ significantly 

between particular signals. The highest amplitude registered by sensor S1 was equal to 10 

V, while in the case of vibrations registered at the coupler (sensor S2) the amplitude 

did not exceed 8 V. The lowest amplitude characterized the signal registered at the end 

of the coupled bar system (sensor S3). The highest amplitude registered in this signal 

was about 0.2 V, 50 times lower than for in signal registered by sensor S1. Therefore, 

it can be observed that the wave was strongly attenuated while passing through 

the mounting connection of two bars, despite the fact that bars were highly tightened 

without any gap in between. The internal thread of the coupler was the same as the threads 

of the bars, so the amplitude decrease was not caused by a connection defect. The same 

effect was observed for different frequencies. 

Finally, comparison of signals registered by sensor S1 in both specimens 

is illustrated in Figure 7.11. The signal for a single self-drilling hollow bar is plotted 

by a black line while for the self-drilling hollow bar system the signal envelope is plotted 

by blue line. It can be seen that there are no significant differences between signals, even 

in extended time range up to 3 ms. The registration times of reflections from the end 
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of the bar are similar and their amplitudes agree well. A high degree of similarity of these 

two signals registered for two different specimen lengths means that a vast majority 

of wave energy is reflected from the end of the first bar and it is not transferred 

from the coupler connection.  

 

 

Figure 7.11 Comparison of wave propagation signals registered by sensor S1 for the single self-drilling 

hollow bar and the self-drilling hollow bar system 

 

7.3 Monitoring of the ground anchor performed in the ground 

7.3.1 Investigated object 

A single self-drilling 1 m long hollow bar was located in the hole in the ground 

which was filled by liquid mortar (Figure 7.12). The diameter of the hole was about 10 cm 

and the length of the embedded part was about 50 cm. The actuator and sensor 

were located at the free end of the bar. During the first hour of the hardening process 

the signals were registered every 5 minutes. During the next three hours the signals 

were registered every 10 minutes. Wave measurement was also conducted after 24 hours 

and 72 hours. After one month (30 days) the anchor has been excavated and investigated 

in laboratory. The investigations carried out for underground and excavated anchor cases 

allow to observe the influence of the soil surrounding the ground anchor on wave 

propagation. 
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Figure 7.12 Small-scale anchor model performed in the ground: a) self-drilling bar placed in liquid mortar, 

b) sensor and actuator located at the end of the bar before placing in the ground and c) transducers protected 

against unfavorable environmental conditions 

 

7.3.2 Monitoring of the hardening process of the mortar 

Figures 7.13 to 7.17 present envelopes of time-domain signals during hardening 

process monitoring for a variable excitation frequency. The carrier frequency varies from 

60 kHz to 100 kHz while the number of sine cycles was constant and was equal to 10. 

It can be clearly seen that the legibility of signals changes considerably for various 

frequencies. In each case mortar hardening makes the amplitude values change. In order 

to observe amplitude changes for each set of signals one wave packet has been marked and 

presented in a different scale. In case of each frequency it was possible to indicate wave 
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packets whose amplitudes vary with the time duration of a setting process what can 

be applied in monitoring the process of mortar cover hardening. 

For each frequency an analysis of amplitude values was performed. Figures 7.18 

to 7.22 present graphs of reflection ratio defined as follows: 

 1A
r

A
   (7.1) 

where A is the amplitude of the input wave packet, after normalization is equal 1, and  

is the amplitude of a chosen wave packet. Despite a relatively short length 

of the investigated specimen only for two cases (90 and 100 kHz) the reflection 

from the anchor end can be unambiguously indicated and their amplitudes are taken 

into account in further analysis. In the frequency cases of 60, 70 and 80 kHz wave packets 

have been selected characterized by a relatively high amplitude in the first registered signal 

(duration of a hardening process equal to 0 min), but it was difficult to determine whether 

it was a reflection from the end of the rod. 

The presented results indicate that mortar hardening triggers decrease of the signal 

amplitude. The amplitude decrease is clearly visible especially while signals are registered 

during the first hour when mortar strength increases rapidly. After an hour differences 

in signals are not visible. The manufacturer declaration says that the pot life of the mortar 

is equal to approximately 40 minutes. In the investigation more water was used 

that specified in the recommendations what could slightly prolong the hardening time. Fast 

mortar setting explains fast decrease of the amplitude during the initial stage of the setting 

process.  

The amplitude decrease may be caused by more intense wave energy leakage 

into an anchor body. At the first stage when mortar is a dense liquid the wave does not leak 

into a surrounding medium, thus is reflected from the end of specimen. In the course 

of mortar hardening, its physical parameters rise and the acoustic impedance of mortar 

also increases. As mentioned in paragraph 4.4.2 the relationship between the values 

of acoustic impedance of adjacent media determines the intensity of wave reflection 

and transmission phenomena. While the value of acoustic impedance of mortar approaches 

to the value of acoustic impedance of steel core wave energy leakage becomes intense 

and the signal amplitude at the free end decreases. 
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Figure 7.13 Envelopes of signals registered at the end of the anchor performed in the ground during 

hardening process (excitation frequency: 60 kHz) 
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Figure 7.14 Envelopes of signals registered at the end of the anchor performed in the ground during 

hardening process (excitation frequency: 70 kHz) 
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Figure 7.15 Envelopes of signals registered at the end of the anchor performed in the ground during 

hardening process (excitation frequency: 80 kHz) 
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Figure 7.16 Envelopes of signals registered at the end of the anchor performed in the ground during 

hardening process (excitation frequency: 90 kHz) 
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Figure 7.17 Envelopes of signals registered at the end of the anchor performed in the ground during 

hardening process (excitation frequency: 100 kHz) 
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Figure 7.18 Reflection ratio calculated for reflection registered during hardening process indicated 

in Figure 7.13 for excitation frequency of 60 kHz 

 

 

Figure 7.19 Reflection ratio calculated for reflection registered during hardening process indicated 

in Figure 7.14 for excitation frequency of 70 kHz 

 

 

Figure 7.20 Reflection ratio calculated for reflection registered during hardening process indicated 

in Figure 7.15 for excitation frequency of 80 kHz 
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Figure 7.21 Reflection ratio calculated for reflection from the anchorage during hardening process indicated 

in Figure 7.16 for excitation frequency of 90 kHz 

 

 

Figure 7.22 Reflection ratio calculated for reflection from the anchorage during hardening process indicated 

in Figure 7.17 for excitation frequency of 100 kHz 

 

7.3.3 Laboratory tests of excavated anchor 

After a period of one month ground anchor was excavated and tested in laboratory 

(Figure 7.23). The waves were excited at the free end of the bar and signals were registered 

by four sensors (Figure 7.23b): two located at the both ends of the steel bar (S1 and S4) 

and two located at the both ends of the anchor body (S2 and S3). 

Figures 7.24 to 7.28 present the investigation results for excitation frequency range 

of 60-100 kHz. Despite a relatively short length of the anchor, the wave amplitude 

decreases rapidly due to spiral shape of a steel rod and irregularities of an anchor body. 

For this reason it was necessary to apply higher voltage to induce waves characterized 

by higher energy. The use of higher voltage results in the so-called avalanche breakdown. 

It manifests itself as an additional wave package registered at the signal beginning.  
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Figure 7.23 a) laboratory tests of excavated ground anchor, b) sensors location 
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Figure 7.24 Signals registered for excavated anchor and carrier frequency of 60 kHz by sensor: a) S1, b) S2, 

c) S3 and d) signal S4. 

 

 

Figure 7.25 Signals registered for excavated anchor and carrier frequency of 70 kHz by sensor: a) S1, b) S2, 

c) S3 and d) signal S4. 
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Figure 7.26 Signals registered for excavated anchor and carrier frequency of 80 kHz by sensor: a) S1, b) S2, 

c) S3 and d) signal S4. 

 

 

Figure 7.27 Signals registered for excavated anchor and carrier frequency of 90 kHz by sensor: a) S1, b) S2, 

c) S3 and d) signal S4. 
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Figure 7.28 Signals registered for excavated anchor and carrier frequency of 100 kHz by sensor: a) S1, b) S2, 

c) S3 and d) signal S4. 

 

These additional wave packets caused by avalanche breakdown were marked 

in the figures in red and they should be omitted in the signal analysis process. Despite 

using various, more or less sensitive frequencies, any signal does not contain clear 

reflection from the anchorage. Moreover, it is also hard to identify the reflection 

from the end of a specimen. Each signal registered at the free end of the anchor (Figure 

7.24a-Figure 7.28a) contains additional wave packets which make the signal illegible 

unable to identify reflections important from the diagnostic point of view. In addition, 

signals registered by sensor S3 (at the end of the anchor body - Figure 7.23b), 

which measured perpendicular vibrations detect relatively small amplitudes. It is worth 

mentioning that even signals registered by sensor S4, located further from the actuator 

are characterized by a higher amplitude because propagating disturbance is dominated 

by longitudinal displacement. 

Despite difficult interpretation, the results allow to draw important conclusions. 

The investigated drill hollow bar, commonly used as a component of real ground anchors 

is characterized by a spiral shape and non-uniform cross-section. As mentioned 

in paragraph 7.2.3 the presence of crests and troughs imply wave diffractions 

not observable while the anchor tendon is made of a smooth steel bar. Additional wave 

packets visible in signals, possibly caused by wave diffraction, make it impossible 
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to indicate probably low-amplitude reflections from the anchorage and from the end 

of a specimen. Moreover, as a consequence of additional diffractions the wave damped 

faster than in the anchors analysed experimentally during the previous investigations (e.g. 

presented in Chapters 5 and 6). For some frequencies (90 and 100 kHz) the signal 

registered by sensor S3 is characterized by an amplitude comparable to a noise amplitude 

(compare Figure 7.27c and Figure 7.28c). 

The second factor mentioned before, (paragraph 7.2.3) acting on signals is actuator 

location. In the previous cases of prismatic rods with smooth surfaces it was possible 

to locate it centrally. The hole in a drill bar forced the actuator attachment in the middle 

of rod wall. After the excitation a wave travels along the and also around bar 

circumference. The off-center actuator location excludes the possibility of inducing 

longitudinal modes only. 

 

 

Figure 7.29 Circumferential propagation 

 

The results presented in Figures 7.24 to 7.28 suggest that the application of guided 

waves in ground anchors diagnostics would be difficult, thus the proposed methods require 

a significant improvement. The wave in a real ground anchor is damped much faster than 

in the case of anchor models with simpler geometry considered in the previous Chapters, 

thus in order to inspect significant longer specimens or with complex geometry, a high-

energy excitation must be applied. 

At the second step the signals registered at the free end of the excavated anchor were 

compared with the results registered for an anchor in the ground after 24 and 72 hours 

of a hardening process. The envelopes of particular signals in the analysed frequency range 

(60-100 kHz) are plotted in Figure 7.30. All the compared signals have similar shapes 

and amplitudes regardless of carrier frequency. The similarity of the shape and amplitudes 

of signals collected before and after excavation indicates a negligible influence 
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of surrounding ground on wave propagation. For this reason it is justified to neglect 

the additional external layer of soil in considerations. 

 

Figure 7.30 Comparison of signals collected for anchor after 24 and 72 hours of hardening process 

in the ground with signals registered for excavated anchor: a) 60 kHz, b) 70 kHz, c) 80 kHz, d) 90 kHz, 

e) 100 kHz 
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Despite the fact that signals collected after excavation do not include reflection 

from the anchorage and from the end of the anchor, they can be compared with signals 

registered during the hardening process when reflections from the end of specimen are 

visible. Signal registered at the beginning of a hardening process (for example 

for a 0 minute time of a hardening process) can be regarded as reference signals. On the 

basis of comparative analysis interesting reflections can be just ‘tracked’. This approach 

facilitates the interpretation of signals, however, its main drawback is the need 

for reference tests. 

The lack of reflection from the anchorage indicates poor quality of bonding 

connection between steel and grout. If the hardening process proceeded correctly 

and the quality of anchorage is sufficient, the reflection from the anchorage should 

be visible in signals collected in Figures 7.13 to 7.17. In the process course, the amplitude 

value should increase. Meanwhile, this reflection was not registered during the hardening 

process, after 24 hours, 72 hours and even after anchor excavation. Lack of reflection from 

anchorage, which in previous cases was usually very easy to indicate and was considered 

crucial in determining geometric parameters, forced the need to verify the anchor 

workmanship quality. For this purpose, the anchor body was destroyed and the anchorage 

quality has been assessed. The photo of destroyed specimen is given in Figure 7.31. 

One can see a large-size gap between the bar and the mortar cover. Presence of this defect 

explains why wave was not diffracted at the anchorage and consequently is not register 

in signal. Paradoxically, in this case lack of reflection from anchorage does not indicate 

a limitation of ultrasonic method but confirms the possibility of using waves in assessing 

the quality of specimen. 

 

 

Figure 7.31 Damaged anchor: uncovered part of the bar and healthy connection at the anchorage place 
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7.4 Summary and conclusions 
 

This Chapter was aimed at possible applications of guided waves in small-scale 

anchor performed in the ground. The proposed inspection method cannot be considered 

as complete solution to the ground anchor monitoring problems, however it can provide 

valuable information on the condition of an investigated object. Nevertheless, the research 

allowed to reveal disadvantages and difficulties associated with the diagnosis of real 

engineering objects. 

The first section presents experimental research of guided wave propagation 

in the self-drilling hollow bar system. Two types of specimens were investigated. Firstly, 

longitudinal waves were excited in a single hollow bar and then, in the two-bar system 

connected by a centre stop coupler. The obtained results indicated that there 

was a discrepancy between the experimentally determined group velocity of the wave 

propagating in real hollow bar with thread and the group velocity determined based 

on dispersion curves for the pipe with external diameter equal to the nominal thread 

diameter. Therefore, such dispersion curves can be considered only as approximate 

solution in the assessment of wave velocity in thread bars. 

The comparison of wave propagation signals and the time-of-flights of particular 

reflections in both specimens brought a conclusion that the mounting connection between 

the bars did not influence the wave propagation velocity. However, the connection highly 

affected the character of the signals. Signals registered at both ends of a single bar 

appeared easy to interpret. Particular reflections showed relatively high amplitudes 

and they could be clearly indicated. In contrast, signals registered at the coupler 

and at the end of the coupled bar system were characterized by numerous low-amplitude 

packets with comparable amplitudes. 

The most important conclusion concerns the wave attenuation caused 

by the discontinuity in the form of the mounting connection. The signal registered 

at the end of the bar system showed an amplitude over 50 times lower than the signal 

registered near the actuator. Despite the fact that bars were highly tightened showing 

no gap between, the wave was strongly attenuated while passing through the connection 

of two bars. The comparison of two signals registered by a sensor attached at the beginning 

of the bar for the single bar and the system of coupled bars confirmed that a large majority 

of the wave energy was reflected from the end of the first bar and it was not transferred 

from the coupler connection. 
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The presented results indicated that strong wave dissipation at the bar connection 

has to be taken into account in the design of structural health monitoring systems dedicated 

for real geotechnical facilities, like ground anchors or soil nails, constructed with the use 

of the self-drilling hollow bar systems. 

The second part of the study concerns nondestructive testing on a small-scale model. 

Firstly, hardening process of the underground specimen has been performed. 

It can be concluded that choosing a right frequency allows to effectively observe 

the hardening process of the outer cover. The decrease of reflection amplitude from the end 

of the anchor indicates intensified wave energy leakage into outer grout cover, 

its impedance value approaches to impedance of steel bar. Ultrasonic testing repeated after 

excavation of the anchor and comparison of signals registered for underground 

and excavated anchor showed negligible influence of surrounding ground medium on wave 

propagation. 
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CHAPTER 8 

 

 

 

8 Conclusions and future plans 

Conclusions and future plans 

8.1 General conclusions 
 

The presented thesis is focused on the guided wave propagation method and its 

application in nondestructive diagnostics of embedded circular waveguides. Significant 

part of the work is focused on theoretical description and recognition of the phenomenon - 

a crucial aspect in proper and effective implementation of the guided wave propagation 

method. 

The first part of the study concerns wave propagation in free and multilayered 

rodlike structures. Several theories for rods with circular cross-sections were described 

and the relevant dispersion equations have been derived. Solutions of particular dispersion 

equations have been presented in the form of dispersion curves. The engineering 

applications, usually dealing with rods of significant diameters direct the exact analytical 

Pochhammer equation as the only tool to obtain the number and velocity of possible wave 

modes. 

The essential part of the work concerns wave propagation in laboratory models 

of healthy and damaged ground anchors. Special emphasis was placed on a detailed 

description and explanation of wave propagation phenomena in ground anchors. 

The analysis of wave propagation in undamaged anchors allows to describe methods 

to determine major geometrical parameters of the ground anchor: free length, bonding 

length and diameter of the anchor body. Despite the fact that results given in the Chapter 4 

proved that guided waves can be effective tool in in the assessment of object geometry, 

it turned out that there are some important limitations of the used ultrasonic method. 
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One of the major obstacles concerns determining the diameter of the anchor body. 

The presented results indicate that determination of the anchor body size is not possible 

in every case. First of all, for relatively small diameters the wave diffracted 

at the anchorage and the wave reflected from the outer surface of the anchor body interfere 

with each other, significantly hindering the signal interpretation and extracting a desired 

information. Moreover, interference of these reflections also leads to distortion 

of the calculated free length. One can conclude that interference of relatively wide wave 

packets can be eliminated by a shift to higher frequencies. However, high excitation 

frequencies are inevitably associated with a larger number of wave modes. The second 

limitation of the diameter determination method based on Rayleigh wave velocity 

is the assumption that the diameter does not vary in thickness through its length. 

For this reason it is only possible to determine the diameter in the beginning of the anchor 

body located near the anchorage. 

The influence of debonding length and its position along the anchor body 

was considered in further part of the thesis. It was proved that the debonding length 

can be assessed on the basis of the average wave velocity of the reflections 

from the specimen end, however, dispersion curves for the free core and for separate 

cladding must be prior known. Moreover, the effectiveness of the assessment 

of the debonding length is determined by selection of an appropriate excitation frequency. 

The change of average wave velocity which can be considered as indicator parameter 

in debonding length assessment is affected by the difference between the fastest mode 

propagating in the free bar and the fastest mode in the coated bar. The conducted research 

also indicated that waves are sensitive to even the smallest extend of damage. 

The debonding thickness modelled experimentally, equal approximately 60 micrometers 

was successfully detected by a proposed technique. Destructive tests confirmed that wave 

propagation makes it possible to detect anchor damage much faster before it is completely 

destroyed. 

Other analysed damage types and their influence on wave propagation were point 

and surface damage in the form of uniform corrosion damage of steel part of the anchor. 

The results for partially embedded and free bars were presented in the form of time-domain 

propagation signals registered by piezo transducers as well as spectrograms performed 

using Short Time Fourier Transform for signals registered by pulser-receiver. 

Two different approaches of wave excitation and signal processing allow to assess 

advantages and drawbacks of various result presentation forms. However, it has been 
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clearly demonstrated that both damage types can be detected by guided waves. 

Experimental time-frequency representations performed for a healthy bar and a bar 

with point damage with the use of Short Time Fourier Transform agreed well 

with analytical time-frequency representations. In the case of uniform corrosion damage, 

the STFT spectrograms allowed to determine the level of state deterioration. 

The last investigation stage concerned wave propagation in self-drilling hollow bars 

commonly used in real engineering ground anchors or soil nails. The extension 

of the investigations conducted on idealized, laboratory models of ground anchors 

into the ground anchor system brought some additional difficulties. Firstly, a single bar 

R38-550 and a self-drilling system containing two bars of equal lengths connected 

by the centre stop coupler have been tested. The most important conclusion formulated 

on the basis of conducted research concerns the wave attenuation caused by discontinuity 

the mounting connection form. The wave was strongly attenuated while passing throughout 

the connection of two bars despite the fact that bars were highly tightened, detecting 

no gap in between. This observation led to the conclusion that the wave registration 

in the case of nondestructive tests of real objects, which is usually of significantly larger 

length may be significantly impeded. Moreover, the registration of reflections important 

from the point of view of diagnostics was hindered not only because of discontinuities 

in the form of mounting connections, but also due to more intense wave energy damping 

due to spiral shape of a bar cross-section. Crests and troughs may imply wave diffraction 

which led to registering additional wave packets in signals. As a consequence, the wave 

in a spiral hollow rod was damped faster, thus the signal was more difficult to interpret. 

For this reason, prior to applying the guided wave propagation method in situ 

in diagnostics of real engineering objects some technical difficulties need to be resolved 

related with short-range of wave energy generated by piezoelectric transducers. 

Drill hollow bars were also used to perform in the ground small scale models 

of anchors. Monitoring of the hardening process was carried out. The decrease 

of amplitude of reflection from the end of the anchor indicated that wave energy leakage 

into outer grout cover became more intense due to increasing similarities between 

the acoustic impedances. The wave propagation method seems to be an effective tool 

to monitor the process of injecting and hardening of the outer cover. After one month 

laboratory tests were performed on an excavated anchor. The comparison of signals 

registered for underground and excavated anchors showed negligible influence 
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of surrounding ground on wave propagation and justified skipping additional external layer 

in the previous considerations. 

 

8.2 Future plans 
 

Despite the fact that in many analyzed cases guided waves proved to be an effective 

tool in potential diagnostics of ground anchors, the major disadvantages of the proposed 

method have also been exposed at work. 

First of all, the tested anchor model was significantly simpler than the real one. 

The model did not include selected elements, which are integral parts of anchoring 

systems. The Figure 8.1 presents real ground anchor head. Except the end of the anchor 

drill bar one can see the steel nut and plate locking the anchor in the embankment wall 

after compressing. Preliminary studies indicated that due to contact stress between steel 

plate and nut the wave excited in the steel rod is also transmitted into the steel bearing 

plate. A small size of bearing plate triggers multiple reflections from its edges visible 

in signal registered at the free end of the bar. As a consequence, the signal is illegible 

and difficult to interpret. Moreover, the majority of energy is transmitted into the bearing 

plate and only a small energy amount travels along the hollow bar. For this reason, there 

is a need to include additional hindering factors, e.g. the presence of additional elements 

in further studies. 

 

 

Figure 8.1 Anchor head  
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