
Direct algorithm for optimizing robust MPC of 

drinking water distribution systems hydraulics 

Arkadiusz Ciminski  

Department of Control Systems Engineering 

Gdansk University of Technology 

Narutowicza 11/12, 80-952 Gdansk, Poland  

arkadiusz.ciminski@pg.gda.pl  

Kazimierz Duzinkiewicz  

Department of Control Systems Engineering 

Gdansk University of Technology 

Narutowicza 11/12, 80-952 Gdansk, Poland  

kazimierz.duzinkiewicz@pg.gda.pl 

Abstract— Model-based predictive control is an effective 

method for control the large scale systems. Method is based on on-

lin solution of control task over the control horizon using current 

and past measurements as well as the system model. Because 

model and measurement uncertainty, predicted and plant outputs 

might be different and plant output may exceed plant output 

constraints. Generated control is not then robustly outputs 

feasible. In this paper robustly outputs feasible direct control 

algorithm, based on the robust output predictions and control 

vector are presented. Proposed robustly outputs feasible MPC is 

applied to drinking water distribution system (DWDS) of the 

Chojnice city. 

Keywords— robust control, predictive control, robust output 

prediction, genetic algorithms, drinking water distribution systems  

I. INTRODUCTION 

Model-based predictive control is an effective method for 
control the large scale systems [1]-[6],[8],[16],[17]. Method is 
based on on-line solution of the control task over the control 
horizon using current and past measurements, as well as the 
system model. Only a first element of calculated control 
sequence is applied to the plant. At the next sampling instant, 
based on new process output measurements, control procedure 
is repeated.  

In control process of large scale systems, two crucial factors 
exist: robust output feasibility control and computation time.  

In the classical approach to the MPC, control is generated 
based on the nominal model of the system and nominal 
measurements [1]. This control does not take into account the 
uncertainties associated with the controlled system. 
Uncertainties are result of: structure and parameters of system 
model, measurements and estimates. Hence, generated control, 
used in the real system can generate output which exceed the 
system output constraints. Therefore, generating robust output 
feasibility control vector is an important aspect in control of 
large scale systems. 

For large scale systems, determining of the control vector 
can take long time. It depends on complexity of the system and 
control algorithm. In classical approach of MPC, at every 
control/prediction step must be generated control vector based 
on: system model, current measurements and disturbance 
prediction. The computation time of the new control vector, 
depends strongly on the size of the system (size of vector 

control, number of variables in optimization task, numbers and 
type of system equations), so it is important to ensure that the 
new control vector is generated at time limits. 

In the present paper, attention will be paid to these two 
aspects of MPC. 

In articles [2] – [4], [6] presents the algorithms generating 
robust output feasibility control of DWDS. These algorithms 
generate the control of DWDS hydraulic based on a 
modification of original system constraints. This modification 
depending on value of the exceedances original constraints by 
boundary output trajectories of system [7]. The disadvantage of 
presented algorithms is difficulty in estimating of value of 
modified constraints at following iterations. 

At this paper, robust output feasible MPC algorithm based 
on boundary trajectories and modification of the control vector, 
is presented. The solver, of presented algorithm, is based on the 
effective genetic algorithm (GA) with specialized genetic 
operators (SGO) ([3], [4], [8]) and the robust outputs prediction 
algorithm [9]. Presented robustly outputs feasible MPC 
algorithm is applied, the control of DWDS hydraulics of 
Chojnice city [6], [9], [13]-[15]. 

II. PROBLEM FORMULATION OF ROBUSTLY OUTPUTS 

FEASIBLE MPC 

The MPC task (1) calculates control  uu  
over the control

horizon  unnu Ht,t   ( uH  - control horizon length) with

respect to: objective function J, nominal plant model F, output 

 Tmaxmin , yyy  and input  Tmaxmin ,uuu   constraints. 
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where,  pp y  - model output over the prediction horizon 

 pnnp Ht,t  1  ( pH  - prediction horizon length).  

Calculated control  uu  can be applied to the plant. 

Because the system model includes an uncertainty, a 

differences between a model output prediction py  and a plant 

output y , might exist. It means that plant output may not fulfil 

the system output constraints   yy  p  (Fig. 1).  
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Fig. 1. Illustration of output constraints violation by upper output prediction 

trajectory.  

 

To verify fulfilling of the output constraints by the plant 

output, robust output prediction (ROP) is necessary. In 

presented paper, set-bounded uncertainty model [10], is used. 

Robust output prediction generates lower  p
l
p y

 
and upper 
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bounds of output

 
trajectory over p . All plant 

outputs, generated by all possible uncertainty scenarios, are 

contained between this two trajectories. That means  
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Let define bound trajectory vector as  

      p
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Robust output prediction generates boundary trajectories, 

upper u
py  

and lower l
py , based on: control vector  uu , set-

bounded initial state  and plant model F  with set-bound 

uncertainty model [7]. 

The set-bounded output prediction, of the j-th components 

of the output vector py  
are determined by solving the following 

optimization tasks: 
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satisfying: 

      pnnnn
j,u

pnn
j,l

p it|itt|ity,t|ity   ;   

,where: Jj;   predicted variable index set. 

The   represent the set of all possible trajectories of system 

outputs, generated with the bounded system model F  by the 

control vector  uu . This model take into account uncertainty 

associated with system model presented in [2] – [4], [6]. Details 

of generating bounded trajectories are shown in [9]. 

 

Let define overflow vector as: 

 

      
         






 



T

pp
u
p

T

p
l
pp

T
ppp

maxmin

maxTmin

,0max, ,0max

, 

yyyy

vvv

 (5) 

If boundary trajectories fulfils plant constraints 

  

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generated control is robustly output feasible 

and it can be applied to the plant. Else, if    pii  ,0v
 
the 

fulfilling of the output constraints by plant output, cannot be 

guaranteed (Fig. 1). It means that ,the generated control vector 

can’t be applied to the plant. 

Given the overflow vector v  for checking the control 

robustness, it can be formulated optimization task of 

determining the robustly output feasible control as follows:  
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where,  - system uncertainty vector; 
maxmin ,  - bounds of 

system uncertainty. 
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The uncertainty vector   includes all the uncertainties 

associated with the system: measurements, model structure, 

parameters etc.    

III. DIRECT ALGORITHM SOLVING ROBUSTLY OUTPUTS 

FEASIBLE MPC PROBLEM  

In the present paper, it is propose an algorithm determining 
a robust output feasibility control vector. This algorithm is based 
on the bounded output trajectories by directly modifying the 
control vector. In paper, to finding this control vector, two-step 
algorithm, (Fig. 2), is proposed.  

 

 
Start 

Find solution of optimization 
task (1) 

Base of solution from Step 1 
find solution of optimization 

task (5)  Step 2 

Finish 

Step 1 
 

u** 

u* 

 

Fig. 2. Scheme of two-step algorithm for finding robust output feasibillity 
control. 

In the first step, by solving optimization task (1), the 
optimum control vector is determined using the nominal system 
model. The optimization task (1) is nonlinear with mixed 
variable, that why genetic algorithm solver, presented in 
[3],[4],[6],[8], is used. GA based on the value of the objective 
function, hence the optimization problem (1) is reformulated to 
optimization problem without constraints to the form:  
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satisfying 

  uu  nu t|  

(6) 

 

where, boundsJ  - penalty function for breaking optimization task 

constraints [3]. 

At this step, the efficient solver of optimization task (1) is 
used, to find the starting control vector u* for the algorithm at 
second step. 

In the second step, similarly to the first, to determine control 
modified AG is used. Control task (1) must be modified to 
optimization task without constraints in the form:  
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satisfying 

  uu  nu t|  

(7) 

where, boundsJ - penalty function for breaking optimization task 

(1) constraints [3]. 

In both optimization tasks, the same function determines the 
cost of control, are used. While, there are various penalty 
functions of exceeding the limits of optimization task (1). This 
is due to the fact that for the assessment of proposed control 
vector, in task (6) is used a nominal output trajectory, while in 
task (7) bounded outputs trajectories. Hence penalty function 

boundsJ  or boundsJ  is the sum of four elements: 

1) penalty of exceeding system model constraints; 

2) penalty of exceeding output/state constraints; 

3) penalty of exceeding of the restrictions on the state of the 
system at the end of prediction horizon; 

4) penalty of excessive speed change control. 

An example component of penalty functions boundsJ  or 

boundsJ , for the optimization task (6) and (7) can be presented 

as: 

-for tasks (6) 

   

   






 


2min

0

2max

|,0max                 

|,0max 

nnp

N

i

nnpy

tityy

ytityJ

p

 (8) 

 

where, Np - length of prediction horizon. 

 

-for tasks (7) 
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To finding bounded output trajectories, optimization 
algorithm presented in [9], is used. 

There are several reasons of solving optimization task (1) in 
two steps: 

1) Assume that, the optmization task (1), can be solved by 

optimization solver presented in [3],[4],[6],[8] and the 
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algorithm presented in [9]. The optimization solver, at the 

beginning of its action, starts at random starting point. This 

point may not fullfil the system model constraints. In 

consequency, it will not be possible to designate boundary 

trajectories, based at this model and solution of this task will 

be empty. 

2) It can be assume that we create the algorithm that generates 

model acceptable solution u that will be the starting point 

for the second step of the algorithm. The starting point for 

the second step of the algorithm, is random point from a 

limited set. This set contain every soluton, of optimization 

task (1), model acceptable. Thus, better solution (from the 

point of view of efficiency of presented algorithm) is a 

optimal solution of the optimization problem (1). This 

solution is one and it is definitely a solution closer to 

optimal solution of the optimiaztion task (1) than random 

point from the model acceptance set. 

3) Another aspect, is differences in computation time of 

determining nominal trajectory and bounded trajectories. To 

determine nominal trajectory simulator Epanet [10], is used. 

At this simulator effective algorithm of solving DWDS 

model [11], is implemented. To determine bounded output 

trajectories it is necessary to known nominal trajectory and 

it is need to solve multiple optimization problems (4). Thus, 

computation time of determining bounded output 

trajectories are much longer than computation time of 

determining nominal trajectories [9].  
 

A similar way (multistep algorithm) to solve the 
optimization task can be found in the paper [15]. 

IV. BENCHMARK SYSTEM 

The effectiveness of presented algorithm is presented based 
on DWDS of Chojnice city. Model structure of DWDS Chojnice 
city is shown in Fig. 3. 

 

Water source and 
pump station Funka 

Tank and pump 
station Karolewo 

Water source and 
pump station  
Plac Piastowski Monitoring  

node 2 

Monitoring  
node 1 

 
Fig.3 DWDS Chojnice full model diagram  

Test model consists of: 177 nodes, 271 pipelines, 2 water 

sources, 3 pump stations and 1 water tank. Hydraulic step  is 1 

hour and length of prediction and control horizon are 24 hours. 

Pump stations “Karolewo” and “Plac Piastowski” supply water 

to area with “Monitoring nodes 1 and 2 respectively”. Limits on 

pressure and its increment at “Monitoring nodes 1 and 2” are on 

value from 185 up to 210 [m] and 3 [m/h], respectively. Pressure 

in tank “Karolewo” is limited to the value from 167.2 up to 170.8 

[m]. During 8 am – 12 am and 4 pm – 10 pm electric energy cost 

0.24 [zl/kWh] and rest of a day is 0.12 [zl/kWh]. 

A. Nominal DWDS model  

DWDS hydraulic model can be described in a form of 

differential-algebraic equation set over modelling horizon 

 mnnm Ntt  ,  ( mN  - length of the modelling horizon) 

with discretization step hT  equal to hydraulic step (sampling 

step). Model consists of three parts: (i) linear static – 

conservations of water mass in nodes; (ii) nonlinear static – 

conservation of energy on connection elements (pipelines, 

valves, pumps); (iii) nonlinear dynamic – conservations of 

water mass tanks. Model can be presented in a form:  
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where, s - characteristic variable vector of the system 

compound of subvectors: u - control vector (pumps and valves), 

d - unmeasured disturbance vector (water consumption), y - 

output vector (pressure in node h, flow in pipelines q, water 

velocity in pipelines v ), zh - state vector (water level in tanks); 

0,zh - tanks water level at initial nt , k - discreet sampling 

instant tTk h  . 

B. Control of DWDS  

There are two major aspects in DWDS control: quantity 

(hydraulics) and quality over prediction horizon 

 pnnp Ntt  ,  (where pN - length of prediction 

horizon). Because of differences in dynamics of hydraulics and 

quality, effective DWDS control is realized in a frame of 

suboptimal two layer hierarchical control structure [12]. At the 

upper control layer hydraulics control and coarse values of 

quality control are appointed. In the lower (correction) layer a 

correction of quality control, obtained from upper layer is 

realized. In the paper only hydraulics control at the upper layer 

is considered over control horizon u , where pu   and 

24 pu HH [h]. 

C. System constraints  

In DWDS control problem there exist four major constraints 

on:  
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 head at water monitoring nodes 

       D d;h,hh p
max
dp

min
dpd   , where D – 

water consumptions nodes index set;  

 head change at water monitoring nodes 

      max

1,1
11, hkthkthkkh  ndndd

Hk p




 

where maxh - maximum pressure change; 

 water tanks level – 

       Zz  ,hhh pzpzpz  maxmin ,  ( Z – water tanks 

index set);  

 initial  nz th  and final  pnz Hth   water tanks level 

must be equal       0,  pnznzpnnz HththHtth  

Set of system constraints is given as  . 

Output and state trajectories       T
pz

T
pdp  hhy ,  

must satisfy the system constraints: 

 

   py  (11) 

Input control variables constraints are given as:  

 

        R ; u
max

u
min

u uuuu   ;   (12) 

In this paper the pump control is only take into account.  

 

 

D. Formulation of DWDS optimizing control problem 

Effective DWDS hydraulics control is based on optimizing 

predictive control algorithm. In this paper control problem is 

formulated as follows: 
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Eargmin uu


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

uu
uU
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,where: E – pumping energy cost.  

V. SIMULATION RESULTS 

 

To demonstrate the effectiveness of presented in paper, 

control cost and mean computation time will be compared with 

two other algorithms. First algorithm is optimized algorithm 

presented i [8], [9] and second is algorithm realized control of 

real DWDS of Chojnice.  

 

Comparing that three control solutions it must be noted that 

outputs generated using a robust and optimized algorithms are 

within system constraints but real output can exceed system 

constraints (Fig. 4 and 5).  

Table 1 shows that control cost of generated by robust 

output feasible algorithm is higher that control costs of 

optimized algorithm and real system. Higher control cost is 

price for taking into account uncertainty associated with 

system. This due mainly is from the need to raise pressure at 

monitoring nodes (and others) in order to reduce adverse impact 

of system uncertainty on real system outputs. 

 

Table 1. Comparison of control costs and the computation 

average time (at one simulation step) at simulation horizon 720 

[h]. 

Algorithm 
Simulation average 

time 
Control cost [zl] 

Optimized  4 min 45 s 4886 

Direct 12 min 37 s 6364 

Real system - 5515 

 

 
Fig. 4 Comparison of head trajectories at “Monitoring node 1” for proposed 

algorithm and real system control. 

 

 
Fig. 5 Comparison of water tank level trajectories at “Karolewo tank” for 
proposed algorithm and real system control. 

 

An important aspect of optimization algorithms used in the 

MPC is computation time, which must be less than 

control/prediction step time. For DWDS of Chojnice city 

control/prediction step time is 60 minutes. 

For presented algorithm computation time for evry 

simulation step is shown in Fig. 6 showing the calculation time 

for each step of the simulation. 
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For presented algorithm only in 15 of 720 cases (~ 2% of 

cases) computation time has been exceeded the limit 60 

minutes. 

The calculations were performed on a PC with operating 

system Windows 10 (Intel i7, 16GB RAM). 

 

 
Fig. 6 Computation time over simulation horizon (720 h) for direct robust 

output feasible algorithm. 

VI. SUMMARY 

In paper, algorithm determining robust output feasible 
control of DWDS hydraulics, was proposed. This algorithm, in 
contrast to the algorithms presented in literature, modifying 
directly determined control. To increase efficiency two-step 
algorithm, was proposed. At first step determines optimal 
control based on nominal model. Solution, from first step, is the 
starting point for second step of the algorithm. In the second 
step, with starting from solution from first step, robust output 
feasible control is determined. To solve optimization problems 
(at first and second step of proposed algorithm) efficient 
optimization algorithm based on genetic algorithm and 
specialized genetic operators, is used. Simulations results, 
showed that control determined by proposed, is more expensive 
than optimized and real control. Increase of control cost is a price 
to pay for control robustness. But, it can be guarantee that used 
in the actual system control will fulfilling system constraints 
with uncertain system model. 
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