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Abstract

Imagine that we are given a set D of officials and a set W of civils. For each civil x ∈ W , there must be an official v ∈ D that
can serve x , and whenever any such v is serving x , there must also be another civil w ∈ W that observes v, that is, w may act
as a kind of witness, to avoid any abuse from v. What is the minimum number of officials to guarantee such a service, assuming a
given social network?

In this paper, we introduce the concept of certified domination that models the aforementioned problem. Specifically,
a dominating set D of a graph G = (VG , EG ) is said to be certified if every vertex in D has either zero or at least two neighbours
in VG \ D. The cardinality of a minimum certified dominating set in G is called the certified domination number of G. Herein,
we present the exact values of the certified domination number for some classes of graphs as well as provide some upper bounds
on this parameter for arbitrary graphs. We then characterise a wide class of graphs with equal domination and certified domination
numbers and characterise graphs with large values of certified domination numbers. Next, we examine the effects on the certified
domination number when the graph is modified by deleting/adding an edge or a vertex. We also provide Nordhaus–Gaddum type
inequalities for the certified domination number.

Keywords: Certified domination; Domination; Corona; Nordhaus–Gaddum

1. Introduction

Imagine that we are given a set D of officials and a set W of civils. For each civil x ∈ W , there must be an
official v ∈ D that can serve x , and whenever any such v is serving x , there must also be another civil w ∈ W
that observes v, that is, w may act as a kind of witness, to avoid any abuse from v. What is the minimum number
of officials to guarantee such a service, assuming a given social network? This problem motivates us introducing the
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Fig. 1. The family of graphs Gi . (a) Black vertices form a certified dominating set Dc with |Dc| = i + 3, i ≥ 2. (b) Black and grey vertices form
a (D, D2)-pair, respectively, with |D| = 2i + 1. Observe that if i ≥ 3, then Gi has no (D, D2)-pair with |D| ≤ i + 3.

concept of certified domination. Specifically, let D be a subset of the vertex set of a graph G = (VG, EG). We say that
D dominates G (or is a dominating set of G) if each vertex in the set VG \ D has a neighbour in D. The cardinality
of a minimum dominating set in G is called the domination number of G and denoted by γ (G), and any minimum
dominating set of G is called a γ -set. A dominating set D of G is called certified if every vertex v ∈ D has either zero
or at least two neighbours in VG \ D. The cardinality of a minimum certified dominating set in G is called the certified
domination number of G and denoted by γcer(G). A minimum certified dominating set of G is called a γcer-set. Notice
that, by the definition, VG is a certified dominating set of G, and certainly 1 ≤ γcer(G) ≤ |VG |. Furthermore, one can
observe that γcer(G) ̸= |VG | − 1.

There is a wealth of literature about domination and its variations in graphs; we refer to the excellent books of
Haynes, Hedetniemi, and Slater [1,2]. The domination concept we introduce perfectly fits into that area where, for a
given graph G, domination parameters are defined by imposing additional constraints on a dominating set D or its
complement VG \ D. This area includes, to mention but a few, multiple domination, distance domination, or global
domination. In particular, the problem of certified domination is closely related to the problem of existence a DD2-pair
in a graph, introduced by Henning and Rall in [3]. Recall, a set X ⊆ VG of vertices is 2-dominating in G if every
vertex in VG \ X has at least two neighbours in X . A DD2-pair of G is a pair (D, D2) of disjoint sets of vertices of
G such that D is a dominating set of G and D2 is a 2-dominating set of G; a graph that has a DD2-pair is called a
DD2-graph. One can observe that if G has a DD2-pair (D, D2), then the set D is a certified dominating set. However,
there are graphs G with γcer(G) < |D| for any (D, D2)-pair in G (if any), see Fig. 1 for an illustration.

In Section 2, we present the exact values of the certified domination number for some elementary classes of graphs.
Some upper bounds on this new parameter for an arbitrary graph are presented in Section 3. Then, in Sections 4 and
5, respectively, we characterise a wide class of graphs with equal domination and certified domination numbers and
characterise graphs with large values of certified domination numbers. Next, in Section 6, we examine the effects on
the certified domination number when the graph is modified by deleting/adding an edge or a vertex. Finally, Section 7
is devoted to Nordhaus–Gaddum type inequalities for the certified domination number.

1.1. Definitions and notation

For general graph theory terminology, we follow [4]. In particular, for a vertex v of a graph G = (VG, EG), its
neighbourhood, denoted by NG(v), is the set of all vertices adjacent to v, and the cardinality of NG(v), denoted by
degG(v), is called the degree of v. The closed neighbourhood of v, denoted by NG[v], is the set NG(v)∪{v}. In general,
for a subset X ⊆ VG of vertices, the neighbourhood of X , denoted by NG(X ), is defined to be

⋃
v∈X NG(v), and the

closed neighbourhood of X , denoted by NG[X ], is the set NG(X ) ∪ X . The minimum (maximum, resp.) degree of a
vertex in G is denoted by δ(G) (∆(G), resp.). A vertex of degree |VG | − 1 is called a universal vertex of G. A vertex
of degree one is called a leaf, and the only neighbour of a leaf is called its support vertex (or simply, its support). If
a support vertex has at least two leaves as neighbours, we call it a strong support, otherwise it is a weak support. The
set of leaves of G is denoted by LG . For a leaf v ∈ LG , its support vertex is denoted by sG(v), and for a weak support
v, the unique leaf adjacent to v is denoted by lG(v). The set of weak supports of G is denoted by S1(G), while the set
of strong supports of G is denoted by S2(G).

2. Elementary graph classes

We begin by presenting the exact values of the certified domination number for some elementary classes of graphs.
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Observation 2.1. If Pn is an n-vertex path, then

γcer(Pn) =

⎧⎪⎪⎨⎪⎪⎩
1 if n = 1 or n = 3;
2 if n = 2;
4 if n = 4;

⌈
n
3 ⌉ otherwise.

Observation 2.2. If Cn is an n-vertex cycle, n ≥ 3, then γcer(Cn) = ⌈
n
3 ⌉.

Observation 2.3. If Kn is an n-vertex complete graph, then

γcer(Kn) =

{
1 if n = 1 or n ≥ 3;
2 if n = 2.

Observation 2.4. If Km,n is a complete bipartite graph with 1 ≤ m ≤ n, then

γcer(Km,n) =

{
1 if m = 1 and n > 1;
2 otherwise.

Observation 2.5. If Wn is an n-vertex wheel, then γcer(Wn) = 1.

In addition, we have the following two general observations on the certified domination number of a graph.

Observation 2.6. If G is a graph of order at least three, then γcer(G) = 1 if and only if G has a universal vertex.

Observation 2.7. If G1, . . . , Gk are the connected components of a graph G, then γcer(G) =
∑k

i=1γcer(G i ).

3. Upper bounds on the certified domination number

In this section we focus on upper bounds on the certified domination number. We start with two simple observations
and then present our main result of this section: an upper bound on γcer(G) with respect to the domination number
γ (G) and the number |S1(G)| of weak supports in G.

Observation 3.1. Every support vertex of a graph G belongs to every certified dominating set of G.

Proof. Let Dc be a certified dominating set of G, let s be a support vertex of G, and let l be a leaf adjacent to s. If s
were not in Dc, then l should be in Dc. But then l would have only one neighbour in VG \ Dc, and Dc would not be a
certified dominating set. □

Observation 3.2. Let G be a graph of order n. If the strong supports of G are adjacent to k leaves in total, then
γcer(G) ≤ n − k. In particular, γcer(G) ≤ n − 2 |S2(G)|.

Proof. Let L be the set of all leaf-neighbours of strong supports of G. Then |L| = k and the set VG \ L is a certified
dominating set of G. Thus γcer(G) ≤ |VG \ L| = n − k ≤ n − 2 |S2(G)| as |L| ≥ 2 |S2(G)|. □

Before we present our main result, let us introduce some useful terminology. Let D be a dominating set of a graph
G. An element of D that has all neighbours in D is said to be shadowed with respect to D (shadowed for short), an
element of D that has exactly one neighbour in VG \ D is said to be half-shadowed with respect to D (half-shadowed
for short), while an element of D having at least two neighbours in VG \ D is said to be illuminated with respect to D
(illuminated for short). It is easy to observe that if D is a minimum dominating set of a graph with no isolated vertices,
then D has no shadowed element, and if D is a certified dominating set, then D has no half-shadowed element.

Theorem 3.3. If G is a connected graph, then γcer(G) ≤ γ (G) + |S1(G)|.
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Proof. If G is a graph of order at most two, then the inequality is obvious. Thus assume that G has at least three
vertices. Let D be a γ -set of G that minimises the number of half-shadowed vertices and such that D does not contain
any leaf of G. (Notice that such D always exists as G is connected and |VG | ≥ 3.) Let Dhs ⊆ D be the set of all
half-shadowed vertices of D. If Dhs = ∅, then γcer(G) = γ (G) ≤ γ (G) + |S1(G)|. Thus assume that Dhs ̸= ∅.

Claim 1. If v ∈ Dhs, then degG(v) ≥ 2 and v ̸∈ S2(G).

The inequality degG(v) ≥ 2 follows from the choice of D, that is, from the assumption that D ∩ LG = ∅. To argue
the second property, suppose on the contrary that v is a strong support. Again, since v has at least two neighbours in
LG and LG ⊆ VG − D, v would not be half-shadowed, a contradiction.

Next we show that all half-shadowed vertices are weak supports. Suppose on the contrary that there is a half-
shadowed vertex v ∈ Dhs \ S1(G) and let u be the unique neighbour of v in VG \ D. Since v is neither a weak nor
strong support (by assumption and Claim 1, respectively), it implies that u is not a leaf. Furthermore, we have the
following claim.

Claim 2. The set NG(u) − {v} is a subset of VG − D.

Otherwise the set D \ {v} would be a smaller (than D) dominating set of G.
Finally, we have the following claim.

Claim 3. No vertex belonging to the set NG(v) \ {u} is shadowed.

If a vertex w ∈ NG(v) − {u} was shadowed, then the set D \ {w} would be a smaller (than D) dominating set of G.
Consequently, keeping in mind the fact that none of neighbours of v is a leaf (see Claim 1), and combining Claims 2

and 3, we conclude that the set (D \{v})∪{u} would be a γ -set of G with a smaller number of half-shadowed vertices,
a contradiction. This proves that the set Dhs of half-shadowed vertices consists of weak supports of G only.

Observe now that adding to D all leaves adjacent to half-shadowed weak supports results in a dominating set D′

of G with no half-shadowed vertices, that is, D′ is a certified dominating set of G. Therefore γcer(G) ≤ |D′
| =

|D| + |Dhs| = γ (G) + |Dhs| ≤ γ (G) + |S1(G)|. □

From Observation 2.7 and Theorem 3.3, we immediately obtain the following corollary.

Corollary 3.4. If G is a graph, then γcer(G) ≤ γ (G) + |S1(G)|.

4. Graphs with γcer = γ

We continue our study on the certified domination number by focusing now on the class of graphs with γcer = γ .
When trying to characterise this class, one may expect that the main problem lies in leaves of a graph. In fact, from
Corollary 3.4 we immediately have the first result.

Corollary 4.1. If G is a graph with no weak support, then γcer(G) = γ (G).

The above corollary also follows from the next more general lemma.

Lemma 4.2. If a connected graph G has at least three vertices, then γcer(G) = γ (G) if and only if there exists a
minimum dominating set D of G such that NG(s) \ LG ̸⊆ D for every s ∈ S1(G).

Proof. Assume first that γcer(G) = γ (G). Let Dc be a minimum certified dominating set of G. Then Dc is a minimum
dominating set of G. Now, if s ∈ S1(G), then Dc ∩ {s, lG(s)} ̸= ∅ (as Dc is dominating in G), |Dc ∩ {s, lG(s)}| ̸= 2
(otherwise Dc \ {lG(s)} would be a smaller dominating set of G), and Dc ∩{s, lG(s)} ̸= {lG(s)} (otherwise lG(s) would
be half-shadowed). Thus Dc ∩ {s, lG(s)} = {s} and (NG(s) \ LG) ∩ (VG \ Dc) = (NG(s) \ {lG(s)}) ∩ (VG \ Dc) ̸= ∅

(otherwise s would be half-shadowed), and so NG(s) \ LG ̸⊆ Dc.
Assume now that in G there exists a γ -set D such that NG(s) \ LG ̸⊆ D for every s ∈ S1(G). Of all such sets,

choose one, say D′, that does not contain any leaf of G (such D′ exists in every connected graph of order at least
three) and minimises the number of its half-shadowed vertices. We claim that such D′ is a certified dominating set of
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G (and therefore γ (G) = |D′
| = γcer(G)). Suppose, on the contrary, that some element v of D′ is half-shadowed. Let

v′ be the unique element of NG(v) \ D′. Since v is half-shadowed, v ̸∈ S2(G), and v ̸∈ S1(G) (as every element of
S1(G) is illuminated by the adjacent leaf and, by the assumption, by at least one non-leaf). Finally, since D′

∩ LG = ∅

(by the choice of D′) and v ∈ D′, we have v ̸∈ LG and dG(v) ≥ 2. Now, if it were NG(v′) ∩ (D′
\ {v}) ̸= ∅, then

D′
\ {v} would be a dominating set of G smaller than D′, a contradiction. Thus NG(v′) \ {v} must be a nonempty

subset of VG \ D′ and, then, D′′
= (D′

\ {v}) ∪ {v′
} is a minimum dominating set of G and it has less half-shadowed

vertices than D′, a final contradiction which proves that γ (G) = γcer(G). □

Observe that if G = Kn , then γcer(G) = n = γ (G). Next, if G = l K2, then γcer(G) = 2l ̸= l = γ (G). In the
latter case, S1(G) = VG = LG and G has no minimum dominating set D of G such that NG(s) \ LG ̸⊆ D for every
s ∈ S1(G). Therefore, taking into account Observation 2.7 and Lemma 4.2, we obtain the following corollary for
graphs which are not necessarily connected.

Corollary 4.3. If G is a graph, then γcer(G) = γ (G) if and only if there exists a minimum dominating set D in G
such that NG(s) \ LG ̸⊆ D for every s ∈ S1(G).

Furthermore, we have the following relation between graphs each of which has a unique minimum dominating set
and those for which γcer and γ are equal.

Corollary 4.4. If a graph G has a unique minimum dominating set, then γcer(G) = γ (G).

Proof. If S1(G) = ∅, then γcer(G) = γ (G) by Corollary 4.1. Thus assume that S1(G) ̸= ∅. Let D be the minimum
dominating set of G. From the uniqueness and minimality of D it follows that S1(G) ⊆ D and LG ⊆ VG \ D. Now,
if it were γcer(G) ̸= γ (G), then, by Lemma 4.2, we could find s ∈ S1(G) such that NG(s) \ {lG(s)} ⊆ D, and then the
set (D \ {s}) ∪ {lG(s)} would be another minimum dominating set of G, which is impossible. □

Remarks. From Corollary 4.1 and the fact that the problem of determining the domination number in bipartite planar
subcubic graphs with no leaves is NP-hard (as it was observed in [5,6]), we immediately obtain the following: The
problem of determining the certified domination number is NP-hard even in bipartite planar subcubic graphs with no
leaves. Next, let G be a graph with no isolated vertex. If G has a minimal dominating set D which is also a certified
dominating set, then its complement VG \ D is a 2-dominating set of G, and, therefore, G is a DD2-graph. Thus, from
Corollaries 4.1 and 4.4, we have the following generalisation of Theorem 3 in [3]: Let G be a graph with no isolated
vertex. If G has no weak support or G has a unique dominating set, then G is a DD2-graph and it has a (D, D2)-pair
in which |D| = γ (G).

5. Graphs with large values of γcer

As we have already observed, for any graph G of order n, γcer(G) ≤ n, γcer(G) ̸= n − 1, and there are graphs G
with γcer(G) = n, for example, the complement of a complete graph Kn or a 4-vertex path P4. Thus it is natural to try
to characterise all graphs with γcer = n and γcer = n −2, respectively, which is carried out in this section. In particular,
we prove that γcer(G) = n if and only if G is the complement of a complete graph, the corona of a graph, or the union
of both of them. Recall, the corona product (or simply, the corona) of two graphs H and F is the graph G = H ◦ F
resulting from the disjoint union of H and |VH | copies of F in which the i th vertex of H is joined to all vertices of
the i th copy of F . If F is a 1-vertex graph, F = K1, then the corona H ◦ K1 is simply called the corona of H .

Lemma 5.1. Let G be a connected graph of order n. If G is the corona of some graph, then γcer(G) = n.

Proof. Let Dc be a smallest certified dominating set of G. It suffices to prove that Dc = VG . This is obvious if n = 2.
Thus assume n > 2. In this case, since G is the corona of some graph, every vertex of G either is a leaf of G or
is adjacent to exactly one leaf of G. From this and from Observation 3.1 it follows that VG \ LG ⊆ Dc. Moreover,
every leaf l of G also belongs to Dc (as otherwise its only neighbour sG(l) would be half-shadowed). Consequently,
LG ⊆ VG and therefore Dc = VG . □

Lemma 5.2. Let G be a connected graph of order n ≥ 2. If γcer(G) = n, then G is the corona of some graph.
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Fig. 2. The diadem graph resulting from the corona G = (K3 ∪ K2) ◦ K1 by adding a leaf to the support vertex s of G.

Proof. The statement is obvious for connected graphs of order at most 4. Thus assume that G is a connected graph of
order n ≥ 5 and γcer(G) = n. Now, since γ (G) ≤ n/2 for every graph with no isolated vertex, so by Theorem 3.3 we
have γcer(G) ≤ γ (G) + |S1(G)| ≤ 2γ (G) ≤ n = γcer(G). Thus γ (G) = n/2 and so G is the corona of some graph (as
it was proved in [7,8]). □

From the above lemmas, we immediately conclude with the following theorem.

Theorem 5.3. If G is a graph of order n, then γcer(G) = n if and only if G is either the complement of a complete
graph, or the corona of a graph, or the union of both of them.

Remark. We incidentally observe that the above result implies the sharpness of the upper bound in the inequality
γcer(G) ≤ γ (G) + |S1(G)| (see Theorem 3.3 and Corollary 3.4) as well as in the inequality γcer(G) ≤ 2γ (G), since
for the corona G of any graph without an isolated vertex, we have |S1(G)| = γ (G) and γcer(G) = 2γ (G).

5.1. Graphs with γcer = n − 2

A diadem graph of a graph H is a graph obtained from the corona H ◦ K1 by adding a new vertex, say v, and
joining v to one of support vertices of H ◦ K1 (see Fig. 2).

Lemma 5.4. If G is a diadem graph of order n, then γcer(G) = n − 2.

Proof. Let s be the unique strong support of G, and let l1, l2 be the two leaves of G adjacent to s in G. It is obvious that
VG \ {l1, l2} is a certified dominating set of G. Let Dc be a smallest certified dominating set of G. Then VG \ LG ⊆ Dc
(by Observation 3.1) and {l1, l2} ∩ Dc = ∅. Moreover, every leaf l different from l1 and l2 belongs to Dc (otherwise
sG(l) would be half-shadowed). Consequently Dc = VG \ {l1, l2} and therefore γcer(G) = n − 2. □

Lemma 5.5. Let G be a connected graph of order n. If γcer(G) = n − 2, then G = C3, G = C4, or G is a diadem
graph ( of a connected graph).

Proof. If G is a connected graph of order at most n ≤ 4 and γcer(G) = n−2, then G = K1,2, G = C3 or G = C4. Thus
assume that n ≥ 5. In this case δ(G) = 1, as otherwise, since γcer(G) = γ (G) (by Corollary 4.1), γcer(G) = n −2, and
γ (G) ≤ n/2, we would have n − 2 = γcer(G) = γ (G) ≤ n/2, which is impossible. We now claim that G is a diadem
graph.

By way of contradiction, suppose that the claim is false. Let G be a smallest counterexample, say of order n
(n ≥ 5), such that γcer(G) = n − 2 and G is not a diadem graph. Let Dc be a γcer-set of G, and let v and u be the only
elements of VG \ Dc. From the fact that Dc = VG \ {v, u} is a certified dominating set of G it follows that if x ∈ Dc,
then either x ∈ NG(v) ∩ NG(u) or x ̸∈ NG(v) ∪ NG(u). This proves that NG(v) ∩ Dc = NG(u) ∩ Dc. In addition,
the set VG \ NG[{v, u}] is nonempty, as otherwise {v, u} would be a certified dominating set of G and we would have
n − 2 = γcer(G) ≤ |{v, u}| = 2, which is impossible.

Let G ′ denote the subgraph G − NG[{v, u}] of G. From the assumption γcer(G) = n − 2 it easily follows that
γcer(G ′) = |VG′ |. Thus, by Theorem 5.3, every connected component of G ′ is an isolated vertex or the corona of a
graph.

Let H be a connected component of G ′. From the fact that Dc = VG \ {v, u} is a minimum certified dominating set
of G it follows that at least one vertex of H is not adjacent to any vertex belonging to NG[{v, u}] \ {v, u} as otherwise
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Dc \ VH would be a certified dominating set of G, which is impossible as γcer(G) ≤ |Dc \ VH | < |Dc| = γcer(G).
From this we conclude that G ′ has no isolated vertex. Consequently, every connected component of G ′ is the corona
of a graph.

We now claim that K2 is not a connected component of G ′. Suppose on the contrary that K2 on vertices a and b is
a connected component of G ′. Then one of the vertices a and b is a leaf in G and the latter one is adjacent to a vertex
in NG[{v, u}] \ {v, u}, say a ∈ LG and b is adjacent to a vertex w ∈ NG[{v, u}] \ {v, u}. Let G̃ denote the graph
G −{a, b} (of order n −2). For this graph either γcer(G̃) < n −4, or γcer(G̃) = n −4, or γcer(G̃) > n −4. Assume first
that γcer(G̃) < n − 4. Let D̃c be a smallest certified dominating set of G̃. Then D̃c ∪ {b} (if (NG(b) \ {a}) \ D̃c ̸= ∅) or
D̃c ∪{a, b} (if NG(b)\{a} ⊆ D̃c) is a certified dominating set of G and γcer(G) ≤ |D̃c ∪{a, b}| = γcer(G̃)+2 < n −2,
a contradiction. Assume now that γcer(G̃) > n − 4. Then γcer(G̃) = n − 2 = |VG̃ | and, by Theorem 5.3, G̃ is the
corona of a graph. But this is impossible as no vertex of NG[{v, u}]\ {v, u} is a leaf or a neighbour of exactly one leaf.
Finally, assume that γcer(G̃) = n − 4 = |VG̃ | − 2. In this case the choice of G implies that G̃ is the diadem graph in
which v and u are leaves and w is their only common neighbour. Now, it is obvious that the graph G (obtained from
G̃ by the addition of the vertices a and b, and the edges ab and bw) is a diadem graph, a contradiction.

Now, to complete the proof, it suffices to show that this smallest counterexample is not a counterexample, that is, it
suffices to show that G is a diadem graph. It is enough to prove that: (1) no vertex belonging to NG[{v, u}] is adjacent
to a leaf of a connected component of G ′ of order at least four, (2) v and u have exactly one common neighbour, and
(3) v and u are not adjacent in G.

(1) Suppose on the contrary that there is a vertex in NG[{v, u}] adjacent to a leaf l of a connected component H
(of order at least four) of G ′. Let L be the set of leaves of H within the distance at most 2 from sH (l). Then
D = Dc \

(
L ∪ {sH (l)}

)
is a certified dominating set of G and |D| < |Dc|, a contradiction.

(2) Suppose on the contrary that |NG[{v, u}] \ {v, u}| ≥ 2. Let us consider the set S = {x ∈ VG′ : NG(x) ∩

NG({v, u}) ̸= ∅}. By (1), S is a subset of VG′ \ LG′ . In addition, since G ′ is the corona of a graph, every vertex of
S is adjacent to a vertex of LG′ . From the supposition |NG[{v, u}] \ {v, u}| ≥ 2 and from properties of elements
of S it follows that D = {v, u} ∪ (VG′ \ LG′ ) ∪ (LG′ \ NG′ (S)) (= {v, u} ∪ (VG′ \ (NG(S) ∩ LG))) is a certified
dominating set of G and |D| < |Dc|, a contradiction.

(3) Suppose on the contrary that vu ∈ EG , and consider the graph G ′′
= G − vu of order n, in which, by (2), v and

u are leaves, and they have exactly one common neighbour, say w. In this graph we have either γcer(G ′′) > n −2
(and therefore γcer(G ′′) = n), or γcer(G ′′) = n −2, or γcer(G ′′) < n −2. Assume first that γcer(G ′′) = n. Then, by
Theorem 5.3, G ′′ is the corona of a graph, but this is impossible as leaves v and v share the same neighbour w.
Assume now that γcer(G ′′) = n − 2. Then, by the choice of G, G ′′ is a diadem graph. Let L be the set of leaves
of G ′′ within the distance at most 3 from v (and u). Then D = (Dc \ (L ∪ {w})) ∪ {v} is a certified dominating
set of G and |D| < |Dc|, a contradiction. Finally, assume that γcer(G ′′) < n − 2. Let D′′

c be a smallest certified
dominating of G ′′. Since w is a strong support of G ′′, w ∈ D′′

c by Observation 3.1, and v, u ̸∈ D′′
c by minimality

of D′′
c . But then, D′′

c is also a certified dominating set of G and so γcer(G) < n − 2, a final contradiction. □

From Theorem 5.3, Lemmas 5.4 and 5.5, we have the final characterisation of graphs of order n with γcer = n − 2.

Theorem 5.6. Let G be a graph of order n ≥ 3. Then γcer(G) = n − 2 if and only if G is C3, C4, or a diadem graph,
or G is one of these three graphs with possible number of isolated vertices, or G is the union of one of these three
graphs with the corona of some graph, with possible number of isolated vertices. □

6. Influence of deleting/adding edge/vertex

In this section, following [9–12], to mention but a recent few, we examine the effects on the certified domination
number when the graph is modified by deleting/adding an edge or a vertex. We observe that deleting an edge or
a vertex may arbitrarily increase the certified domination number. For example, for the graph G i of order 2i + 4
illustrated in Fig. 3(a) we have γcer(G i ) = i + 1 and γcer(G i − e) = 2i + 4. To argue a similar influence of deleting a
vertex, consider a wheel graph Wn with the hub v. We have γcer(Wn) = 1 and γcer(Wn − v) = ⌈(n − 1)/3⌉.

Adding an edge to a graph may also arbitrarily increase the certified domination number. Namely, consider the
disconnected graph Hi of order 2i + 4 illustrated in Fig. 3(b). We have γcer(Hi ) = i + 2 and γcer(Hi + e) = 2i + 4.
However, adding an edge to a connected graph does not increase the certified domination number, that is, γcer(G+e) ≤

γcer(G) for any connected graph G. To argue this property, we use the following lemma.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl
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Fig. 3. Adding or deleting an edge may arbitrarily increase the certified domination number.

Lemma 6.1. Let Dc be a γcer-set of a connected graph G of order n ≥ 2. Then:

(a) Every shadowed vertex in Dc is a weak support or a leaf.
(b) Every non-leaf neighbour of a shadowed weak support is either an illuminated vertex or a shadowed weak

support.

Proof. (a) Consider a shadowed vertex v ∈ Dc. Suppose on the contrary that v is neither a weak support nor a leaf
in G. By minimality of Dc, there are no shadowed strong supports in Dc, in particular, v is not a strong support, and
thus all neighbours of v are of degree at least two. Let X ⊆ Dc be a maximal subset of shadowed vertices such that
(i) v ∈ X , (ii) the induced subgraph G[X ] is connected, and (iii) none of elements of X is an illuminated vertex or
a shadowed weak support. Next, for a vertex x ∈ X , define the set BG(x) = NG(x) \ X . Analogously, define the set
BG(X ) =

⋃
x∈X BG(x).

Observe that by minimality of Dc, each vertex x ∈ X is a non-support vertex, and by the choice of X , and every
element in BG(X ) is either an illuminated vertex or a shadowed weak support.

Case 1: G[X ] is a 1-vertex graph. Let L be the set of shadowed leaves within the distance 2 from v. Then the set
D = Dc \

(
L ∪ {v}

)
would be a certified dominating set of G and |D| < |Dc|, a contradiction.

Case 2: |X | ≥ 2 and γcer(G[X ]) = |X |. By Theorem 5.3, G[X ] is the corona of some connected graph. Observe that
by the choice of X and minimality of Dc, if x ∈ X is a leaf of G[X ], then the set BG(x) is non-empty.

Consider now a weak support s in G[X ]. Let L1 be the set of leaves of G[X ] within the distance at most 2 from s
and let L2 be the set of shadowed leaves of G within the distance 2 from L1∪{s}. Then the set D = Dc\(L1∪L2∪{s})
is a certified dominating set of G and |D| < |Dc|, a contradiction.

Case 3: |X | ≥ 3 and γcer(G[X ]) ≤ |X | − 2 (as the case γcer(G[X ]) = |X | − 1 is impossible). Let DX be a γcer-set
of G[X ] and let DX = X \ DX . Let L3 be the set of shadowed leaves within the distance 2 from DX . Then the set
D = Dc \ (DX ∪ L3) is a certified dominating set of G and |D| < |Dc|, a contradiction.

(b) A non-leaf neighbour of a shadowed weak support s ∈ Dc is either illuminated or shadowed. If s is shadowed,
then, since it is not a leaf, it must be a weak support by (a). □

Theorem 6.2. If G is a connected graph of order n ≥ 2, then γcer(G + e) ≤ γcer(G).

Proof. One can verify the validity of the theorem for graphs of order at most n ≤ 4. So assume n ≥ 5 and let Dc be a
γcer-set of G.

Let e = vw, v, w ∈ VG , be the added edge to G. If both v, w ∈ Dc, then Dc is also a certified dominating set of
the graph G + e. Similarly, if either both v, w ̸∈ Dc, or v ̸∈ Dc and w ∈ Dc is illuminated, or v ∈ Dc is illuminated
and w ̸∈ Dc, then Dc is a certified dominating set of G + e as well. Therefore, in all aforementioned cases, we have
γcer(G + e) ≤ |D| = γcer(G) as required.

Without loss of generality assume now that v ̸∈ Dc and w ∈ Dc is shadowed (the case w ̸∈ Dc and v ∈ Dc is
shadowed can be analysed in a similar way). By Lemma 6.1(a), w is either a weak support or a leaf of G.

Case 1: w is a weak support of G. Then the set D = Dc \ {lG(w)} is a certified dominating set of G + e, and thus,
γcer(G + e) ≤ |D| < |Dc| = γcer(G).

Case 2: w is a leaf of G. By the choice of Dc, it follows that the support vertex sG(w) is weak and shadowed.
Therefore, by Lemma 6.1(b), every non-leaf neighbour of the weak support sG(w) in G is either an illuminated vertex
or a shadowed weak support of G. Let L be the set of shadowed leaves within the distance 2 from sG(w) in G. Then, the
set D = Dc\(L∪{sG(w)}) is a certified dominating set in G+e, and hence γcer(G+e) ≤ |D| ≤ |Dc|−1 < γcer(G). □
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Fig. 4. Graph Gi has 2i + 1 vertices, and γcer(Gi ) = i , while γcer(Gi + v) = 2i + 2.

Adding a vertex can arbitrarily increase the certified domination number, which is not the case as in the model
of classic domination. Indeed, for the graph G i of order 2i + 1 depicted in Fig. 4, we have γcer(G i ) = i , while
γcer(G i + v) = 2i + 2. However, bearing in mind Corollary 4.1, one can expect that the clue of the above construction
lies in adding a leaf. Indeed, this is the case since one can prove that adding a non-leaf vertex does not effect the
certified domination number significantly (the being added vertex v is called a non-leaf vertex if v is not a leaf in the
resulting graph). Namely, we have the following theorem.

Theorem 6.3. If we add a non-leaf vertex v to a graph G, then γcer(G + v) ≤ γcer(G) + 1.

Proof. Let Dc be a γcer-set of a graph G and let v be a new added vertex.

Case 1: degG+v(v) = 2. Let u and w be the two neighbours of v in G + v. If either u, w ̸∈ Dc or both u, w ∈ Dc, then
the set Dc ∪ {v} is a certified dominating set of G + v, and thus γcer(G + v) ≤ γcer(G) + 1. Otherwise, without loss
of generality, we consider two subcases.

Subcase 1.a: u ̸∈ Dc, w ∈ Dc, and w is illuminated. Then the set Dc remains a certified dominating set of G + v, and
in this case, γcer(G + v) ≤ γcer(G) holds.

Subcase 1.b: u ̸∈ Dc, w ∈ Dc, and w is shadowed. If the vertex w constitutes a 1-vertex component of G, then the
set (Dc \ {w}) ∪ {v} is a certified dominating set in G + v, thus getting γcer(G + v) ≤ γcer(G) + 1. Otherwise, by
Lemma 6.1(a), w is either a weak support or a leaf of G. Now, similarly as in the proof of Theorem 6.2, we consider
two subcases.

Subcase 1.b.1: w is a weak support of G. (We emphasise that this subcase includes the case when w and the lG(w)
constitute a 2-vertex component of G.) Then the set Dc \ {lG(w)} is a certified dominating set in G + v. In this case,
γcer(G + v) ≤ γcer(G) − 1 holds.

Subcase 1.b.2: w is a leaf of G, and w together with the support vertex sG(w) does not constitute a 2-vertex component
of G. By the choice of Dc, the support vertex sG(w) is weak and shadowed. By Lemma 6.1(b), every non-leaf
neighbour of sG(w) in G is either an illuminated vertex or a shadowed weak support of G. Again, let L be the set of
shadowed leaves within the distance 2 from sG(w) in G. Then, the set D = Dc \(L ∪{sG(w)}) is a certified dominating
set in G + v. In this case, γcer(G + v) ≤ γcer(G) − 1.

Case 2: degG+v(v) ≥ 3. Then, when adding v to G, we first add only two edges, thus obtaining a temporary graph G ′,
where degG′ (v) = 2. Now, taking into account Case 1, we conclude that γcer(G ′) ≤ γcer(G) + 1. Next, when adding
all the remaining edges to G ′, sequentially, to obtain the final graph G + v, we apply Theorem 6.2, sequentially, for
each of added edge, thus getting γcer(G + v) ≤ γcer(G ′) ≤ γcer(G) + 1 as required. □

7. Nordhaus–Gaddum type results

Following the precursory paper of Nordhaus and Gaddum [13], the literature has became abundant in inequalities
of a similar type for many graph invariants, see a recent survey by Aouchiche and Hansen [14]. In particular, the
following result is known for the domination number.

Theorem 7.1 ([15–17]). If G is the complement of a graph G of order n, then:

(a) γ (G) γ (G) ≤ n;
(b) γ (G) + γ (G) ≤ n + 1 with equality if and only if G = Kn or G = Kn .
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Further sharpening of bounds was done for the case when, for example, both G and G are connected [18] or for
graphs with specified minimum degree [19], to mention but a few. In particular, the following theorem was proved
in [20].

Theorem 7.2 ([20]). If G is a graph of order n and neither G nor G has an isolated vertex, that is, 1 ≤ δ(G) ≤ n−2,
then

γ (G) + γ (G) ≤

⌊n
2

⌋
+ 2.

Moreover, if n ̸= 9, the bound is attained if and only if {γ (G), γ (G)} = {⌊n/2⌋ , 2}.

In this section we provide some Nordhaus–Gaddum type inequalities for the certified domination number. First,
taking into account Corollary 4.1, Theorems 7.1 and 7.2, we obtain the following corollary.

Corollary 7.3. If G is a graph of order n and min{δ(G), δ(G)} ≥ 2, then

γcer(G) + γcer(G) ≤

⌊n
2

⌋
+ 2 and γcer(G) γcer(G) ≤ n.

By enumerating all graphs of order at most 4, we obtain the following observation.

Observation 7.4. Let G be a graph of order n. Then:

(a) γcer(G) + γcer(G) = γcer(G) γcer(G) = 4 if n = 2;
(b) γcer(G) + γcer(G) = 4 and γcer(G) γcer(G) = 3 if n = 3;
(c)

(
γcer(G) + γcer(G), γcer(G) γcer(G)

)
∈ {(3, 2), (5, 4), (6, 6), (8, 16)} if n = 4.

Next, we have the following theorem.

Theorem 7.5. If G is a graph of order n ≥ 3 and min{δ(G), δ(G)} = 0, then

γcer(G) + γcer(G) ≤ n + 1 and γcer(G) γcer(G) ≤ n.

In addition, if min{δ(G), δ(G)} = 0, then each of the above upper bounds is attainable, and the following statements
are equivalent:

(a) γcer(G) + γcer(G) = n + 1;
(b) γcer(G) γcer(G) = n;
(c) G or G is the complement of Kn or the union of the corona of some graph and a positive number of isolated

vertices.

Proof. From the assumption min{δ(G), δ(G)} = 0, it follows that max{∆(G),∆(G)} = n − 1 and, therefore,
γcer(G) = 1 or γcer(G) = 1. Now, since γcer(G) ≤ n and γcer(G) ≤ n, we get γcer(G) + γcer(G) ≤ n + 1 and
γcer(G) γcer(G) ≤ n.

Assume now that min{δ(G), δ(G)} = 0, say δ(G) = 0. Then ∆(G) = n − 1, and so γcer(G) = 1. Now, since
γcer(G) = 1, it follows from each of the equalities γcer(G)+γcer(G) = n +1 and γcer(G) γcer(G) = n that γcer(G) = n.
Finally, since δ(G) = 0 and γcer(G) = n, we conclude from Theorem 5.3 that G is the complement of K n or the union
of the corona of some graph and a positive number of isolated vertices. This proves the implications (a) ⇒ (c) and
(b) ⇒ (c). Opposite implications are straightforward. □

Finally, we have the following theorem.

Theorem 7.6. If G is a graph of order n ≥ 5, then

γcer(G) + γcer(G) ≤ n + 2 and γcer(G) γcer(G) ≤ 2n.

In addition, each of the above upper bounds is attainable, and the following statements are equivalent:

(a) γcer(G) + γcer(G) = n + 2;
(b) γcer(G) γcer(G) = 2n;
(c) G or G is the corona of some graph.
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Proof. If min{δ(G), δ(G)} ≥ 2, then γcer(G) + γcer(G) ≤
⌊ n

2

⌋
+ 2 ≤ n + 2 and γcer(G) γcer(G) ≤ n ≤ 2n by

Corollary 7.3. If min{δ(G), δ(G)} = 0, then γcer(G) + γcer(G) ≤ n + 1 ≤ n + 2 and γcer(G) γcer(G) ≤ n ≤ 2n by
Theorem 7.5.

Thus assume min{δ(G), δ(G)} = 1. Then max{∆(G),∆(G)} = n − 2. This also implies that γcer(G) > 1 and
γcer(G) > 1. Thus, since γcer(G) ≤ n and γcer(G) ≤ n, it suffices to show that γcer(G) = 2 or γcer(G) = 2. Without
loss of generality assume that δ(G) = 1. Let l be a leaf of G and let s be the only element of NG(l). We consider two
cases: degG(s) = n − 2, and degG(s) ≤ n − 3.

Case 1: degG(s) = n − 2. Let t be the only element of VG \ NG[s]. Assume first that dG(t) ≥ 2. Let u and
w be two neighbours of t (and s). Now, because NG[{s, t}] = NG[s] ∪ NG[t] = (VG \ {t}) ∪ NG[t] = VG ,
{u, w} ⊆ NG(s) ∩ (VG \ {s, t}), {u, w} ⊆ NG(t) ∩ (VG \ {s, t}), and γcer(G) > 1, we conclude that {s, t} is a minimum
certified dominating set of G, and γcer(G) = 2. Assume now that dG(t) = 1. In this case, let u and w be vertices such
that NG(t) = {u} and w ∈ NG(s) \ {l, u}. Since NG[{l, t}] = NG[l] ∪ NG[t] = (VG \ {s}) ∪ (VG \ {u}) = VG , the set
{l, t} is dominating in G. In addition, since {u, w} ⊆ NG(l) ∩ (VG \ {l, t}) and {s, w} ⊆ NG(t) ∩ (VG \ {l, t}), the set
{l, t} is certified dominating in G. From this and from the fact that γcer(G) > 1 it follows that γcer(G) = 2.

Case 2: degG(s) ≤ n−3. Let t and u be two elements of the set VG \ NG[s]. In this case, {l, s} is a certified dominating
set of G, since NG[{l, s}] = VG , {t, u} ⊆ NG(l) ∩ (VG \ {l, s}), and {t, u} ⊆ NG(s) ∩ (VG \ {l, s}). From this it again
follows that γcer(G) = 2.

We now prove the equivalence of (a), (b), and (c). Let G be a graph of order n ≥ 5 such that γcer(G)+γcer(G) = n+2
(γcer(G) γcer(G) = 2n, respectively). From this assumption, from Corollary 7.3 and Theorem 7.5 it follows that
min{δ(G), δ(G)} = 1. Then, as we have already proved, γcer(G) = 2 or γcer(G) = 2, and therefore γcer(G) = n or
γcer(G) = n, respectively. From this and from Theorem 5.3 it follows that G or G is the corona of some graph. Thus,
we have proved the implications (a) ⇒ (c) and (b) ⇒ (c). Finally, assume that G is the corona of some graph and G
is of order n ≥ 5. Then γcer(G) = n by Theorem 5.3. From the fact that the corona has no isolated vertex, it follows
that γcer(G) > 1. Now, since δ(G) = 1, as in Case 2, we get γcer(G) = 2. Consequently, γcer(G) + γcer(G) = n + 2
and γcer(G) γcer(G) = 2n. This proves the implications (c) ⇒ (a) and (c) ⇒ (b). □

8. Concluding remarks

Since over the years researchers have published thousands of papers on the topic of domination in graphs, our
paper cannot claim the right to cover the new model even partially, it should only be thought of as a very beginning,
a small contribution to. In this section, we present three exemplary open problems that we find interesting and which
research on we feel worth of being continued.

It is natural to characterise the class of critical graphs where the certified domination number increases on the
removal of any edge/vertex as well as the class of stable graphs where the certified domination number remains
unchanged on the removal of any edge/vertex. We point out that by Corollary 4.1, the class of critical (resp. stable)
(with respect to the certified domination number) graphs with minimum degree δ ≥ 3 is the same as the class of
critical (resp. stable) graphs with respect to domination number, see for example [21–23]. Therefore, we are left with
characterising critical (resp. stable) graphs with minimum degree δ ≤ 2. This is an open problem.

The problem of constructive characterisations of trees with equal domination parameters has received attention in
the literature, see for example [24,3,25,26], to mention but a few recent. Following this concept, we leave as an open
problem to provide a constructive characterisation of (γ, γcer)-trees, that is, the class of trees with γcer = γ .

Finally, let G be a graph with no isolated vertex. Then no minimal dominating set of G has a shadowed vertex.
Consequently, if γcer(G) = γ (G), then none of γcer-sets of G has a shadowed vertex. (In particular, it follows from
Corollary 4.1 that if G has no weak support or δ(G) ≥ 2, then none of γcer-sets of G has a shadowed vertex.) A natural
question then is whether the existence of a γcer-set with no shadowed vertex implies the equality of the numbers γcer

and γ . The answer to this question is not positive in general. For example, if i is a positive integer and Ti is the
tree of order 8i + 3 obtained from the corona P2i+1 ◦ K1 by subdividing each of its edges exactly once, that is,
Ti = S(P2i+1 ◦ K1), then it is a routine exercise to check that γ (Ti ) = 3i + 1, γcer(Ti ) = 4i + 1, and Ti has a
γcer-set with no shadowed vertex, see Fig. 5 for an illustration. Therefore, we conclude our paper with the problem of
characterising all graphs having a minimum certified dominating set with no shadowed vertex.
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Fig. 5. Tree Ti = S(P2i+1 ◦ K1) in which black vertices form a γ -set and a γcer-set, respectively.
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