
Abstract— Imaging photoplethysmography has already been 

proved to be successful in short distance (below 1m). However, 

most of the real-life use cases of measuring vital signs require 

the system to work at longer distances, to be both more reliable 

and convenient for the user. The possible scenarios that system 

designers must have in mind include monitoring of the vital 

signs of residents in nursing homes, disabled people, who can’t 

move, constant support for people regardless of the performed 

activity (e.g. during sleeping), infants, etc. In this work we 

verified the possibility of remote pulse estimation at a distance 

above 5m. Additionally, we integrated the deep learning 

algorithm for person tracking and identification, even when 

facial features are not visible.  In this way, we enabled the 

collection of user specific measurements to create personalized 

vital signs patterns and we provided the support for monitoring 

of multiple people using one video stream. The preliminary 

results showed that it is possible to accurately (RMSE < 2.8 

beats per minute) extract pulse from visible light sequences 

acquired with a webcam at a distance of 6m after applying a 

proper image pre-processing algorithm. 

I. INTRODUCTION

In latest years smart home solutions became more popular 
due to the increased availability of affordable and reliable 
sensing infrastructure [1]. With further development of these 
solutions we can observe even larger need for expanding 
them to remote monitoring solutions that could be applied to 
telemedicine use cases [2]. More often we reach to our smart 
home systems not only for household monitoring, but also for 
inhabitants guarding. This development, however, creates a 
new set of problems that has to be addressed. Human safety 
requires not only saving a video stream of the accident – 
smart systems must be able to capture, process and respond 
to threats and accidents in real time. To increase their 
effectiveness, these solutions should be less prone to the 
distance between the subject and the sensor.1 

 Recent advances in cloud computing, image processing 
and mobile technologies enables many solutions for remote 
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vital signs monitoring that do not require users to wear any 
additional sensors/devices. Heart rate which is one of the 
most fundamental vital sign that can indicate potential health 
problems. In [3] it was proved that a heart rate can be 
estimated by analyzing the green channel of video sequences 
recorded with the RGB camera, as it contains the strongest 
photoplethysmography (PPG) signal. Other studies made use 
of an RGB video as well and applied the discriminative 
statistical model for Blood Volume Pulse estimation [4]. Poh 
et al. proposed to use a blind source separation of three color 
channels (R, G, B) into independent components to measure 
a cardiac pulse from automatically tracked facial area [5]. It 
has also been proved that the fusion of skin color variation 
and head motion is a promising approach for estimating a 
pulse using the video stream recorded with the webcam [6]. 
Later, it was shown that YUV color model can also be used 
for accurate remote heart rate estimation (mean squared error 
<2 beats per minute bpm) from short videos [7]. Recently, 
some attempts have been made to discover facial regions that 
produce most accurate results of pulse estimation by using of 
matrix completion theory [8]. However, most of the 
conducted studies assume that the face is placed at a short 
distance from the camera (<1m). Short distance provides 
better face visibility, greater influence of facial skin region on 
auto exposure and other automatic camera settings. As a 
result, the extracted PPG signal from a face region is usually 
characterized by higher dynamics and greater SNR.   

Continuous acquisition of vital signs regardless of a 
distance from a camera allows for gathering data more 
frequently in various situations (e.g. sleeping, infants 
monitoring, support of people who are disabled or after 
injuries that affected their motor skills) to create a more 
detailed and precise health pattern profile. This can be 
especially useful in smart buildings with high density of 
occupancy (e.g. nursing homes, hospitals or even prisons), 
where person recognition and remote vital sign acquisition 
could be particularly useful. To achieve this, accurate person 
identification and tracking is an essential prerequisite. 
Existing solutions, though, are often based on detecting facial 
features [9] that are only visible at a short distance. Another 
approach considers body poses and/or movements as inputs 
to predict results [10]. However, if the person is still or 
imitates other person, this may lead to inaccurate results. 
Moreover, most of previous solutions are attribute based 
algorithms which may fail to tell the subtle difference 
between two identities when their clothing looks alike [11].  

In this preliminary study, we want to investigate methods 
of person identification and pulse estimation for subjects at 
distances higher than 5m. We propose to apply a combination 
of the deeply-learned part-aligned body representation [12] 
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Figure 1. Visualization of 2 consecutive frames with a) and without b) EVM 

 

a) b)  

Figure 2. Flow of the proposed methodology 

and facial features embedding [13] to enable analysis of 
personalized vital sign patterns. The accuracy of the applied 
approach was verified in various scenarios where a person is 
visible from different angles, perform various poses and have 
changed appearance features to address possible real-life 
smart home use cases. We also investigate if often-used pulse 
estimation method (like [7]) can also produce accurate results 
at longer distances (>5m). We additionally analyze if 
additional color magnification [14] applied to image 
sequences improves the accuracy of pulse estimation. 
Specifically, we verify the accuracy of (30s) video-based 
pulse estimation from signals obtained from forehead and 
face regions with the aggregation operation of pixels in YUV. 

The paper is organized as follows: in Section II we 
describe methodology used for person identification and vital 
signs evaluation in a far field. Section III demonstrates 
preliminary results, further discussed in Section IV. The 
paper is concluded in Section V. 

II. METHODOLOGY 

The experiment of monitoring vital signs and person re-
identification was conducted on a group of 12 healthy 
volunteers (6 males, 6 females, age: 31.6±5.9, representing 
all of skin color types from Fitzpatrick scale [15]) in an 
environment lit with incandescent downlight. At first, we 
wanted to validate if the system is able to identify and track a 
given person in various unconstrained scenarios:  

1. TC1 – Subject is walking naturally (~4-7m from 
camera), visible from different camera angles, visual 
appearance unchanged. 

2. TC2 – Subject is performing various body poses  
(~4-7m from camera), visible from one camera angle, 
visual appearance unchanged. 

3. TC3 – Different subjects are wearing the same 
clothes, walking naturally (~4-7m from camera), 
visible from different camera angles (3 volunteers). 

In second part of the experiment we wanted to verify the 
accuracy of long distance pulse estimation using imaging 
photoplethysmography: 

4. TC4 – Subject is sitting at a distance of 6m facing the 
camera, visual appearance unchanged. In this 
scenario, we used Zacurate 430-DL fingertip pulse 
oximeter for ground truth measurements. 

For all test cases a 30 seconds live video stream was captured 
using a Logitech C920 webcam with a 30 frames per second 
at 1920x1080 resolution and processed using a pipeline of 
three deep neural networks executed in parallel processes 
divided into two stages. In the first stage, we used the SSD 
network [16] trained on VOC 2007 dataset for body detection 
and FaceNet model [13] retrained on 1500 face pictures of 
each volunteer, extracted from previously recorded with the 
same camera 1-minute videos at the distance of 1m (divided 
into training, validation and test set in proportion 8:1:1). As a 

result of training the FaceNet model on our data, for each 
volunteer we stored a facial feature vector of a size 128. This 
size of vector has been previously verified to produce 
sufficient number of features that uniquely identify a person 
[13].  During the inference, for each detected face in the 
video stream, a feature vector of the same size was extracted 
and compared against existing facial features vectors. If a 
face was properly recognized in a video stream (a cropped 
sub-image of a body detected with the SSD network was 
saved with a label specifying the person ID. In this case, the 
second stage was not activated. If the first stage was not able 
to detect face but detect body (e.g. subject standing with back 
towards the camera), the bounding box with body location 
was sent to the second layer, in which Re-identification [12] 
(ReID) model trained on CUHK03 dataset was run. The 
output from this model was represented as the vector of 512 
features and was compared with all other stored feature 
vectors. Each of the stored feature vectors corresponded to 
the output from re-id model extracted for al previously 
cropped body areas. In order to preserve constrained 
resources available on the edge device, we only saved 4 most 
recent feature vectors for each person, that were later used for 
person re-identification.  

Additionally, to verify the possibility of pulse rate 
estimation at a long distance in TC4, the consecutive 30 
seconds of captured video stream were cropped to the 
detected facial area and converted to the YUV420P color 
space while reducing the frame rate to 15Hz. In this part of 
the experiment, we also tested if applying Eulerian Video 
Magnification [14] (EVM) algorithm can improve the 
accuracy of pulse estimation. Since the heart rate during rest 
for an adult typically varies from 60 to 100 beats per minute, 
in EVM color magnification algorithm we applied filtering 
with a range from 1Hz to 1.67Hz. The resulting signal was 
then amplified by 20, as indicated in [14] for face motion. 
Both magnified and non-magnified sequences were analyzed 
(examples of frames presented in Fig. 1.) to obtain the pulse 
rate. For this, two regions of interests (ROI) were manually 
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Figure 3. Query image (blue) and identified result (green) for TC1 

Figure 4. Query image (blue) and identified result (green) for TC2 

Figure 5. Query image (blue) and identified result (green) for TC3 

selected – on the forehead and on the whole face. Values of 
pixels inside these areas were averaged for each frame in a 
sequence of last ~200 samples, producing raw signals further 
filtered with the bandpass Butterworth filter (frequency 
between 0.67-4Hz), because according to American Heart 
Association [17] heart rate for an adult varies from 40 for 
athletes to higher values up to 200 during exhaustive 
activities. Then, as verified in [7], ePR_sp estimator was 
applied for heart rate estimation. The estimated signals were 
compared against readouts from the pulse oximeter. Flow of 
the whole execution is presented in Fig. 2. 

III. RESULTS 

The results of pulse rate estimation from a forehead and a 
face ROI, both for magnified and non-magnified sequences, 
together with ground truth measurements are presented in 
Table I and Table II, respectively. Table III presents 
calculated Root Mean Square Error between estimated and 
ground truth heart rates. All measurements presented in 
tables I, II and III were based on TC4, as only in this case 
subjects were uninterruptedly exposing their forehead (ROI 
used for vital signs evaluation) for extended period of time. 

TABLE I.  PULSE RATES EVALUATED FROM FOREHEAD REGION 

 Ground 

Truth 

EVM No EVM 

Person Y V Y V 

1 65.0 65.769 65.769 69.231 69.231 

2 70.0 72.764 72.764 7.347 7.347 

3 85.0 83.191 83.191 7.258 7.258 

4 84.0 85.537 85.537 21.600 21.600 

5 77.0 72.764 72.764 18.367 18.367 

6 52.0 51.851 51.851 7.200 7.200 

7 86.0 86.611 86.611 72.289 72.289 

8 85.0 89.990 89.990 89.990 89.990 

9 59.0 59.504 59.504 14.400 14.400 

10 54.0 59.990 59.990 57.599 57.599 

1 72.0 71.285 71.285 72.874 72.874 

12 75.0 74.687 74.687 36.000 36.000 

TABLE II.  PULSE RATES EVALUATED FROM FACIAL REGION 

 Ground 

Truth 

EVM No EVM 

Person Y V Y V 

1 65.0 64.800 64.800 64.800 64.800 

2 70.0 72.764 72.764 7.347 7.347 

3 85.0 75.639 75.639 7.258 7.258 

4 84.0 70.661 70.661 14.400 14.400 

5 77.0 91.913 91.913 91.835 91.835 

6 52.0 51.851 51.851 7.200 7.200 

7 86.0 82.845 82.845 50.602 50.602 

8 85.0 74.990 74.990 7.200 7.200 

9 59.0 48.347 48.347 10.800 10.800 

10 54.0 56.249 56.249 50.399 50.399 

11 72.0 71.285 71.285 72.874 72.874 

12 75.0 78.421 78.421 31.500 31.500 

TABLE III.  ROOT MEAN SQUARE ERROR OF ESTIMATED HEART RATE 

 EVM No EVM 

Region Y V Y V 

Forehead 2.796 2.796 43.839 43.839 

Face 7.834 7.835 48.798 48.798 

After running all test cases, we created a gallery of persons’ 
profiles (4 feature vectors per volunteer per test case) that 
was later used for testing applied algorithms. Only 3 subjects 
participated in TC3, so the total number of feature vectors in 

the gallery was 156. If a face was detected in these frames, 
we also stored the extracted facial features vectors. Table IV 
presents accuracy of person detection and re-identification in 
terms of a percentage of correctly identified subjects based 
on combined results from ReID and FaceNet. In each 
scenario, 4 feature vectors for each volunteer were compared 
with all other feature files stored in the gallery. Also, if the 
face was detected, the extracted facial features vector was 
compared against stored facial users’ profiles. The final 
decision about the identification was made as the logical 
disjunction of ReID and FaceNet decisions (correct if any of 
these models produced a correct prediction). Examples of 
query images (left in each pair) and identified results (right in 
each pair) for TC1, TC2 and TC3 are presented in Fig. 3, 4, 5 

TABLE IV.  TEST RESULTS FOR PERSON DETECION AND RE-ID 

TC Accuracy SSD [%] Accuracy ReID + FaceNet [%] 

1 100±0.0 100±0.0 

2 100±0.0 89.5±12.8 

3 100±0.0 91.7±14.4 

4 100±0.0 100±0.0 

IV. DISCUSSION 

In this work a possibility of extracting heart rate from 
video sequences captured at a long distance (~6m) was 
evaluated using estimator applied to signals extracted by 
averaging pixel values inside face and forehead areas. 
Additionally, a combination of face recognition and a person 
re-identification models was employed to collect 
measurements for each user separately. The preliminary 
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results proved that it is possible to accurately estimate a heart 
rate from much further away than achieved by known state of 
the art methods, if a proper preprocessing method is applied. 
The RMSE of pulse computation after magnifying color 
changes is much smaller (<2.8 beats per minute for a 
forehead area) when compared to non-enhanced videos (~44 
beats per minute for a forehead area). It was also observed 
that there is no difference between pulse rate estimation from 
signals acquired for Y and V channels. Analysis performed 
for different ROI showed that forehead area allows for more 
reliable parameter computations. This could be caused by 
appearance of artifacts in the facial regions, e.g. blinking, 
additionally amplified by EVM algorithm. For non-EVM 
measurements the difference between these two regions was 
smaller (EVM: 64%; non-EVM: 10%). Although average 
error was low, for some subjects we observed higher 
differences between ground truth and estimations. This could 
be caused by small involuntary movements and should be 
further investigated. In this work we applied ePR_sp 
estimatator, as in our previous studies [7] it proved to 
produce most reliable results, however in future work we 
would also like to investigate other estimators for long 
distance vital signs evaluation, such as periodicity of peaks 
estimator [7]. 

We discovered that combination of deep learning models, 
with minimal effort required for retraining, allows for precise 
body detection and person identification, regardless of visual 
features, performed poses and camera angles. In all cases 
accuracy of person recognition was higher than 89%. The 
proposed algorithm can be applied to various applications in 
smart buildings, especially where more than one person is 
visible in the video stream, e.g. nursing homes, hospitals or 
even office buildings. In these cases, person identification 
and tracking are essential to distinguish measurements 
acquired at a distance for different subject (the possible 
scenario includes continuous tracking of a person, e.g. in the 
hospital and estimating a pulse when he/she sits down). 

However, to further improve proposed implementation, 
we are considering the use of additional deep learning 
algorithms for facial areas detection (e.g. forehead region), as 
described in [18], to fully automate vital signs calculation. 
Additional challenges for future work also include taking 
measurements for a person after physical exercise or during 
illness (in both cases the pulse rate is characterized by a 
higher dynamic range). In the performed studies it was 
proved that person tracking and vital signs analysis at a long 
distance is possible. Therefore, similar measurements can be 
performed almost everywhere with the use of standard 
security camera, e.g. determining the stress level or state of 
the health. This leads to some security concerns and should 
be further discussed and address in future implementations. 

V. CONCLUSION 

In this work a possibility of vital signs estimation at far 
distance was evaluated. The color magnification algorithm 
applied to image sequences acquired at 6m with a standard 
RGB webcam allowed for reducing the RMSE of pulse 
evaluation with ePR_sp estimator from ~43.8 to 2.8 bpm for 
a forehead region. The proposed deep learning multi model 
pipeline allowed for reliable person identification, yet to 
confirm suitability of this solution for smart home devices 

computational performance should be measured in future 
work. 
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