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Abstract 

Cost-efficient multi-objective design optimization of antennas is presented. The 

framework exploits auxiliary data-driven surrogates, a multi-objective evolutionary 

algorithm for initial Pareto front identification, response correction techniques for design 

refinement, as well as generalized domain segmentation. The purpose of this last 

mechanism is to reduce the volume of the design space region that needs to be sampled in 

order to construct the surrogate model, and, consequently, limit the number of training 

data points required. The recently introduced segmentation concept is generalized here to 

allow for handling an arbitrary number of design objectives. Its operation is illustrated 

using a ultra-wideband monopole optimized for best in-band reflection, minimum gain 

variability, and minimum size. Compared to conventional surrogate-based approach, 

segmentation leads to reduction of the initial Pareto identification cost by over 20 

percent. Numerical results are supported by experimental validation of the selected 

Pareto-optimal antenna designs. 
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1. Introduction 

Design of modern antennas faces multiple challenges. These include the necessity 

of satisfying strict performance specifications that concern both electrical and field 

properties, size limitations, or high cost of computational models (full-wave EM analysis 

is normally required for reliable antenna evaluation). Other issues are related to a large 

number of adjustable parameters (being a consequence of geometrical complexity of 

today’s antennas), as well as requirements to implement non-standard characteristics 

(e.g., band notches in case of wideband antennas). Many of performance requirements 

stay in conflict with each other so that improvement of them leads to degradation of the 

others. A relevant example is design of miniaturized wideband antennas, where—

assuming fixed topology of the structure—reduction of the physical dimensions results in 

limiting the impedance bandwidth [1], increased gain variability or degradation of pulse 

stability [2]. On the other hand, a mere handling of several design goals is difficult or 

even impossible when using conventional methods such as parameter sweeping. In 

practice, it is often realized in a simplistic manner, e.g., by selecting a primary objective 

and controlling others using implicit [3] or explicit constraints [4]. This enables 

utilization of traditional optimization algorithms although does not allow for obtaining 

comprehensive information about available design trade-offs. 

In most cases reported in the literature, in the context of design closure, antenna 

optimization is conducted in a single-objective regime. Usually, a structure topology is 

first established (often by introducing several consecutive geometry modifications), 

followed by a parameter tuning. If the adjustment process is based on parameter 

sweeping, a single performance figure can be controlled directly (e.g., impedance 
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bandwidth), whereas others are handled implicitly or are just byproducts of topology 

selection (e.g., [5]-[7]). Rigorous numerical optimization offers much better control over 

multiple antenna characteristics [8], [9]. However, due to high cost of EM simulation, 

conventional optimization algorithms [10] may be prohibitively expensive. This is 

particularly pronounced for population-based metaheuristics (genetic/evolutionary 

algorithms, particle swarm optimizers [11]-[14]). There have been numerous techniques 

developed to speed up the optimization process. Popular methods include utilization of 

adjoint sensitivities [15], [16], as well as surrogate-assisted techniques [17]-[20]. 

Surrogate-based optimization (SBO) is founded on the idea of shifting the optimization 

burden into a faster representation of the structure under design (the surrogate), which 

can be based on auxiliary data-driven models [21] or coarse-discretization EM 

simulations [17]. 

It is multi-objective optimization (MOO) that provides the most comprehensive 

information about the antenna structure and its capabilities in the context of a particular 

set of performance figures. MOO aims at finding a so-called Pareto set which represents 

the best possible trade-offs between the considered design objectives. By far, the most 

popular MOO techniques up to date are population-based metaheuristics [11]-[13]. The 

fundamental advantage of this class of techniques is their ability to generate the entire 

Pareto set in a single algorithm run [22]. Although initially limited to genetic algorithms, 

currently, pretty much all major metaheuristic algorithms have their multi-objective 

versions. Pushing the population of candidate solutions into the Pareto front is achieved 

by introducing appropriate selection procedures (e.g., Pareto-ranking-based ones), as well 

as other mechanisms (e.g., fitness sharing) that reduce formation of clusters. A principal 
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disadvantage of metaheuristics is high computational cost. Typically, thousands and tens 

of thousands of objective function evaluations are necessary for the algorithm to 

converge. If full-wave EM analysis is utilized for antenna evaluation, such a large 

number of simulations is clearly unacceptable. 

Reduction of the MOO cost can be obtained by means of surrogate-based 

approaches, often involving both data-driven and physics-based models in the same 

optimization framework. A technique involving variable-fidelity EM simulations and 

auxiliary kriging interpolation models has been proposed in [23]. One of the issues is the 

necessity of constructing quasi-global surrogates because MOO normally implies global 

search. Due to curse of dimensionality this is becomes a problem for higher-dimensional 

parameter spaces. In order to alleviate this difficulty, design space reduction techniques 

have been introduced in [24] and [25]. These methods are capable of yielding Pareto sets at 

the costs corresponding to only a few hundred evaluations of the high-fidelity EM 

simulations of the antenna structure at hand, and handling highly-dimensional cases (> 20 

parameters). In [26], a design space segmentation has been introduced with the purpose of 

reducing the number of samples necessary to construct the kriging surrogate model for the 

method [14]. As indicated by the results obtained in [26], this leads to further reduction of 

the CPU cost of MOO. The main idea behind segmentation is to define—based on 

appropriately allocated intermediate points—sub-domains that still cover the entire Pareto 

front but their total volume is significantly smaller than that of the original design space. A 

disadvantage of the approach [26] is that it only works for two design objectives. In this 

work, the segmentation approach is generalized to an arbitrary number of objectives. Our 

technique is demonstrated using an ultra-wideband monopole antenna optimized with 
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respect to three objectives: minimization of in-band reflection, minimization of gain 

variability, and reduction of the antenna size. Numerical results indicate that segmentation 

leads to over 20-percent reduction of the cost of initial Pareto set identification. 

Experimental validation of selected Pareto-optimal designs is also provided. 

 

2. Surrogate-Based Multi-Objective Optimization 

The design process is executed at the level of the primary computational model of 

the antenna structure at hand, used to evaluate its performance parameters. Here, it is a 

high-fidelity EM simulation model Rf(x). A vector x represents designable parameters. 

The aim is to simultaneously minimize Nobj objectives Fk(Rf(x)), k = 1, …, Nobj. In multi-

objective design, the two designs x and y can be compared using a dominance relation p 

defined as follows: y p x (or y dominates over x) if Fk(Rf(y)) ≤ Fk(Rf(x)) for all k = 1, …, 

Nobj, and Fk(Rf(y)) < Fk(Rf(x)) for at least one k [22]. The optimum designs are those that 

are not dominated by any other designs within the search space. In a typical case of 

partially conflicting objectives, the Pareto front (the set consisting of Pareto-optimal 

designs) is an Nobj – 1 dimensional manifold in the objective space. The goal of multi-

objective optimization is to identify a discrete representation of it, referred to as a Pareto 

set. The Pareto set represents the best possible trade-offs between objectives Fk. 

 

A surrogate-assisted algorithm of [24] is a benchmark optimization technique utilized 

in this work. The algorithm exploits a coarse-discretization model Rcd and an auxiliary 

kriging interpolation model Rs. The optimization flow can be summarized as follows. 
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1. Design space reduction. Set the lower/upper bounds of the design space X0 as l = 

min{x
*(1), x

*(2), …, x
*(N

obj
)} and u = max{x

*(1), x
*(2), …, x

*(N
obj

)}, where x
*(k) = 

argmin{x : Fk(Rcd(x))} are extreme Pareto-optimal designs obtained through 

single-objective optimization runs. 

2. Surrogate model construction. Allocate training data samples within X0, acquire 

Rcd simulation data, and identify kriging interpolation model Rs. 

3. Obtaining initial Pareto set. Optimize Rs using multi-objective evolutionary 

algorithm (MOEA) [24].  

4. Design refinement. For K selected designs xs
(k)

, k = 1, …, K, obtain refined (high-

fidelity-level) design xf
(k) as 

 ( )
( )

2 2

( )

( ) ( ) ( )

1
, ( ) ( )

( ) ( )

arg min ( ) [ ( ) ( )]
≤

≤

= + −
x x x

x x

x R x R x R x

M

k
s

k
N N sobj obj

k k k

f s f s s s
F F

F F

F                  (1) 

The refinement procedure (1) can be iterated. Normally, two to three iterations are 

needed for convergence. 

The algorithm described above enables considerable design speedup. As indicated 

in the literature, a typical cost of MOO is a few hundred of high-fidelity model 

evaluations [23], [24]). The segmentation technique described in the next section allows 

for further reduction of the computational complexity. 

 

3. Generalized Design Space Segmentation 

Graphical illustration of the original concept of design space segmentation 

(defined for two-objective case [26]) has been illustrated in Fig. 1(a). The size vector of 

the search space X0 is defined as d
(1)

 = [d1
(1)

 d2
(1)

 … dn
(1)

]
T
 = |x

*(1)
 – x

*(2)
|, which allows us 
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to calculate the volume of X0 as V0 = ∏k = 1,…,ndk
(1). By introducing one intermediate point 

xI
(1)

, two reduced sub-domains are created, X1.1 and X1.2 with the volumes of 

V1.l = ∏k = 1,…,ndk
(I.l)

, where d
(I.1)

 = [d1
(I.1)

 … dn
(I.1)

]
T
 = |x

*(1)
 – xI

(1)
|, and d

(I.2)
 = [d1

(I.2)
 … 

dn
(I.2)]T = |x*(2) – xI

(1)|. The intermediate point is generated by solving a single-objective 

optimization sub-problem 

( )
(1)

2 2.

(1)

1
, ( )

arg min ( )
≤

=
x x

x R x
I

I cd
F F

F                                            (2) 

In (2), the value of the threshold F2.I
(1) is set to allocate the intermediate point around the 

center of the Pareto front, i.e., F2.I
(1)

 = [F2(x
*(1)

) + F2(x
*(2)

)]/2. The starting point for (2) is 

[x
*(1)

 + x
*(2)

]/2 which is a good approximation of xI
(1)

 assuming that the Pareto front 

curvature is limited (which is usually the case for antenna elements). Consequently, the 

cost of solving (2) is low.  

This concept can be generalized to an arbitrary number K of intermediate points 

xI
(l)

, l = 1, …, K. In this case, the points created along with K + 1 sub-domains XK.l, l = 1, 

…, K + 1 of the volumes VK.l = ∏k = 1,…,ndk
(I.l)

, where d
(I.1)

 = |x
*(1)

 – xI
(1)

|, d
(I.l)

 = |xI
(l–1)

 – 

xI
(l)

| for l = 2, …, K, and d
(I.K+1)

 = |x
*(2)

 – xI
(K)

|. We have xI
(l)

 = argmin{x : F1(Rcd(x)), 

F2(x) ≤ F2.I
(l)}, where F2.I

(l) = (1 – αl)F2(x
*(1)) + αlF2(x

*(2)), αl = l/K. 

The most important advantage of segmentation is dramatic reduction of the 

overall volume of the concatenated sub-domains as compared to the volume of the 

original domain X0. In other words, VK = VK.1 + … + VK.K+1 is much smaller than V0 (cf. 

[26] for details). Clearly, the benefit is reduction of the number of training samples 

necessary to build the kriging model (set up independently for each segment). It should 

be emphasized that although the volume ratio V0/VK increases with K, the cost of 

identifying the intermediate point has to be taken into account as well. Therefore, for 
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typical two-objective antenna problems, the optimum choice of the number of 

intermediate points (the point of view of the overall cost reduction) is two or three. 

In this work, a generalized domain segmentation is proposed that allows for 

handling an arbitrary number of design objectives. The concept has been graphically 

explained in Fig. 1(b) assuming a three-objective case. For a two-fold segmentation, one 

needs three intermediate points xI
(1.2)

, xI
(1.3)

, xI
(2.3)

, which results in four segments 

covering the entire Pareto set. The points are obtained as (k, j = 1, 2, 3, k < j) 

( )
(1)

.

( . )

, ( )
arg min ( )

j j I

k j

I k cd
F F

F
≤

=
x x

x R x                                            (3) 

 

x*(1)

x
*(2)

x
*(1)

x
*(2) x

*(2)

xI
(1)

x*(1)

X0

X1.1

X1.2

X2.2

X2.1

X2.3

xI
(1)

xI
(2)

 

(a) 

 

X0

x
*(2)

x
*(3)

x
*(1)

X0

x*(2)

x
*(3)

x
*(1)

X1.1

X1.2

X1.3

X1.4

xI
(1.3)

xI
(2.3)

xI
(1.2)

 
(b) 

Fig. 1. The concept of design space segmentation (illustrated for three-dimensional design space): 

(a) two design objectives: three cases shown with no segementation, two-fold, and three-fold 

segmentation, (b) three design objectives: two cases shown with no segmentation and two-fold 

segmentation. The overall volume of the segments is smaller than the volume of the original 

space and the benefits increase with the number of segments. Generalization for higher number of 

objectives is straightforward. 
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Similarly as before, the intermediate points are obtained through single-objective 

optimization. However, one needs to consider pairs of objectives and optimize one of 

them while imposing an acceptance threshold on the second one, and disregarding the 

third. This way, one can relocate the intermediate points to the boundaries of the Pareto 

front. For three objectives and two-fold segmentation, there are three intermediate points. 

Three-fold (and higher-order) segmentation can be defined analogously. We omit the 

details due to complexity of the notation. Generalized segmentation for a larger number 

of objectives (beyond three) can be defined in a similar manner. For example, in case of 

four objectives, two-fold segmentation has four intermediate points and five segments. 

 

4. Demonstration Example and Results 

In order to illustrate the operation and performance of the generalized segmentation 

let us consider an ultra-wideband (UWB) monopole antenna shown in Fig. 2 [27]. The 

structure features two radiator slots and an elliptical slit below the feed line, both 

incorporated to achieve a smaller footprint. The antenna is implemented on an FR4 

substrate (εr = 4.3, h = 1.55 mm, tanδ = 0.02). The independent design variables are x = [Lg 

L0 Ls Ws d dL ds dWs dW a b]
T
; W0 = 2.0. The unit for all dimensions is mm. In the design 

process, two full-wave EM models are utilized, both implemented in CST Microwave 

Studio [28] and simulated its time-domain solver. The primary (high-fidelity) model Rf  

contains about 2,200,000 mesh cells, and its simulation time is 15 minutes on a 2.1 GHz 

Intel Xeon E5 processor with 64 GB RAM. The low-fidelity model Rc contains 160,000 

cells and simulates in 40 seconds. The SMA connector is included in both models to ensure 

reliability of antenna evaluation.  
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W0

Lg
L0

a

b

Ws

Ls

dW
dL

d

ds

dWs

         

                                     (a)                                                      (b) 

Fig. 2. UWB monopole antenna with elliptical slit below the feed line: (a) top view, (b) 3D view. 

The ground plane marked with light-gray shade. 

 

In the design process, the following three objectives are considered: 

• F1 – minimization of reflection in 3.1 GHz to 10.6 GHz band,  

• F2 – minimization of antenna footprint (defined as A(x) = (2dW + 2dWs + 2Ws + 

d)(L0 + 2ds + Ls + dL)), 

• F3 – minimization of realized gain variability within UWB frequency range (gain 

variability is understood as the difference between the maximum and minimum 

gain within the UWB frequency range). 

Furthermore, only the designs for which the maximum in-band reflection does not exceed–

10 dB are considered acceptable. 

The extreme Pareto-optimal designs have been found using trust-region gradient 

search [29], [30]. These are x1
*
 = [8.86 12.96 9.39 0.35 3.89 6.46 1.22 1.58 2.58 0.33 

0.55]
T
, x2

*
 = [9.27 13.20 8.90 0.25 3.29 0.00 0.70 1.46 0.72 0.67 0.61]

T
, and x3

*
 = [8.38 

12.82 9.89 0.65 3.84 14.99 1.54 1.68 2.65 0.39 0.55]
T
. Consequently, the lower/upper 

bounds of X0 are l* = [8.38 12.82 8.9 0.25 3.29 0.0 0.7 1.46 0.72 0.33 0.55]T and u* = 

[9.27 13.2 8.89 0.65 3.89 14.99 1.54 1.68 2.65 0.67 0.61]T. 
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The three intermediate points have then been obtained using (3) as follows: xI
(1.2)

 = 

[9.12 13.04 8.79 0.29 3.43 2.91 0.87 1.38 1.48 0.53 0.57]T, xI
(1.3) = [8.72 12.8 9.53 0.51 3.95 

11.36 1.33 1.61 2.5 0.35 0.54]T, xI
(2.3) = [8.8 12.99 9.42 0.45 3.59 7.25 1.1 1.57 1.6 0.54 

0.57]
T
. The ratio of the volume V0 of X0 and the combined volume V1 of the four segments 

X1.j (cf. Fig. 1(b)) is around 10
2
. The kriging model Rs constructed in X0 requires 843 data 

samples (average RMS error of 2.5 percent). The total number of samples required to 

establish the kriging models in X1.j is 103 + 83 + 63 + 123 = 372 (average errors of 2.4, 2.5, 

2.1, and 2.5 percent, respectively). This represents noticeable savings. 

The initial Pareto set obtained by optimizing the kriging surrogate using MOEA 

(Step 3 of the MO procedure of Section 2) has been shown in Fig. 3 along with the Pareto 

set found in the segmented space. In case of segmentation, individual Pareto fronts 

obtained within the search space segments have been concatenated and non-dominated 

designs have been selected in order to obtain the overall Pareto set. It should be noted 

that both Pareto sets (i.e., obtained with and without segmentation) are similar to each 

other especially concerning their span within the feature space. This indicates that, for the 

considered structure, segmentation does not result in Pareto front quality degradation. At 

the same time, the cost of MO is smaller when using design segmentation as indicated in 

Table 1. 

The final (high-fidelity) Pareto set obtained using the methodology of Section 2 

with design segmentation has been shown in Fig. 4. Table 2 gathers antenna dimensions 

for high-fidelity Pareto-optimal designs. Reflection and realized gain characteristics for 

the selected designs have been shown in Figs. 4 and 5.  
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Fig. 3. Pareto set representations found in the original design space X0 (black) and in the 

segmented space (gray). 
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Fig. 4. Refined (high-fidelity) Pareto set obtained using design space segmentation. Designs 

marked using filled squares are listed in Table 2. 
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Fig. 5. Reflection responses of the selected high-fidelity Pareto-optimal designs (cf. Table 2): xf

(1)
 

(····), xf
(3)

 (–·–), xf
(5)

 (– –), xf
(7)

 (––),xf
(9)

 (○○). 
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Fig. 6. Realized gain responses of the selected high-fidelity Pareto-optimal designs (cf. Table 2): 

xf
(1)

 (····), xf
(3)

 (–·–), xf
(5)

 (– –), xf
(7)

 (––),xf
(9)

 (○○). 

 

Table 1   Multi-Objective Optimization Cost Breakdown 
 

Cost contributor No segmentation Two-fold segmentation 

Extreme and  

intermediate points 
347 Rcd 569 Rcd 

Data acquisition 843 Rcd 372 Rcd 

MOEA optimization N/A
*
 N/A

*
 

Refinement 45 Rf 45 Rf 

Total cost 97.9 Rf (24.5 h) 86.8 Rf (21.7 h) 
* The cost of MOEA optimization is negligible as compared to EM simulation (both low- and high-fidelity). 

 

Table 2   High-Fidelity Pareto-Optimal Designs 

 Pareto-optimal design 

 x
(1)

 x
(2)

 x
(3)

 x
(4)

 x
(5)

 x
(6)

 x
(7)

 x
(8)

 x
(9)

 x
(10)

 

F1 –10.1 –13.7 –12.6 –11.0 –10.8 –12.9 –12.9 –11.0 –11.5 –13.7 

F2 400 428 476 298 253 497 380 496 261 446 

F3 3.5 4.3 3.7 4.8 5.4 3.6 4.4 3.0 5.1 4.1 

Lg 8.60 9.00 8.77 8.90 9.14 8.80 8.93 8.57 9.19 9.07 

L0 12.81 12.92 12.85 12.88 13.07 12.84 12.83 12.88 13.02 12.94 

Ls 9.86 9.22 9.53 9.15 9.26 9.47 8.92 9.64 8.99 9.15 

Ws 0.57 0.43 0.58 0.44 0.36 0.52 0.50 0.61 0.39 0.51 

d 3.85 3.71 3.83 3.62 3.50 3.88 3.84 3.89 3.53 3.75 

dL 8.44 9.31 11.61 2.91 1.86 12.67 7.93 13.76 2.30 11.25 

ds 1.34 1.09 1.14 1.29 0.79 1.10 0.95 1.38 0.72 1.08 

dWs 1.63 1.56 1.64 1.60 1.46 1.64 1.56 1.64 1.49 1.52 

dW 1.80 2.51 2.43 1.57 1.33 2.58 2.03 2.16 1.42 2.38 

a 0.44 0.35 0.36 0.44 0.55 0.35 0.44 0.37 0.53 0.38 

b 0.56 0.55 0.56 0.56 0.59 0.56 0.55 0.56 0.60 0.55 
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Three selected designs, namely, x
(1)

, x
(5)

, and x
(9)

, have been fabricated and 

measured. Figure 7 shows the photographs of the antenna prototypes, whereas Figs. 8 

through 11 show the reflection, realized gain, efficiency, as well as H-plane and E-plane 

patterns. The agreement between simulation and measurement data is acceptable. The 

most noticeable differences occur in case of E-plane patters, which is due to the 

shadowing effect of the 90-degree bend utilized to mount the antenna.  

 

 
(a) 

        
                                    (b)                                                                            (c) 

Fig. 7. Photographs of the fabricated antenna prototypes: (a) x
(1)

, (b) x
(5)

, (c) x
(9)

. 
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(c) 

Fig. 8. Simulated (- - -) and measured (—) reflection characteristics of the Pareto-optimal antenna 

prototypes: (a) x
(1)

, (b) x
(5)

, (c) x
(9)

. The horizontal line denotes acceptance level for |S11| of –10 dB. 
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Fig. 9. Simulated (- - -) and measured (—) realized gain characteristics of the Pareto-optimal 

antenna prototypes: (a) x
(1)

, (b) x
(5)

, (c) x
(9)

.  

 

 

4 5 6 7 8 9 10

Frequency [GHz]

0.7

0.8

0.9

1

4 5 6 7 8 9 10

Frequency [GHz]

0.7

0.8

0.9

1

 
                                       (a)                                                                             (b) 

4 5 6 7 8 9 10

Frequency [GHz]

0.7

0.8

0.9

1
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Fig. 10. Simulated (- - -) and measured (—) total efficiency characteristics of the Pareto-optimal 

antenna prototypes: (a) x
(1)

, (b) x
(5)

, (c) x
(9)

. 
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It should also be noted that antenna efficiency is quite good (around 90% up to 

around 7 GHz with a drop to around 80% for upper part of the UWB range) considering a 

high-loss substrate utilized for structure realization (tanδ = 0.02). Furthermore, neither 

antenna efficiency nor the radiation patterns change considerably across the Pareto front, 

in particular, the structure retains its desired characteristics (e.g., omnidirectional 

radiation). 

 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 11. Simulated (- - -) and measured (—) H-plane patterns of the Pareto-optimal antenna 

prototypes: (a) x
(1)

, (b) x
(5)

, (c) x
(9)

. From left to right: 4 GHz, 6 GHz, and 8 GHz. 
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(a) 

 
(b) 

 
(c) 

Fig. 12. Simulated (- - -) and measured (—) E-plane patterns of the Pareto-optimal antenna 

prototypes: (a) x
(1)

, (b) x
(5)

, (c) x
(9)

. From left to right: 4 GHz, 6 GHz, and 8 GHz. 

 

 

5. Conclusion 

The paper presented a generalized design space segmentation technique aimed at 

accelerating multi-objective optimization of antennas. The discussed method permits 

considerable reduction of the number of training data samples required to construct the 

kriging surrogate model utilized to yield an initial representation of the Pareto front. 

Generalized segmentation works for an arbitrary number of design objectives. For the 
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sake of illustration, a UWB monopole antenna has been optimized with respect to three 

goals concerning reflection response, realized gain, and the structure footprint. As 

compared to conventional (also surrogate-assisted) approach, segmentation leads to over 

20 percent reduction of the computational cost of the initial Pareto set generation. 

Selected Pareto-optimal designs have been fabricated and measured for additional 

validation. 
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