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Abstract—In the paper, reliable yield estimation and 

tolerance-aware design optimization of circular polarization (CP) 

antennas is discussed. We exploit auxiliary kriging interpolation 

models established in the vicinity of the nominal design in order 

to speed up the process of statistical analysis of the antenna 

structure at hand. Sequential approximate optimization is then 

applied to carry out robust design of the antenna, here, oriented 

towards increasing the yield (defined with respect to design 

specifications imposed on the maximum in-band axial ratio level 

as well as antenna reflection). Demonstration example of a planar 

CP antenna with two feed line stubs is provided. Despite a large 

number of independent geometry parameters, accurate yield 

estimation is possible at the cost of a hundred EM simulations of 

the structure, whereas yield improvement (from the initial value 

of 63.5 percent at the nominal design to 99 percent) is achieved at 

the cost of 300 EM analyses. Comparison with conventional 

Monte Carlo analysis is also provided. 

Keywords—Antenna design; circularly polarized antennas; 

axial ratio; EM-driven design; statistical analysis; robust design 

I. INTRODUCTION

Design closure of antennas is a process of adjusting the 

values of geometry and/or material parameters to ensure 

satisfaction of performance specifications imposed on the 

structure. In vast majority of reported works (e.g., [1]-[8]) 

nominal design is considered, i.e., assuming perfect agreement 

between nominal and actual (fabricated) structure dimensions. 

In practice, various uncertainties, either due to manufacturing 

tolerances or technological spread of material parameters, 

should be taken into account. In robust design (also referred to 

as tolerance-aware or yield-driven design) [9], [10], the 

objective is to maximize the probability of the fabricated 

component to satisfy given performance requirements under the 

assumed statistical deviations from the nominal parameter 

values [11].  

Statistical analysis (in particular, yield estimation) is a 

fundamental step of robust design procedures [12]. Due to 

complexity of contemporary antenna structures, reliable 

performance evaluation requires expensive full-wave 

electromagnetic (EM) analysis. Consequently, conventional 

statistical analysis methods, primarily, Monte Carlo analysis 

may be computationally prohibitive. There have been various 

techniques proposed over the years to expedite the process. 

Some of the methods rely on replacing expensive EM 

simulations by auxiliary models (surrogates), e.g., response 

surface approximation models [13] or polynomial chaos 

expansion [14]. Here, a major disadvantage comes from the 

curse of dimensionality, i.e., a rapid growth of the number of 

training data samples for surrogate model construction with 

the increase of the number of parameters. Certain methods 

attempt to reduce the problem dimensionality, e.g., principal 

component analysis (PCA) [15]. Another approach is to utilize 

physics-based surrogate models, e.g., space mapping (SM) 

[16]. The limitation of space mapping is unavailability of fast 

coarse models (such as equivalent networks) for majority of 

antenna structures. To reduce the cost of building the 

surrogate model it is also possible to exploit a particular 

structure of the system response (through so-called feature-

based modeling), as demonstrated in [17] for microwave 

filters, and in [18] for narrow-band antennas. 

In this paper, a simple approach to statistical analysis and 

yield optimization of circular polarization antennas is 

discussed. A local kriging interpolation model is constructed 

in the vicinity of the nominal design that allows for fast yield 

estimation using Monte Carlo analysis. Robust design is then 

realized by means of sequential approximate optimization, i.e., 

optimizing the yield within the region of validity of the 

surrogate, and relocating the surrogate domain by centering it 

around the newly created approximation of the optimum. 

Here, the yield is calculated with respect to design 

specifications imposed on axial ratio of the antenna with 

constraints on its reflection response.  

II. STATISTICAL ANALYSIS OF CP ANTENNAS USING 

SURROGATE MODELS 

Let x
0
 be a nominal design, which is optimized for a 

specific set of performance requirements. In case of circular 

polarization (CP) antennas, one of the objectives is 

minimization of the axial ratio (AR) within a frequency 
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range of interest, another one is ensuring sufficient 

impedance bandwidth. We will denote by AR(x) the 

maximum AR within operational bandwidth, and by S(x) the 

maximum |S11| within the same band. Thus, the nominal 

design is obtained as 

( )0 arg min AR=
x

x x                                     (1)   

subject to S(x) ≤ –10 dB. 

Let ARmax be the acceptance threshold for the axial ratio. 

The function H(x) is defined as follows 
 

max1 if ( ) and ( ) 10 dB
( )

0 otherwise

AR AR S
H

≤ ≤ −
= 


x x
x           (2) 

 

We assume that the fabricated antenna exhibits certain 

deviations dx from x
0
 due to manufacturing tolerances. The 

yield Y can be estimated as [17] 
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where dx
j
, j = 1, …, N, are random vectors sampled according 

to the assumed probability distribution. This could be, e.g., 

independent normal distributions with zero mean and certain 

variance σ (e.g., 0.017 mm for standard chemical etching 

process), or uniform with a specified maximum deviation. In 

general, other uncertainties can also be taken into account (e.g., 

those concerning substrate parameters). 

Clearly, performing Monte Carlo analysis (3) directly on 

the EM simulation model of the antenna is prohibitive, 

especially if the number of geometry parameters is large 

(Monte Carlo is slowly convergent and reliable yield 

estimation requires a large number of samples). Here, in order 

to speed up the analysis, it is performed on a fast surrogate 

model, which is created in the vicinity of the nominal design. 

The modeling technique of choice is kriging interpolation 

[19], whereas the model domain is [x
0
 – d, x

0
 + d], where 

components of the vector d are set to be 3σ. With this choice, 

almost all normally distributed deviation vectors dx will be 

allocated within the surrogate domain.  

III. ROBUST DESIGN USING SEQUENTIAL APPROXIMATE 

OPTIMIZATION 

In this work, robust design is understood as maximization of 

the yield. It is realized by means of sequential approximate 

optimization, where the local kriging interpolation surrogate is 

optimized (in the statistical sense), and reconstructed in a 

relocated domain.  

Let Ys(x;y) be the yield estimated at the design x using the 

surrogate model established at the design y. The surrogate 

model domain has to be larger than [y – d, y + d] (cf. 

Section II) in order to allow some movement of the yield 

evaluation region within the surrogate model domain. Here, 

we choose [y – 2d, y + 2d] as the model domain, which means 

that the yield optimization can be done for the following lower 

and upper bounds: y – d ≤ x ≤ d + y.  

Yield maximization procedure works as follows (x
(0)

 = x
0
 

is the initial design): 

1. Set i = 0;  

2. Set up kriging interpolation surrogate at the design x
(i)

; 

3. Maximize yield as    

( ) ( )

( 1) ( )arg min { ( ; )}
i i

i i

s
Y

+

− ≤ ≤ +

= −
x d x x d

x x x                     (4) 

4. Set up kriging surrogate model at the design x
(i+1)

; 

5. If Ys(x
(i+1)

;x
(i+1)

) > Ys(x
(i)

;x
(i)

) set i = i + 1 and go to 2; else 

END. 

Note that that surrogate model domain is relocated to the 

new design x
(i+1)

 if the iteration (4) is successful. Figure 1 

shows the conceptual illustration of the robust design using 

sequential approximate optimization. 

IV. CASE STUDIES AND RESULTS 

The operation and performance of the statistical analysis 

and robust design procedure of Sections II and III is 

demonstrated using the antenna shown in Fig. 2. The structure 

is implemented on a Taconic RF-35 (εr = 3.5, h = 0.762 mm). 

The antenna is based on the design of [20], where CP operation 

is obtained by means of two stubs connected to the feed line. 

Here, to improve the AR bandwidth, the low-impedance load is 

attached to one of the stubs. Also, the rectangular ground plane 

slots are removed. The antenna geometry is parameterized by 

nine variables x = [lf l3 l5 w11 w2 w4 g1 g11 g3]
T
, whereas wf = 1.7 

to ensure 50 ohm input impedance. Relative variables are l1 = 

0.25·2
1/2

·lf, l2 = 0.5·2
1/2

·lf, w1 = 0.5·2
1/2

·w2, w3 = 2.2l4, l4 = 

0.55w3, o = w11. The unit for all dimensions is mm. 

  

x
(0)

=x
0

x
(1) x

(2)

x
*

2d

2d

2d 2d

Initial surrogate domain

Second surrogate domain

Third (and last) surrogate domain

MC analysis domains

 

Fig. 1. Sequential approximate optimization for robust design. The surrogate 

model domain of the size 4d (cf. Section II) is relocated after each iteration to 

the new design x(i+1). The Monte Carlo (MC) analysis domain is [x – d, x + d], 

whereas components of d are 3σ (variance of the normal distribution pertinent 

to assumed manufacturing tolerances). The maximum shift of the MC domain 

(therefore, the design) is d so that the analysis is still performed within the 

surrogate model domain. In the example shown here, the optimization process 

is accomplished after three iterations. 
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The computational model of the antenna is implemented in 

CST Microwave Studio [21] and simulated using its time 

domain solver (1,700,000 mesh cells, evaluation time 10 min). 

The model contains an SMA connector. The operational 

bandwidth (reflection- and AR-wise) is 5 GHz to 7 GHz. 

The initial design is x
init

 = [15 3 6.5 1 7.5 7.5 0.85 1.7 0.4]
T
 

mm. The nominal design x
0
 = [13.05 3.15 6.40 0.96 7.24 2.28 

1.93 2.52 0.33]
T
 mm is obtained by solving the problem (1) using 

a trust-region-based gradient search algorithm. Figure 3 shows 

the reflection and axial ratio characteristics for the initial and the 

nominal designs. The maximum in-band AR at x
0
 is about 1.1 dB.  

For the purpose of statistical analysis, we assume the 

maximum acceptable in-band axial ratio of 1.2 dB. The kriging 

interpolation model has been constructed using 100 data 

samples with the model domain of the size d = [0.1 … 0.1] mm. 

Table I shows the yield estimated using the surrogate model and 

5000 random samples, assuming Gaussian distribution with the 

variance of 0.017 mm, and uniform distribution (with the 

maximum deviation of 0.05 mm). For the sake of comparison, 

conventional Monte Carlo analysis has been performed using 

500, 1000, and 2000 samples. It can be observed that surrogate-

assisted yield estimation is accurate, and, clearly, dramatically 

less expensive than EM-based MC. Furthermore, MC realized 

with small number of samples (here, 500) is not particularly 

reliable due to relatively high variance of yield estimation. 

2,000 samples are needed to obtain stable results. Figure 3 

shows visual comparison of yield estimation using the surrogate 

and MC with 2,000 samples. 
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                   (a)                 (b) 

Fig. 2. Compact circular polarization antenna for statistical analysis and robust 

design demonstration: (a) structure geometry, (b) visualization of the antenna 

EM model. 
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                               (a)                                                            (b) 

Fig. 3. Compact CP antenna of Fig. 2 at the initial design xinit (- - -) and the 

nominal design x0 (—): (a) reflection characteristics, (b) axial ratio. 

Subsequently, yield optimization has been performed using 

the methodology of Section III. Table II shows the results 

indicating that the yield can be improved significantly both in 

case of Gaussian and uniform distributions. Visualization of the 

yield estimation at the nominal and optimized designs is shown in 

Figs. 4 and 5. 
 

 
(a) 

 
(b) 

Fig. 3. Monte Carlo analysis of the antenna of Fig. 2 assuming Gaussian 

distribution with σ = 0.017 mm, using (a) EM simulations and (b) kriging 

surrogate. The black plot indicates the response at the nominal design. 

Horizontal line denotes 1.2 dB level (acceptance level for axial ratio), whereas 

vertical lines indicate the frequency range of interest (5 GHz to 7 GHz). 
 

TABLE I: YIELD ESTIMATION RESULTS FOR CP ANTENNA 

Case 

Geometry 

Parameter 

Deviations 

Yield Estimation Method 
Estimated 

Yield 

CPU 

Cost1 

I 
Gaussian 

σ = 0.017 mm 

Surrogate modeling (this work) 0.937 100 

EM-based Monte Carlo 0.921 500 

EM-based Monte Carlo 0.912 1,000 

  EM-based Monte Carlo 0.907 2,000 

II 

Uniform 

max. deviation 

0.05 mm 

Surrogate modeling (this work) 0.635 100 

EM-based Monte Carlo 0.610 500 

EM-based Monte Carlo 0.618 1,000 

  EM-based Monte Carlo 0.617 2,000 

1 Estimation cost in number of EM analyses. Feature-based yield estimation utilizes 
N = 5000 random samples. 

 

TABLE II: YIELD OPTIMIZATION OF CP ANTENNA 

Case 
Geometry Parameter 

Deviations 

Yield        

Status 

Estimated 

Yield 

Optimization 

cost1  

I 
Gaussian 

σ = 0.017 mm 

Initial 0.937 
200 

Optimized 0.998 

II 
Uniform max. 

deviation 0.05 mm 

Initial 

Optimized 

0.635 

0.990 
300 

1 Number of EM simulations of the antenna structure. 

x
y

z
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                              (a)                                                          (b) 

Fig. 4. Monte Carlo analysis of the antenna of Fig. 2 using kriging surrogate 

and assuming Gaussian distribution with σ = 0.017 mm: (a) at the nominal 

design, (b) at yield-optimized design. The black plot indicates the response at 

the nominal design. Horizontal line denotes 1.2 dB level (acceptance level for 

axial ratio), whereas vertical lines indicate the frequency range of interest (5 

GHz to 7 GHz). 

 
                              (a)                                                          (b) 

Fig. 5. Monte Carlo analysis of the antenna of Fig. 2 using kriging surrogate 

and assuming uniform distribution with maximum deviation of 0.05 mm: 

(a) at the nominal design, (b) at yield-optimized design. The black plot 

indicates the response at the nominal design. Horizontal line denotes 1.2 dB 

level (acceptance level for axial ratio), whereas vertical lines indicate the 

frequency range of interest (5 GHz to 7 GHz). 

V. CONCLUSION 

Reliable statistical analysis and robust design of circularly 
polarized antennas has been proposed using sequential 
approximate optimization. Our technique is simple to 
implement and permits considerable reduction of the 
computational cost compared to conventional EM-driven 
Monte Carlo analysis. For a demonstration example of a 
compact microstrip CP antenna, yield improvement (assuming 
uniform distribution of manufacturing tolerances) from 63.5 
percent at the nominal design to 99 percent at yield-optimized 
design has been obtained at the cost of about 300 full-wave EM 
antenna simulations. 
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