
* Corresponding author: lukpacho@pg.edu.pl 

Numerical simulation of the influence  
of the selected factors on the performance  
of a concrete road barrier H2/W5/B 

Łukasz Pachocki1*, and Krzysztof Wilde1 
1Gdańsk University of Technology, Faculty of Civil and Environmental Engineering, 
Department of Mechanics of Materials and Structures, 11/12 Narutowicza Str., 80-233, Gdańsk, 
Poland 

Abstract. This paper discuss the influence of selected factors on the 
performance of a concrete road barrier H2/W5/B. Modelling techniques of 
a concrete road safety system were briefly discussed. Comparison to the 
full scale crash test results has been shown. The concrete road safety 
barrier has been investigated for evaluation of the overall damage after 
collision under various initial conditions. The failure assessment criterion 
has been proposed and it was derived from a qualitative comparison of the 
numerical results with the full scale crash test data. Impact severity indexes 
have been calculated and discussed.  

1 Introduction 
Each type of a road-safety barrier has to be subjected to the full scale crash test in order to 
assess the appropriate level of containment and correct values of impact severity indexes 
[1]. One of the materials used for road safety systems is reinforced concrete. Concrete 
barriers are used to prevent the vehicle from penetrating the system and to redirect it back 
to the track with relatively small working width [1]. In Poland, concrete barriers can be 
often found near bridge columns as shown in fig. 1. While, it is troublesome to predict 
every possible crash scenario by full scale experimental tests, the numerical methods seem 
to be very convenient way to do so. Numerical simulations may be a powerful tool as a 
source of supplementary data for full scale crash tests. In order to acquire reliable numerical 
results some normative requirements for numerical simulations should be preserved [2]. 
One of the most popular systems is LS-DYNA explicit dynamic finite element code [3,4]. It 
is widely used tool for crash tests simulations for various types of road restraining systems 
[5–12] or other special events [13–16]. Thus, numerical methods allow engineers to apply 
the virtual testing environment in broad spectrum of applications aimed at improving the 
road safety. According to European Standards [1] in some cases numerical simulations can 
be used for barrier certification. However, this is possible only if the numerical model was 
subjected to the validation process [2] and the change in the system is classified as 
moderate [1]. It this paper the validated model of the concrete barrier is used. Therefore, 
parametric analysis with various types of vehicles and initial conditions is performed. 
Results of the numerical simulations allow the engineers to estimate the impact of accident 
on the participants and on the damage done to road restrained systems. Although, the 
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numerical results are considered as reliable, no one should arbitrarily assume the 
correctness of the numerical solutions and much care must be taken while drawing 
conclusions from the numerical data.  

The paper is organized as follows: section 2 covers the general objectives of the paper 
and defines the main goals that have been established. Description of the applied methods is 
given in section 3. Overview of the numerical simulations results of different crash tests is 
presented in section 4. Section 5 ends the paper with some concluding remarks. 

 

Fig. 1. Bridge column protected by concrete road safety system, credits: Google Earth. 

2 Objectives 
The main goal is to build a reliable numerical model of a concrete road safety barrier that 
can be used in order to simulate various types of crash events. The proposed series of tests 
concerns the influence of the vehicle type and initial conditions on the overall damage done 
to the barrier as well as the severity of the impact. The capabilities and limitations of LS-
DYNA system were investigated during the process of model creation. In order to simplify 
the initial conditions to one value it has been assumed to present it as initial kinetic energy 
of an impact perpendicular to the system. Other goal was to determine set of numerical 
results for a database that summarize the data for various types of initial conditions of 
collisions with their influences on the accident participants and the road safety barrier. 

3 Numerical modelling  
The first task is the description of the system geometry for the 3D model for LS-DYNA 
environment. In concrete barriers interaction between adjacent segments plays crucial role 
so the boundaries of segments must be precisely modeled. Moreover, location of the steel 
reinforcement bars must be also accounted for. Next step (fig. 2) is to mesh the elements of 
the barrier segment. The body of the segment is described by tetrahedral solid elements 
with the LS-DYNA’s element formulation type 10. Connectors of the segment were 
modelled with hexahedral solid elements with constant stress element formulation. Hughes-
Liu beam element formulation [3,4] was used to model the behavior of steel reinforcement 
bars. Interaction between concrete and reinforcement was modelled using the constrained 
formulation. The beam element nodes were constrained to the adjacent tetrahedral solid 
element nodes using *CONSTRAINED_LAGRANGE_IN_SOLID keyword. An advantage 
of this approach is that the beam nodes doesn’t have to coincide with corresponding solid 
element mesh of the barrier segment. One global contact has been used 
*CONTACT_AUTOMATIC_SINGLE_SURFACE. Groups of different contacting 
materials were specified within *DEFINE_FRICTION keyword so they could have 
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different friction coefficients assigned. Friction is assumed as dependent on a relative 
velocity of the bodies according to the equation 

 | |( ) relDC VFD FS FD e −= + −  (1) 

where FD  means dynamic coefficient of friction, FS  is static coefficient of friction, DC  
describes exponential decay coefficient and is multiplied by relV  which is the relative 
velocity of contacting surfaces. Parameters for a friction modelling were obtained from 
internet resources as well as from U.S. Department of Transportation reports [17,18]. 
Compliance with the recommendations contained in the standards [2] has also been 
followed. In order to avoid unwanted element modes excitation Flangan-Belytschko 
stiffness form of hourglass control was used [4,19]. Other major factor of the analysis of the 
concrete was the selection of the appropriate material law for the concrete. Based on the 
literature [20,21], one can come to the conclusion that there are couple of reliable material 
laws that can provide correct results. 

 

Fig. 2. Simplified scheme for the finite element mesh derivation. 

It was decided to use the so-called continuous surface cap model denoted in LS-DYNA as 
*MAT159_CSCM material law. In [21] calibration methods for that model have been 
widely described. The decision was based on wide range of reports that proved its 
reliability [17,18,22,23]. In addition theoretical background of the material law is also 
presented in many papers [3,4,22–25]. The concrete material data, used in model definition, 
is based on laboratory tests performed on samples from the segment of the barrier.  

Steel elements were modelled using piecewise linear plasticity material law with 
element failure. Simplified strain-stress curve implemented for steel was based on the 
results from the laboratory tests. Numerical model of the tested concrete road safety barrier 
consisted of 6  segments each 8m long such us the one tested in full scale crash tests. It’s 
length was 48m  which is the minimal length of the temporary concrete road safety barrier. 
General view of the analyzed system is presented in fig. 4 with illustration of the initial 
conditions: angle is described by   whereas velocity is described by initV  vector. Besides, 
it should be noted that numerical model, described in this paper, passed the validation 
process positively. Appropriate requirements for the numerical simulations [2] have been 
fulfilled. Furthermore, extra verification have been performed using MPC and ANOVA 
metrics [26,27] as suggested in American recommendations for validation [28]. General 
views of the results obtained in full scale crash test versus results from numerical 
simulations are displayed in fig. 5. Since good similarity was obtained, further parametric 
analysis of the unchanged concrete road safety system numerical model was performed. 
Initial conditions of the vehicle e.g.: impact angle and initial velocity, were assumed as a 
variable parameters for the analysis. Another varying factor was the vehicle type. Five 
types of vehicles were used in this research and are shown in fig. 3 : Geo Metro (900kg), 
BMW (1500kg), HGV (10000 kg), bus (13000kg) and HGV (38000 kg). Geo Metro’s 
numerical model was obtained from the NCAC public repository that is currently 
unavailable. However, Norwegian Public Road Administration still provides it with no 
charge [29]. BMW’s LS-DYNA code was developed by Transpolis (formerly LIER), the 
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French crash-test house and digital simulation office for road safety equipment. HGV’s 
models were acquired from the public online resources and subjected to modifications. The 
coach model, used in simulations, was developed by the Norwegian Public Road 
Administration (www.vegvesen.no) and is also available free of charge. 

 
Fig. 3. Vehicles used in the research a) Geo Metro b) BMW c) HGV 10t d) Bus 13t e) HGV 38t. 

 
Fig. 4. General view of the analysis setup. 

For certain types of vehicles [1] impact severity indexes have been calculated and 
summarized. The studies focused on determining the damage done to the barrier so the 
number of damaged barrier segments could be established. It is proposed that effective 
plastic strain isosurfaces can be failure assessment criterion. Good visual correlation 
between the full scale object cracks and corresponding numerical model effective plastic 
strain results have been observed. Visualization representing the described comparison can 
be seen in fig. 6. Therefore, it was assumed that this criterion may be a good way to 
establish the number of segments that must be replaced. 

 
Fig. 5. Comparison of the results from full scale crash test and numerical simulation. 

 
Fig. 6. Effective plastic strain isosurfaces as a proposed failure assessment criterion. 
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4 Results 
Five different vehicle types with different initial impact conditions were taken into 
consideration. The segments of the barrier have been examined for the breakage according 
to the effective plastic strain failure criterion described earlier in section 0. Initial kinetic 
energy have been calculated for every type of the test’s initial conditions. Working widths 
have been determined according to the European Standards [1] for full scale crash tests. 
Impact severity indexes for Geo Metro and BMW vehicle were calculated from the 
appropriate accelerations and velocity of the vehicle’s center of gravity. Although it is not 
required to calculate severity indexes for the heavy vehicles [1] during full scale crash test 
TB41 such data have also been collected. Hence, it was decided to calculate impact severity 
indexes for 10 ton heavy goods vehicle. The accelerometer have been mounted to the 
dashboard. All the simulations had the same impact point set to the about 20cm  before the 
connection of the segments 2 and 3, as can be seen in fig. 4. The first discussed test is the 
TB11 [1] crash test. The vehicle started the motion with the specified initial conditions and 
hit the barrier at the impact point. Then, it was redirected in the opposite direction. The 
overall progress of the car motion can be seen in fig. 7. Characteristic behavior for light 
vehicles was observed as the vehicle rises. Two barrier segments were assumed broken and 
their effective plastic strain isosurface is shown in fig. 8. The ASI index determined during 
the simulation equals to 1.4  [-] and it classifies the barrier to the B class. Such a result was 
obtained due to modifications done to the vehicle during the previous study [29]. Next 
performed numerical simulation is TB32 [1] crash test. The value of the obtained ASI 
parameter is 1.4  [-]. As the initial kinetic energy raised the number of the damaged 
segments increased to 3. The progress of the TB32 collision is portrayed in fig. 9 and the 
isosurface of the effective plastic strain is shown in fig. 10. Cases, being discussed above, 
were shown due to their higher severity on the vehicle’s occupants. However, the concrete 
barrier has containment level of H2, therefore remaining simulations concerns heavy 
vehicles. The numerical results are summarized in table 1. fig. 11 depicts the influence of 
the initial kinetic energy (perpendicular to the barrier’s face) of HGV 10t and BUS 13t 
vehicles on the working width until complete breakage of the system. 

 
Fig. 7. Progress of the TB11 crash test against concrete barrier. 

 
Fig. 8. Effective plastic strain isosurfaces of the concrete road safety barrier segments after collision. 
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Fig. 9. Progress of the TB32 crash test against concrete barrier. 

 
Fig. 10. Effective plastic strain isosurfaces of the concrete road safety barrier segments after collision. 

Table 1. Summarization of the tests that have been carried out. 

  Angle 
° 

Velocity 
km/h 

Kinetic 
Energy kJ 

ASI 
- 

THIV 
km/h 

Working 
width m 

Broken barrier 
segments - 

Geo Metro 
0.9 t 20 100 41 1.4 9 0.8 (W2) 2 

BMW 1.5 t 20 110 82 1.4 7 1.0 (W3) 3 

HGV 10 t 7 70 28 0.4 13 0.8 (W2) 2 

  8 70 37 0.4 13 0.9 (W3) 3 

  8 80 48 0.5 13 1.1 (W4) 3 

  8 100 75 0.6 14 1.9 (W6) 6 

  20 70 221 0.8 15 3.0 (W8) 6 

  20 80 289 0.9 20 5.1 (n/a) 6 

  20 100 451 2.3 21 8.4 (n/a) 6 

  45 70 945 1 33 n/a 5 

  90 70 1890 1 19 n/a 6 

BUS 13 t 7 70 37 - - 0.7 (W2) 2 

  20 70 287 - - 2.8 (W8) 5 

  20 80 375 - - 4.3 (n/a) 5 

  20 100 587 - - n/a 5 

  45 70 1229 - - n/a 5 

  90 70 2458 - - n/a 6 

HGV 38 t 20 65 725 - - n/a 6 
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Fig. 11. Working width as a function of the initial kinetic energy for different vehicles. 

5 Conclusions 
The series of numerical tests have been successfully performed using verified models of the 
concrete barrier and cars. The obtained numerical results are in good agreement with 
experimental data The criterion for failure assessment of the concrete barrier segments have 
been proposed and good visual correlation between numerical and experimental data has 
been observed. The extensive parametric study with use of five vehicle models and various 
initial conditions have been performed. The resulting database for temporary concrete road 
safety barrier under various types of initial impact conditions have been determined and this 
table can be used in later research or as a supplementary material for concrete barriers 
design. [30] 
 
This work was supported by the National Centre for Research and Development (NCBiR) and 
General Directorate for National Roads and Motorways (GDDKiA), Poland. The research project 
name was “Life Cost analysis of Road Safety Elements” (contract number DZP/RID-I-
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