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Abstract 
We propose 2-D Cosserat type orthotropic constitutive equations for laminated shells for the purpose 

of initial failure estimation in a laminate layer. We use nonlinear 6-parameter shell theory with 

asymmetric membrane strain measures and Cosserat kinematics as the framework. This theory is 

specially dedicated to the analysis of irregular shells, inter alia, with orthogonal intersections, since it 

takes into account the drilling rotation degree of freedom. Therefore, the shell is endowed naturally 

with 6 degrees of freedom: 3 translations and 3 rotations. The proposed equations are formulated from 

the statement of the generalized Cosserat plane stress with additional transverse shear components and 

integrated over the shell’s thickness using the equivalent single layer approach (ESL). The resulting 

formulae are implemented into the own Fortran code enabling nonlinear shell analysis. Some 

numerical results are presented to show the performance of the proposed approach. 

 
 
Keywords: orthotropic Cosserat, Cosserat laminates, characteristic length, drilling rotation DOF, 
irregular shells 
 
Glossary of key notations 

, , ,aa bb ab baσ σ σ σ  - asymmetric membrane stresses in shell layer (k)  
,a bσ σ  - transverse shear stresses in shell layer (k) 

,a bm m  - Cosserat coupling moments in shell layer (k) 

ε , s - shell strain and shell stress vector 
e , σ - local strain and stress vector in shell layer 

aE , bE  - Young moduli in a and b directions of layer (k) 

abv  - Poisson ratio of layer (k) 

abG , acG , bcG  - shear moduli in a-b, a-c, b-c planes of layer (k) 

CG - Cosserat shear modulus in a-b plane of layer (k) 

N  - Cosserat coupling number 

cl  - characteristic length of Cosserat continuum 

sα  - shear correction factor 

tα  - drilling stiffness correction factor 
,h H   - thickness of the layer (k) and the shell, respectively 

FFt  - fiber tension failure index 
FFc  - fiber compression failure index 
FMt  - matrix tension failure index 
FMc  - matrix compression failure index 
FPF – first ply failure 
NLF1 –number of shell layers with at least one failure mechanism  
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Introduction 
 
Application of laminated composites as the structural material is today very common. In turn, it is a 

very good alternative to the use of steel, concrete or other ordinary ones in civil engineering. A lot of 

research is done to find the best approaches and solutions for the understanding and description of the 

composites behavior. New theoretical methods of analysis of laminated composites are still 

formulated, developed or evaluated. Some selected recent papers in this field are 

[1][2][3][4][5][6][7][8][9][10]. Experiments are conducted at the same time, as they are inevitable to 

validate the new theories or to check the performance of novel structures or their elements. The results 

of selected latest achievement in this area are for instance available in [11][12][13][14][15][16]. An 

important aspect to focus on, regarding analysis and design of laminated composites, is their initial 

failure or progressive damage. Although some methods and approaches have been already validated 

and evaluated, for instance during the World Wide Failure Exercises, see for example [17][18][19], 

efforts are made to analyze new modern methodologies or modify the existing ones 

[20][21][22][23][24][25][26][27]. 

In our paper we follow the aforesaid directions of research. We focus on the proper description of the 

material law in the geometrically nonlinear analysis of laminated shells. For this purpose we use the 

nonlinear 6-parameter (6p) shell theory [28][29]. The 6p theory is specially dedicated to the analysis 

of geometrically irregular shells, with emphasis on orthogonal intersections, as it takes into account 

the drilling rotation degree of freedom. It is chosen here, because a lot of structures made of laminated 

composites have intersections and proper descriptions of their behavior are desirable. 

Our aim is also to estimate the initial failure in a laminate layer with aid of the new material law. The 

estimation of initial failure, also named as the First Ply Failure (FPF) method is of great importance in 

the design of structures made of laminated composites. Obviously, FPF describes the onset of damage 

in the laminate layer, which should not appear during the life cycle of an engineering structure, due to 

its expected reliability and durability. Therefore, in order to enable FPF calculations for the 

sophisticated theory and the new material law, we propose a modification of Hashin criterion, 

compatible with the 6p theory. 

 
Shell theory 
 
The shell theory used here belongs to the class of Cosserat-type shells, see for instance [30] and has 

the same kinematical structure as the theory of Cosserat rods, see [31] and references given there. The 

governing equations, jump conditions and weak forms has been already presented by the present 

authors and other researchers, see for instance [32][33][34][35][36][37][38][39][40]. Following, for 

instance [28] and notations used in [37] we present short account of the ingredients of the theory 

necessary to develop the constitutive relations. We consider the shell reference surface M  in the 

undeformed configuration. We assume, without going into technical considerations, that the open 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
subset of the set \( )M M Γ∂ ∪  is regular enough to assert the existence of the metric tensor with the 

components given respectively by: 

 0 0
αβ α βa = ⋅t t , 0 ,β β=t x , 1,2β =  (1) 

At each point M⊂x , later identified with the finite element node (Fig. 1), we assume that the base 

vectors 0 ,β β=t x , 1,2β =  together with the normal vector  

 
0 0

0 0 1 2
3 0 0

1 2|| ||

×≡ =
×

t t
t t

t t
 (2) 

form rigid orthogonal triad 0( )it x , 1,2,3i = .Therefore, we have Cosserat structure at each M⊂x  in 

the initial configuration. Motion of such structures, cf. for instance [41] or [42], is described by the 

vector of displacement ( )u x  and the proper orthogonal tensor ( ) (3)SO∈Q x . The current position of 

x  and the current orientation ( )it x  are defined by the formulae 

 ( ) ( )= +y x x u x , 0( ) ( ) ( )i i=t x Q x t x  (3) 

In the present approach the strain fields corresponding to (3) have the following forms 

 0, ( )β β β= + −1ε u Q t , Taxl( , )β β=κ Q Q  (4) 

The definitions (4) are exact in a sense that they emanate from the principle of virtual work, see for 

instance [28][29][37]. However, as shown in [43] and references given there, a multitude of formulae 

exist when large strains are considered. 

 
Fig. 1. Shell in 6-parameter theory, notation 

 
In FEM approach the reference surface M  is discretized with appropriate set of finite elements ( )eΠ . 

Here we use authors’ 16-node 0C  elements denoted as CAM, described for instance in [28]. Each 

node a  of the mesh within the finite element ( )eΠ  is defined by its position vector ax  and the triad of 

directors 0{ }i at , 1,2,3i =  (more generally: within the regular area of the shell, since at given node a  

on the edge Γ  the number of triads of directors equals to the number of intersecting regular areas). 

The latter are treated as the given data of the problem and are defined through five parameters assuring 

non-singular parameterization of proper orthogonal transformation, see e.g. [44] 

 { } { }0
0( ) ( )i iaa

= et x T x , 0 (3)SO∈T   (5) 

In view of (3)2 the current orientation field is defined by 

 { } { } { }0( ) ( ) ( )i ia a a
=t x Q x t x   (6) 
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It follows from (6)  that there is a necessity to interpolate the values of ( ) (3)SO∈Q x . Unlike in the 

case of vector-valued functions such as (3)1, the direct interpolation of (3)SO  elements (3)2 is not 

available. Thus we use the concept of the indirect interpolation as described in detail for instance in 

[45]. 

Constitutive relation 
 
Moving towards particularization of constitutive relation and its further implementation we write 

collectively components of (4) in the vector form as 

 T
11 22 12 21 1 2 11 22 12 21 1 2{ | || | }ε ε ε ε ε ε κ κ κ κ κ κ=ε  on M  (7) 

and corresponding energy conjugated components of internal forces and internal couples 

 11 22 12 21 1 2 11 22 12 21 1 2{ | || | }TN N N N Q Q M M M M M M=s  on M  (8) 

The shell theory considered here, see e.g. [29][40], uses only 2D surface resultants (ε , s ) defined on 

M . Let’s assume that the local stress state in Cosserat type laminated shells (typical layer ( )M ξ  

defined by ξ ) is given by 

 { | | }T
aa bb ab ba a b a bm mσ σ σ σ σ σ=σ  on ( )M ξ  (9) 

We propose the approach based on integration of (9) over the thickness direction [ , ]ξ h h− +∈ − + , (

h = h h− ++ ) to the form of the stress resultants s (8), see e.g. [45] , using the kinematics of the 

laminate layer ( )M ξ  

 { | | }aa bb ab ba a b T
a bε ε ε ε ε ε κ κ=e  on ( )M ξ  (10) 

The formula (10) is obtained with the use of ε (7) and (4) under the assumption of  Reissner-Mindlin 

(RM) kinematics of the shell fiber and its form is the same as for stress resultants s (8), see e.g. [45]. 

The method has been already described, see e.g. [35]-[38], [45]. The components of (8) are required in 

the entire shell space of the volume of the shell-like body B , i.e. at each point ( , )ξ B⊂x x , 

[ , ]ξ h h− +∈ − + , M⊂x . In the present approach we indirectly connect the components of (8) with 

those of (7) by the Cosserat orthotropic relation. Our approach is motivated by the idea presented in 

[46] where the authors analyzed numerically linear plane stress problems of orthotropic continuum. 

The constitutive relation, from the work [46], is given directly for an orthotropic layer, in contrast to 

approaches presented e.g. in [47][48], where matrix and inclusions are treated as isolated isotropic 

Cosserat materials. We extend the study from [46] to nonlinear numerical analysis of shells with finite 

rotations and translations. Let’s assume that at the ( , ) ( , )ξ M ξ B∈ ⊂x x x , [ , ]ξ h h− +∈ − + , M⊂x  of 

the surface ( )M ξ , see Fig. 2, there exists locally on ( )M ξ a generalized orthotropic plane stress state 

of Cosserat type in the following form 
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2
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  
  
  
  
  
  
  
  
  

   
   
 

 (11) 

Usual notation holds in (11)  (see [49], [50]) i.e. ( )a kE , ( )b kE  are the Young’s moduli in the direction 

of the reinforcement and perpendicularly to the reinforcement, respectively, ( )ab kG , ( )ac kG , ( )bc kG  are 

the shear moduli in a b− , a c− , b c−  planes and ( )ab kv , ( )ba kv  denote the Poisson’s ratios such that 

a ba b abE v E v=  (no summation); sα  is the shear correction factor. 

 
Fig. 2. Shell-like body in 6-parameter shell theory, notation  

 
The presence of the Cosserat structure is visible in the in-plane shear components where  

 
2

21C ab

N
G G

N
=

−
, 0 1N< <  (12) 

and in the drilling couple stresses where the characteristic length cl  appears. In (12) we use the 

Cosserat coupling number N  (see for instance [51]) which is discussed later. To calculate stress and 

couple resultants in each layer k  we follow exactly the same idea as presented in [45]. The direction 

of the reinforcement in layer k  is denoted by angle ( )kθ  (see Fig. 2). The transformation of (11) from 

( )1 2( ), ( )ξ ξg g  to ( ) ( )( , )k ka b  system, is defined as follows:  

 

2 2

2 2

2 2

2 2

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

k

k

C S SC SC

S C SC SC

SC SC C S

SC SC S C

C S

S C

 C S

S  C 

 
 − − 
 − −
 
− − =  −
 
 
 − 
  

T , ( )cos( )kC θ= , ( )sin( )kS θ=  (13) 

The final structure of the constitutive relation between (7) and (8) 

 =s Cε  (14) 
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is obtained assuming the equivalent single layer (ESL) approach and Reissner-Mindlin (RM) 

kinematics of the shell fiber. Specifically, the distribution of plane stress components, , ,aa bb ab baσ σ σ σ  

in the thickness direction is assumed to be linear, whereas the transverse shear,a bσ σ  and drilling 

terms ,a bm m  remain constant. Such a combination: ESL+RM is typical and was used in many papers: 

[11][20][27][50][52]. In this study we assume that the components of C are kept constant during the 

analysis, which however does not exclude the first ply failure (FPF) analysis that will be also 

presented.  

 

Discussion of proposed equation, selection of material parameters 

As it can be observed, equation (11) is dependent not only on usual material constants that can be 

obtained through standard laboratory tests but also on the parameters of the Cosserat medium. We 

assume, as in [46], that the Young’s moduli, Poisson’s ratios and shear moduli abG , acG  and bcG  

have the same character as in Cauchy continuum. This enables the use in (11) of exactly the same 

values as those reported in the literature. As far as the Cosserat parameters N  and cl  are concerned 

the situation is more complicated. Theoretical studies e.g. [53] and experimental results presented in 

[42] give the range of applicability for the coupling number 0 1N≤ <  and for the characteristic length 

0cl > .  The order of cl  is somewhere between 0.22 mm to 5.0 mm. Nonetheless in [47] it is equal to 

50 mm and in [51] the characteristic length value varies between 0 and 106 mm. In our approach 

0N =   (as argued also in [36]) is not possible since it yields degenerated constitutive matrix,  refer to 

(11), in a sense that the third and the fourth row become linearly dependent. Therefore, we assume 

0 1N< <  as the valid range for the present formulation. Since there are no physical recommendations 

for the determination of the characteristic length in the analysis of shells, we assume in the used theory 

that this parameter is related to the shell thickness, see [36]. In [36] it is clearly shown that micropolar 

length is related to the drilling stiffness parameter tα , which was used in the initially proposed 

constitutive law established for isotropic shells in the framework of 6p shell theory. The numerical 

studies presented in e.g. [29] reveal that for ~1tα >  some numerical instabilities can occur, especially 

in the analysis of irregular shells. Therefore the usage of ~1tα <  is suggested. The proposed 

constitutive law associated with the drilling rotation integrated over the shell thickness (under the 

assumption of constant distribution of the drilling curvatures) is analogous to that used in the case of 

isotropic shells. Thus, it is justified to utilize the relation between tα  and characteristic length derived 

in [36], stating that: 

 
12

t
cl H

α=  (15) 
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where H  is the total thickness of the shell. If we assume that 1tα =  is the approximate upper bound 

value, it follows from (15) that the limit value for characteristic length is / 12cl H= . It has to be 

however stressed, that this is not a strong recommendation, since the significance of the drilling 

stiffness influence depends on the analyzed problem and used finite element e.g. [29]. For example in 

[36] the value of characteristic length based on conclusions drawn numerically can be greater than 

/ 12H  but should not exceed the shell thickness. Moreover, it has to be emphasized that the relation 

(15) is valid only for 2/2N = . Therefore, it is still crucial to investigate the influence of the 

characteristic length. In this paper it will be examined numerically, but in contrast to the above 

mentioned works, this will be done on the basis of local behavior as the stress state and first ply failure 

onset will be studied. 

To sum up, it is possible in our approach to use standard values of Young’s moduli, Poisson’s ratios 

and shear moduli abG , acG  and bcG . The remaining terms cG  and 0cl >  are parameters that must be 

assumed. According to relation (12) cG  becomes a multiplier of abG .  

 

Failure criterion 

To estimate the FPF load we use the Hashin criterion. It was developed in 1980 [54]. Historically, it is 

a very important criterion as it was the first one where different modes of failure were distinguished, 

namely fiber failure in tension or compression and matrix failure in tension or compression. It is still 

in use although almost 40 years have passed since its formulation. The recent papers, where the 

criterion is utilized are for instance [55][56][57][58][59][60]. The original version of Hashin criterion 

makes use of symmetric stress tensor. As the material law (11) on ( )M ξ  used by us within 6p theory 

includes asymmetric membrane stress measures (ab baσ σ≠ ) and drilling couple stresses (a bm m≠ ) it is 

not possible to apply the original approach here. Therefore, we formulate its special form for the 

purposes of the present shell theory [35], and with respect to the law (11) for  

fiber tension:  

 
2 2

aa ab
H

t l

FFt
X S

σ σα
   

= +   
   

 failure when 1FFt =  (16) 

fiber compression: 

 
2

aa

c

FFc
X

σ 
=  
 

 failure when 1FFc =  (17) 

matrix tension 
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2 2

+bb ba

t l

FMt
Y S

σ σ   
=    
   

 failure when 1FMt =  (18) 

matrix compression 

 
2 2 2

+ –1 +
2 2

bb c bb ba

t t c l

Y
FMc

S S Y S

σ σ σ      
 =      
       

 failure when 1FMc =  (19) 

where tX  and tY  are the (absolute) values of tensile strength in the material axes a, b, cX  and cY  

denote the absolute values of compressive strength in these axes, lS  is the shear strength in the layer 

plane, whereas tS  describes the transverse shear strength. The parameter Hα  can vary between 0 and 

1. In this paper it is set as 0Hα = . 

In the equations (16)-(19) the in-plane shear stress abσ  and baσ  are distinguished in comparison to the 

original criterion where only one (symmetric) value of in-plane shear abσ  is considered. Here the abσ  

component is used in the fiber modes expressions, whereas the baσ  is associated with the matrix 

mode. This stems from the mechanisms of failure and possible fracture planes to occur within a lamina 

and is in accordance with the issues underlying formulation of the original criterion presented in [54]. 

The drilling couple stresses are omitted in the modified criterion, although they are included in the law 

(11) and in the 2D equations of shells. This assertion is based on [61], where the authors have shown 

that the values of drilling couples are very small for thin isotropic elastic regular shells subjected to 

small strain and can be neglected. Therefore, we claim that the drilling couple stresses are very small 

as well and they do not contribute much to the failure. Nonetheless, they are used in the governing 

equations of the 6p theory to maintain its structure at the shell junctions. Such an approach is also 

motivated by the fact that the drilling couple strength is not obtained in the standard experimental tests 

conducted to establish properties of a lamina and thus is quite bothersome to determine. Finally, it is 

worth to mention that the modified version of Hashin criterion is similar to the one proposed in [35]. 

However, one has to keep in mind that a different material law was used in there thus we treat this 

approach as a new one. 

 
Examples 
 
In the following section the analysis of selected numerical examples is presented. The computations 

are performed with the use of the authors’ finite element program. The 16 node fully integrated shell 

element (16FI) is employed for the purpose of discretization. The shear correction factor value, in 

numerical calculations, is 5
6sα =  at each layer. In the first example the study of the influence of the 

Cosserat coupling number N  on the shell response undergoing large displacements is performed, 

whereas in the following ones attention is paid to the impact of characteristic length cl on the failure 

initiation. 
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1. Semi-cylindrical shell under point load 
 
Stander et al. [62] proposed this benchmark problem for shell finite elements. It has become very 

popular both with the isotropic and the laminated material, e.g. [63][64][65][66]. Here it is used only 

for the validation purposes. The geometry of the shell is presented in Fig. 3 where: 304.8L = mm, 

101.6R =  mm and the total shell thickness is 3H =  mm. Considering the case of laminated shell, 

following [64], the material properties are: 20.685aE =  GPa, 5.17125bE =  GPa, 

7.956ab acG G= =  GPa, 1.989bcG =  GPa, 0.25abv = . The characteristic length 0.01cl H= . Two 

stacking sequences are considered relative to the director 0
1t : [90/0/90] and [0/90/0]. 

 
Fig. 3. Semi-cylindrical shell, geometry, load and director field 

 

Load-deflection paths of the vertical displacement of the node (a) are compared with the reference 

solution [64] in Fig. 4. Three values of the Cosserat coupling number N , included in equation (12), 

are considered: 0.4, 2/2 and 0.9. A good correspondence with reference solutions is visible. 

Similarly, as observed in previous work e.g. [36] the value of N does not influence the shell behavior. 

In the following examples it will be assumed as 2/2. Such a value assures that the in-plane shear 

constitutive relation is exactly the same as in the earlier works published by the authors in the area of 

failure analysis of laminates within the 6p theory [20][35]. 

 

Fig. 4. Semi-cylindrical shell, results 

 

2. Quasi-isotropic laminated quadratic plate under uniformly distributed load 
 

Secondly a quasi-isotropic laminated quadratic plate 600×600 mm is examined. The experimental and 

numerical results for this example were originally presented in [67][68]. We take the advantage that 

the failure data is available in the aforesaid papers and therefore we estimate the FPF occurrence here 

as well. The plate is fixed along all edges and is subjected to uniformly distributed load. The laminate 

consists of 5 layers [0°/45°/90°/–45°/0°] made of glass/polyester composite with following 

parameters: Ea = 23.6 GPa, Eb = 10 GPa, Gab = 1 GPa, vab = 0.23, Xt = 735 MPa, Xc = 600 MPa, 

Yt = 45 MPa, Yc = 100 MPa, SL = 45 MPa. The fiber angles are measured with respect to the x–axis, 

see Fig. 5. The total thickness of the plate is H = 3.43 mm. The value of the transverse shear strength 

is taken as St = 0.5 Yc [69]. 

 

Fig. 5. Quasi-isotropic plate under uniformly distributed load 
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As stated previously the value 2/2N =  is used for the computation. In the following examples the 

influence of characteristic length value cl  is examined with the justification, that this factor can be 

crucial in the future studies concerning the progressive failure analysis. However, in the present work 

only the failure initiation is investigated. 

In order to provide mesh density comparable to the one from study [67], the mesh of 8×8 CAM FI 

elements is used in the current computations. The solution is sought with the use of the displacement 

control technique whereas the central deflection ( )aw  is the control parameter. 

Fig. 6 presents the results for three values of characteristic length: 0cl = , cl h=  and cl H=  where h 

stands for the thickness of a single layer (kh ) and H  is the total thickness of the plate kk
H h=∑ . It 

can be observed that the paths obtained for different values of characteristic length coincide with each 

other. The FPF occurs in all the cases for 10.8w =  mm. This value agrees with that given in [20] and 

corresponds well to the reference value 10.64w =  mm reported in [67]. 

For the comparison purposes Fig. 6 depicts the present results together with the experimental and 

numerical solution given in [67]. It has to be noticed, that in [67] progressive failure analysis (PFA) 

was performed, therefore the agreement between that solution and the present one after the FPF onset 

should not be alleged. On the other hand the unexpected disagreement between the present and 

reference numerical solutions before the FPF is pronounced. The present model seems to be more 

flexible than the reference one. The numerical results reported in [67] match the experimental path 

better. However, in the authors’ opinion it can be attributed to probably by too large increment step 

used in the reference computations. To prove this hypothesis additional analysis was performed in 

Abaqus with the use of the same mesh as in [67] and load control method. Fig. 6 illustrates the 

obtained results. Two solution cases are shown: “Abaqus large step (a)” and “Abaqus small step (b)”. 

It can be seen, that in the case of “b” the solution is similar to the path obtained with the use of the 

authors’ own program. For the “a” solution the path appears near the one for the numerical results 

shown in [67].  

Quite apart from these discrepancies, as stated previously, the prediction of the FPF onset is very 

similar for the present and reference solution. Basing on the authors’ earlier experience, see [20], the 

same conclusion concerns also the further progressive failure analysis. 

Fig. 7 shows the distribution of NLF1 parameter at the failure occurrence. This parameter is defined as 

the number of layers in which at least one failure mechanism is detected. Due to the smoothing 

techniques performed by the postprocessor the values are not integer. Basing on some other 

postprocess data it can be verified, that the FPF is associated with the matrix cracking in the bottom 

layer. 

 
Fig. 6. Quasi-isotropic plate, equilibrium paths of the central deflection 
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Fig. 7. Quasi-isotropic plate, first ply failure (matrix cracking in the bottom layer) 

 

Lastly we analyze the significance of the influence of the coupling stresses on the local response of the 

plate. As stated earlier these stresses are omitted in the failure criterion and it is crucial to check, 

whether such an assumption is justified. The coupling stresses are nonlinearly dependent on the 

characteristic length value. It is essential to compare the impact of coupling and force stresses on the 

failure indices. For such a comparison the ratios /a cm l  and /b cm l  are taken into account, since they 

yield the values measured in units of force stresses. The following study is made for two analyzed 

characteristic lengths (cl h=  and cl H= ): firstly the Gauss point where the FPF onset arises is 

identified and the failure indices FF, FM in this point and the values of the corresponding stress 

components are given; secondly the Gauss points where ratios /a cm l  and /b cm l  approach the 

extreme values are found and then their behavior together with failure indices FF, FM are presented. It 

has to be emphasized that in the course of the analysis the points where /a cm l  and /b cm l  as well as 

the indices FF, FM reach the extreme levels change the location. Therefore, in the following figures 

the shown paths cannot be presented in the entire range of the assumed control displacement. The 

displayed displacement range includes the instance of the FPF onset.  

Fig. 8 and Fig. 9 depict the growth of failure indices and the corresponding stress components at the 

failure point for cl h= . From these figures it is clear that the failure is due to the matrix tension for 

10.8w =  mm. Fiber failure does not play a role in this example. Fig. 9 proves explicitly that the bbσ  

stress component has the strongest influence on the FM index . The stresses baσ  as well as the 

coupling stresses are significantly lower. 

 

Fig. 8. Failure indices progress in the FPF localization (x=305 mm, y=595 mm, layer 1), lc=h 

 

Fig. 9. Stress components response in the failure point (x=305 mm, y=595 mm, layer 1), lc=h 

 

Fig. 10 and Fig. 11 illustrate the changes of maximum /a cm l  and /b cm l  ratios and corresponding 

failure indices in respective Gauss points. It is observed in Fig. 10 that in the point of maximum 

/a cm l  value the stress safety margin is high, since both failure indices are very low. On the other 

hand, Fig. 11 shows that in the point of extreme /b cm l  ratio the matrix cracking occurs for 

11.3w =  mm. It is very close to the identified FPF onset value for 10.8w =  mm. However, the value 

of /b cm l  is still evidently small and it can be assumed that it would not have significant influence on 

the failure behavior.  
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Fig. 10. Maximum ma/lc ratio and corresponding failure indices (x=380 mm, y=521 mm, layer 3), lc=h 

 

Fig. 11. Maximum mb/lc ratio and corresponding failure indices (x=220 mm, y=595 mm, layer 1), lc=h 

 

Similar conclusions can be drawn with respect to the results obtained for cl H= , see Fig. 12, Fig. 13, 

Fig. 14 and Fig. 15. Obviously, the ratios /a cm l  and /b cm l  are in this case higher due to the larger 

characteristic length value. Nonetheless, they are still very small. Taking into account that the failure 

criteria include the square of stress components, the obtained results seem to prove that the assumption 

of small coupling stresses is in this example fully justified. 

 

Fig. 12. Failure indices progress in the FPF localization (x=305 mm, y=595 mm, layer 1), lc=H 

 

Fig. 13. Stress components response in the failure point (x=305 mm, y=595 mm, layer 1), lc=H 

 

Fig. 14. Maximum ma/lc ratio and corresponding failure indices (x=220 mm, y=595 mm, layer 3), lc=H 

 

Fig. 15. Maximum mb/lc ratio and corresponding failure indices (x=220 mm, y=595 mm, layer 1), lc=H 

 

3. Axially compressed flat panel 
 

As a next example we analyze the failure initiation in the axially compressed flat panel. This one has 

been widely examined, see e.g. [50][70][71][72]. It has to be noticed that the geometrical and material 

data are slightly different depending on the literature source. For the sake of clarity it has to be 

stressed, that in this paper the data is taken after [70]. The panel is 508 mm long and 178 mm wide 

(Fig. 16). The shorter edges are clamped, whereas the loaded one is free to translate in the axial 

direction. The longer edges are simply supported. T300/5208 graphite-epoxy composite which the 

layers are made of, is characterized by the following parameters: Ea = 131 GPa, Eb = 13.03 GPa, 

Gab = Gac = 6.205 GPa, Gbc = 3.447 GPa, vab = 0.38, Xt = 1379 MPa, Xc = 1137 MPa, Yt = 81 MPa, 

Yc = 189 MPa, SL = 62 MPa. The value of the transverse shear strength is taken as previously, i.e. 

St = 0.5 Yc. The stacking sequence of 0.132 mm thick layers h is [45°/–45°/0°/0°/45°/–45°/0°/0°/45°/–

45°/0°/90°]s, whereas the orientation angle is measured in reference to the axial direction. The mesh of 

24×16 elements 16FI is used in the discretization process. In order to enforce the two half-waves 

buckling shape in the computations additional small perturbation forces 0.00005iP P=  are applied 

(Fig. 16). The axial displacement u of the loaded edge is taken as the path control parameter. All nodes 

along this edges are kinematically coupled as regard the axial translation. The definition of boundary 

conditions is noteworthy. The description ‘clamped edge’ is clear, however, ‘simply supported’ or 

‘knife edge’ (see [70]) is not obvious (compare e.g. [50][71]) especially regarding the drilling rotation. 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
In the present study the simply supported edge is understood as the following condition: w = φy = 0 

(Fig. 16). 

 

Fig. 16. Axially compressed flat panel 

 

Fig. 17 depicts the obtained equilibrium paths of the axial displacements obtained for three values of 

characteristic length ( 0cl = , cl h= , cl H= ) together with the reference solution given in [70], where 

progressive failure analysis was carried out. The Cosserat coupling number N  is set to 2/2. 

 

Fig. 17. Axially compressed flat panel – equilibrium paths of the axial displacement 

 

It can be observed, that the characteristic length cl  does not influence significantly the global structure 

behavior. For all the values of characteristic length cl  the FPF onset is detected at 2.03u =  mm which 

corresponds to 87720P =  N. Fig. 18 illustrates distribution of the NLF1 coefficient at the FPF onset. 

The failure is due to the matrix cracking. The laminate fails in 0° oriented layers (layer 3 and 22). In 

contrast, the Hashin criterion estimation failure initiates, according to paper [72], in the third bottom 

layer for 85500P =  N . This is only in some extent lower than the present one. This small discrepancy 

follows from different Gauss point distribution in the thickness direction: in the present study the 

failure stress is controlled only in the middle of each layer, whereas in [72] in the middle and at the top 

and at bottom faces. 

 

Fig. 18. FPF location in the buckled panel for two types of boundary conditions  

 

Unfortunately, in [70] the failure initiation value was not investigated. On the other hand in [71] some 

report in this field is given and the FPF load equals 82800P =  N, according to the Christensen’s 

criterion and 96873P =  N, according to the Hashin criterion. The experimental data is inopportunely 

not available. It has to be however emphasized that in [71] slightly different set of geometrical data 

was used in the computations, so that the discrepancy between these results and the present ones is 

rather obvious.  

Fig. 19 to Fig. 26 present a similar study, as made in the previous example, of the impact of coupling 

moments on the stress state and FPF onset. Contrary to the previous example in this case the 

membrane stresses are much more pronounced. In effect it is expected, that the values of drilling 

moments will be more noticeable. Fig. 19, Fig. 20, Fig. 23 and Fig. 24 illustrate that the failure is 

caused by the matrix cracking (18). it follows from Fig. 20 and Fig. 24 that the baσ  stress component 

has the biggest contribution to the failure condition (18) . In the case of cl h=  the drilling moments 
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are evidently negligible (Fig. 20), whereas for cl H=  the /a cm l  ratio is of the same range as bbσ  

(Fig. 24). However, the authors presume that the condition for matrix failure should rather include the 

/b cm l  ratio, which is markedly small in the failure zone in this example, even for cl H= . The ratio 

/a cm l  ought to be considered for the fiber failure index which is in turn noticeably small in the FPF 

region.  

Fig. 21, Fig. 22, Fig. 25 and Fig. 26 depict the maximum /a cm l  and /b cm l  ratios at relevant Gauss 

points together with the corresponding failure indices. It can be observed, that quite large drilling 

moments arise in the corners of the plate for cl H=  (Fig. 25, Fig. 26). For cl h=  these values are 

rather small. Nonetheless, the corresponding failure indices for both characteristic lengths are 

remarkably small. 

The example shows that even for large values of the drilling moments the assumption of their absence 

in the failure criterion is reasonable here.  

 

Fig. 19. Failure indices progress in the FPF localization (x=247 mm, y=3.67 mm, layer 3), lc=h 

 

Fig. 20. Stress components response in the failure point (x=247 mm, y=3.67 mm, layer 3), lc=h 

 

Fig. 21. Maximum ma/lc ratio and corresponding failure indices (x=1.47 mm, y=0.77 mm, layer 3), lc=h 

 

Fig. 22. Maximum mb/lc ratio and corresponding failure indices (x=1.47 mm, y=0.77 mm, layer 12), 

lc=h 

 

Fig. 23. Failure indices progress in the FPF localization (x=255 mm, y=177 mm, layer 22), lc=H 

 

Fig. 24. Stress components response in the failure point (x=255 mm, y=177 mm, layer 22), lc=H 

 

Fig. 25. Maximum ma/lc ratio and corresponding failure indices  (x=1.47 mm, y=0.77 mm, layer 3), 

lc=H 

 

Fig. 26. Maximum mb/lc ratio and corresponding failure indices (x=1.47 mm, y=0.77 mm, layer 12), 

lc=H 

 

4. Axially compressed channel-section column  
 

An axially compressed channel-section column is analyzed following [73]. The geometrical data is 

given in Fig. 27. The column is made of GFRP 8-layer laminate oriented according to the scheme 
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[0°/–45°/+45°/90°]s, whereas the orientation angle is measured with the reference to the y–axis (Fig. 

27). Each layer is 0.26 mm thick and possesses the following stiffness and strength properties: 

Ea = 38.5 GPa, Eb = 8.1 GPa, Gab = 2 GPa, vab = 0.27, Xt = 792 MPa, Xc = 679 MPa, Yt = 39 MPa, 

Yc = 71 MPa, SL = 108 MPa. In the experiment the structure was placed between stiff plates. The 

loaded top plate was free to move only in the vertical direction. According to [73] the flanges of the 

column undergo buckling into two half waves along the height. To enforce corresponding buckling 

mode in the present FEM computations small perturbation forces 0.002iP P=  are applied, see Fig. 27. 

The boundary conditions in the FEM analysis, in the source paper [73], were imposed as simply 

supported whereas the translations along the C-contour were left free. In this study, basing on the 

authors’ earlier experience [20], the top edges are modelled as clamped with the possible motion in the 

axial direction and the bottom edges are assumed as pinned. The axial displacement of the top edge is 

chosen as the solution control parameter. All the nodes along this top edge are kinematically coupled 

with respect to the vertical translation. In the computations regular mesh of 16 FI elements is used: 30 

elements along the column’s height, 6 elements along the width of flanges and 12 elements along the 

web’s width.  

The results obtained for 2 / 2N =  and three values of characteristic lengths are shown in Fig. 28. For 

comparison purposes also the FEM solution given in [73] is presented. It can be seen that the present 

postbuckling paths do not match exactly the results from [73]. Additional analyses, though not 

presented here, lead to the conclusion that this is attributed to different boundary conditions in both 

models.  

It follows from the comparison of the obtained equilibrium paths that the change of characteristic 

length does not influence the overall shell behavior. The local response is also very similar in all 

performed computations. The FPF for each chosen characteristic length value takes place for 

0.88v =  mm. This value agrees with the result obtained in [20] and [73]. The cracking of matrix is the 

first damage to be observed and occurs in the outer layer in the local dimple of the web, see Fig. 29. 

 

Fig. 27. Channel-section – scheme of the experimental setup and FEM model  

 

Fig. 28. Channel-section column – equilibrium paths of the vertical translation  

 

Fig. 29. Channel-section column – location of the FPF onset  

 

Fig. 30 to Fig. 37 present the influence of the drilling moment on the stress state. It follows from Fig. 

30, Fig. 31, Fig. 34,  
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Fig. 35 that the failure arises at 0.88v =  mm due to the matrix cracking. The dominating stress 

component according to the condition (18) is 
bbσ . The in-plane shear components as well as the 

drilling moments, see Fig. 31 and  

Fig. 35, are negligible. Fig. 32, Fig. 33, Fig. 36 and Fig. 37 illustrate the changes of ratios /a cm l  and 

/b cm l  compared with failure indices in Gauss points in which the drilling moments attain extreme 

levels. In this example the points in which the couple stresses reach the maximum values do not 

change their position above the control displacement equal to 0.3v ≈  for 
cl h=  and 0.8v ≈  for 

cl H= . Therefore relatively large range of the /a cm l  and /b cm l  curves can be displayed. The 

extreme values of drilling moments for both characteristic lengths arise close to the walls intersection 

of the column. Similarly, as in the case of previously analyzed compressed plate, the values of /a cm l  

and /b cm l  ratios are more pronounced than in the case of the plate undergoing bending. 

Nevertheless, at the moment of the FPF (0.88v = ) the failure indices near to the walls junction are 

considerably less than one. It proves that the usage of failure conditions neglecting the drilling 

moments is in this example correct. 

 

Fig. 30. Failure indices progress in the FPF localization (x=-39.5 mm, y=58.9 mm, z=0 mm layer 8), 

lc=h 

 

Fig. 31. Stress components response in the failure point (x=-39.5 mm, y=58.9 mm, z=0 mm layer 8), 

lc=h 

 

Fig. 32. Maximum ma/lc ratio and corresponding failure indices (x=-80 mm, y=0.579 mm, z=-0.463 

mm, layer 4), lc=h 

 

Fig. 33. Maximum mb/lc ratio and corresponding failure indices (x=-80 mm, y=0.579 mm, z=-0.463 

mm, layer 1), lc=h 

 

Fig. 34. Failure indices progress in the FPF localization (x=-39.5 mm, y=58.9 mm, z=0 mm layer 8), 

lc=H 

 

Fig. 35. Stress components response in the failure point (x=-39.5 mm, y=58.9 mm, z=0 mm layer 8), 

lc=H 

Fig. 36. Maximum ma/lc ratio and corresponding failure indices  (x=-80 mm, y=0.579 mm, z=-0.463 

mm, layer 4), lc=H 
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Fig. 37. Maximum mb/lc ratio and corresponding failure indices (x=-80 mm, y=0.579 mm, z=-0.463 

mm, layer 1), lc=H 

Conclusions 
 
2-D constitutive law for orthotropic Cosserat type laminated shells is proposed. In contrary to previous 

authors’ works concerning laminates the presented relation utilizes 5 engineering constants and 2 

additional parameters typical for Cosserat medium, namely the Cosserat coupling number N  and 

characteristic length 
cl . Since the experimental determination of these constants is not a trivial task it is 

essential to study their influence numerically. In this work numerical tests are performed regarding the 

geometrically non-linear behavior and failure initiation (FPF). Firstly, the influence of N  is studied. It 

is shown, that the Cosserat coupling number ranging between 0.4 and 0.9 does not influence the 

overall response of the structure. Therefore, in further examples 2 / 2N =  is assumed, asserting that 

the in-plane shear relation is the same as in the previous authors research and the influence of 

characteristic length is analyzed. This constant seems to be crucial from view of the future progressive 

failure analysis, as it can serve as a regularization parameter. At this stage, however, only the FPF 

onset is studied by making use of the Hashin criterion, formulated taking into account the asymmetry 

of in-plane shear stresses and neglecting the drilling moments. It is shown that the value of 

characteristic length varying between 0 and shell thickness does not influence significantly the global 

behavior of the structure. Obviously, the drilling moments increase nonlinearly with the growth of the 

characteristic length. Their contribution is more pronounced if the membrane stress state is present. 

Nonetheless, it is shown on the basis of the analyzed examples  that they have no impact on the FPF 

onset, even for large values of 
cl .  

Basing on the obtained results from numerical calculations a conclusion can be drawn. If the stiffness 

associated with the drilling moment is small, which corresponds to small values of characteristic 

length 
cl H<  or, all the more so, as used in the previous research to the parameter 1tα < ,  the 

omission of couple stresses in the failure criterion is fully justified. However, if 
cl  reaches the value of 

shell’s thickness (or larger), it is recommended to check the stress safety margin in the zones of 

extreme drilling moments, especially if the membrane stresses are noticeable. At this stage of the 

research, it remains an open question whether the modified failure criterion taking into account the 

couple stresses should be used for larger values of characteristic length. The study of this topic is 

planned to be done in the near future. Additionally, progressive failure analysis is planned to be 

accounted for. Some preliminary results can be found in [74]. 
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