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Abstract: The problem of identification of a nonstationary autoregressive signal using non-
causal estimation schemes is considered. Noncausal estimators can be used in applications
that are not time-critical, i.e., do not require real-time processing. A new adaptive estimation
bandwidth selection rule based on evaluation of pseudoprediction errors is proposed, allowing
one to adjust tracking characteristics of noncausal estimators to unknown and/or time-varying
degree of signal nonstationarity. The new rule is compared with the previously proposed one,
based on the generalized Akaike’s final prediction error criterion.
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1. INTRODUCTION

Consider a nonstationary discrete-time signal {y(t), t =
. . . ,−1, 0, 1 . . .}, which can be described (or at least well
approximated) by the following time-varying autoregres-
sive (AR) model of order n

y(t) =

n∑
i=1

ai(t)y(t− i) + e(t) = ϕT(t)θ(t) + e(t)

var[e(t)] = ρ(t)

(1)

where θ(t) = [a1(t), . . . , an(t)]
T denotes the vector of

autoregressive coefficients, ϕ(t) = [y(t− 1), . . . , y(t− n)]T

is the regression vector, and {e(t)} denotes a squence
of independent zero-mean random variables with time-
varying variance ρ(t).
Due to their simplicity and good predictive capabili-
ties, AR models have found their way to a large num-
ber of practical applications in different fields such as
biomedicine [Fabri, Camilleri & Cassar (2011)], [Schlögl
(2000)], [Wada, Jinnouchi & Matsumura (1998)], telecom-
munications [Baddour & Beaulieu (2005)], [Hayes &
Ganesh Babu (2004)], and geophysics [Lesage, Glangeaud
& Mars (2002)], [Li & Nowack (2004)], among many
others. Since parameters of AR models have usually no
physical significance, identification of such models is not
a goal in itself – it is the means of solving practical
problems in the sense that the corresponding solutions
depend explicitly on the estimates of model coefficients.
In real-time applications, such as adaptive prediction, the
estimate θ(t) must be causal, i.e., it must rely on the
observation history Y(t) = {y(s), s ≤ t} available at the
instant t. In cases like this, estimation/tracking of θ(t)
can be carried out using the well-known exponentially
weighted least squares algorithms – see e.g. Niedźwiecki
(2000). On the other hand, many applications, such as
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predictive coding of signals or parametric spectrum esti-
mation, are not time-critical in the sense that the model-
based decisions can be postponed or at least delayed by
a certain number of sampling intervals, which means that
parameter estimation can be based on past, but also on a
certain number of “future” observations. Since noncausal
estimation schemes, which take advantage of this fact, can
significantly reduce the bias component of the mean square
parameter estimation error, their tracking performance is
usually much better than that of the comparable causal
schemes Niedźwiecki (2000). The aim of this paper is
to develop a new technique which allows one to adjust
noncausal estimates of θ(t) to unknown and possibly time-
varying rate of parameter variation.

2. NONCAUSAL WEIGHTED LEAST SQUARES
ESTIMATORS

The noncausal weighted least squares (NWLS) estimates
of θ(t) and ρ(t) take the form

θ̂k(t) = argmin
θ

k∑
i=−k

vk(i)[y(t+ i)−ϕT(t+ i)θ]2

= R−1
k (t)rk(t)

(2)

ρ̂k(t) =
1

Lk

k∑
i=−k

vk(i)[y(t+ i)−ϕT(t+ i)θ̂k(t)]
2

=
1

Lk
[sk(t)− rTk (t)θ̂k(t)]

(3)

where

Rk(t) =

k∑
i=−k

vk(i)ϕ(t+ i)ϕT(t+ i)

rk(t) =

k∑
i=−k

vk(i)y(t+ i)ϕ(t+ i)
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[sk(t)− rTk (t)θ̂k(t)]

(3)

where

Rk(t) =
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vk(i)ϕ(t+ i)ϕT(t+ i)
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ul. Narutowicza 11/12, Gdańsk , Poland
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1. INTRODUCTION

Consider a nonstationary discrete-time signal {y(t), t =
. . . ,−1, 0, 1 . . .}, which can be described (or at least well
approximated) by the following time-varying autoregres-
sive (AR) model of order n

y(t) =

n∑
i=1

ai(t)y(t− i) + e(t) = ϕT(t)θ(t) + e(t)

var[e(t)] = ρ(t)

(1)

where θ(t) = [a1(t), . . . , an(t)]
T denotes the vector of

autoregressive coefficients, ϕ(t) = [y(t− 1), . . . , y(t− n)]T

is the regression vector, and {e(t)} denotes a squence
of independent zero-mean random variables with time-
varying variance ρ(t).
Due to their simplicity and good predictive capabili-
ties, AR models have found their way to a large num-
ber of practical applications in different fields such as
biomedicine [Fabri, Camilleri & Cassar (2011)], [Schlögl
(2000)], [Wada, Jinnouchi & Matsumura (1998)], telecom-
munications [Baddour & Beaulieu (2005)], [Hayes &
Ganesh Babu (2004)], and geophysics [Lesage, Glangeaud
& Mars (2002)], [Li & Nowack (2004)], among many
others. Since parameters of AR models have usually no
physical significance, identification of such models is not
a goal in itself – it is the means of solving practical
problems in the sense that the corresponding solutions
depend explicitly on the estimates of model coefficients.
In real-time applications, such as adaptive prediction, the
estimate θ(t) must be causal, i.e., it must rely on the
observation history Y(t) = {y(s), s ≤ t} available at the
instant t. In cases like this, estimation/tracking of θ(t)
can be carried out using the well-known exponentially
weighted least squares algorithms – see e.g. Niedźwiecki
(2000). On the other hand, many applications, such as

� This work was partially supported by the National Science Cen-
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predictive coding of signals or parametric spectrum esti-
mation, are not time-critical in the sense that the model-
based decisions can be postponed or at least delayed by
a certain number of sampling intervals, which means that
parameter estimation can be based on past, but also on a
certain number of “future” observations. Since noncausal
estimation schemes, which take advantage of this fact, can
significantly reduce the bias component of the mean square
parameter estimation error, their tracking performance is
usually much better than that of the comparable causal
schemes Niedźwiecki (2000). The aim of this paper is
to develop a new technique which allows one to adjust
noncausal estimates of θ(t) to unknown and possibly time-
varying rate of parameter variation.

2. NONCAUSAL WEIGHTED LEAST SQUARES
ESTIMATORS

The noncausal weighted least squares (NWLS) estimates
of θ(t) and ρ(t) take the form

θ̂k(t) = argmin
θ

k∑
i=−k

vk(i)[y(t+ i)−ϕT(t+ i)θ]2

= R−1
k (t)rk(t)

(2)

ρ̂k(t) =
1

Lk

k∑
i=−k

vk(i)[y(t+ i)−ϕT(t+ i)θ̂k(t)]
2

=
1

Lk
[sk(t)− rTk (t)θ̂k(t)]

(3)

where

Rk(t) =

k∑
i=−k

vk(i)ϕ(t+ i)ϕT(t+ i)

rk(t) =

k∑
i=−k

vk(i)y(t+ i)ϕ(t+ i)
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e-mail: maciekn@eti.pg.gda.pl, marcin.ciolek@pg.gda.pl

Abstract: The problem of identification of a nonstationary autoregressive signal using non-
causal estimation schemes is considered. Noncausal estimators can be used in applications
that are not time-critical, i.e., do not require real-time processing. A new adaptive estimation
bandwidth selection rule based on evaluation of pseudoprediction errors is proposed, allowing
one to adjust tracking characteristics of noncausal estimators to unknown and/or time-varying
degree of signal nonstationarity. The new rule is compared with the previously proposed one,
based on the generalized Akaike’s final prediction error criterion.

Keywords: identification of nonstationary autoregressive processes, noncausal estimation,
parameter tracking, estimation bandwidth selection

1. INTRODUCTION

Consider a nonstationary discrete-time signal {y(t), t =
. . . ,−1, 0, 1 . . .}, which can be described (or at least well
approximated) by the following time-varying autoregres-
sive (AR) model of order n

y(t) =

n∑
i=1

ai(t)y(t− i) + e(t) = ϕT(t)θ(t) + e(t)

var[e(t)] = ρ(t)

(1)

where θ(t) = [a1(t), . . . , an(t)]
T denotes the vector of

autoregressive coefficients, ϕ(t) = [y(t− 1), . . . , y(t− n)]T

is the regression vector, and {e(t)} denotes a squence
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(2000)], [Wada, Jinnouchi & Matsumura (1998)], telecom-
munications [Baddour & Beaulieu (2005)], [Hayes &
Ganesh Babu (2004)], and geophysics [Lesage, Glangeaud
& Mars (2002)], [Li & Nowack (2004)], among many
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parameter estimation can be based on past, but also on a
certain number of “future” observations. Since noncausal
estimation schemes, which take advantage of this fact, can
significantly reduce the bias component of the mean square
parameter estimation error, their tracking performance is
usually much better than that of the comparable causal
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to develop a new technique which allows one to adjust
noncausal estimates of θ(t) to unknown and possibly time-
varying rate of parameter variation.
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of θ(t) and ρ(t) take the form
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sk(t) =

k∑
i=−k

vk(i)y
2(t+ i)

and {vk(i), i = −k, . . . , k}, vk(0) = 1, denotes the non-
negative, symmetric, bell-shaped window of width 2k+ 1,
introduced to make the estimates depend more heavily
on the data collected at the instants close to t, and less
heavily on measurements coming from the remote past
and future. We will assume that vk(i) = f(i/k) where
f(·) is the analog window generating function defined on
the interval [−1, 1]. Finally, the quantity

Lk =

k∑
i=−k

vk(i) ∼= k

∫ 1

−1

f(x)dx

denotes the effective window width.

Remark

We note that the Hann (raised cosine) window

vk(i) =
1

2

[
1 + cos

πi

k + 1

]
=

1

2

{
1 + Re

[
ej

πi
k+1

]}
(4)

allows for recursive computation of Rk(t), rk(t) and sk(t).
Actually, let

Sk(t) =

k∑
i=−k

ϕ(t+ i)ϕT(t+ i)

Tk(t) =

k∑
i=−k

ej
πi

k+1ϕ(t+ i)ϕT(t+ i) .

Observe that both quantities defined above are recursively
computable

Sk(t+ 1) = Sk(t)−ϕ(t− k)ϕT(t− k)

+ϕ(t+ k + 1)ϕT(t+ k + 1)

Tk(t+ 1) = e−j π
k+1Tk(t) +ϕ(t− k)ϕT(t− k)

+ ej
πk
k+1ϕ(t+ k + 1)ϕT(t+ k + 1)

and that

Rk(t) =
1

2
Sk(t) +

1

2
Re[Tk(t)] .

The quantities rk(t) and sk(t) can be computed recursively
in an analogous way.

Tracking capabilities of NWLS estimators depend on the
window size. When the effective width of the window is
small, the corresponding estimation algorithm is “fast”
(quickly reacts to parameter changes), but “innacurate”
(yields estimates with large variability); when it is large,
the algorithm is “slow” but “accurate”. The estimation
bandwidth [Niedźwiecki (2000)], i.e., the frequency range
in which signal parameters can be tracked “successfully”,
is inversely proportional to k. The best tracking results
can be obtained when the bandwidth matches the rate
of parameter variation, trading off the bias and variance
components of the mean square parameter tracking error.
When the rate of signal nonstationarity is unknown and/or
when it changes with time, bandwidth optimization can
be carried out using parallel estimation schemes – see
Niedźwiecki (1990), Niedźwiecki (1992). In this approach
several estimation algorithms, equipped with different
bandwidth settings k ∈ K = {k1, . . . , kK}, are simulta-
neously run and compared. At each time instant only one

of the competing algorithms is selected, i.e., the estimated

parameter and variance trajectories have the form θ̂
k̂(t)

(t)

and ρ̂
k̂(t)

(t), respectively, where

k̂(t) = argmin
k∈K

Jk(t) (5)

and Jk(t) denotes the local decision statistic.
In our previous paper, Niedźwiecki, Cio�lek & Kajikawa
(2017), we have shown that the problem of bandwidth
selection can be solved using the localized version of the
Akaike’s final prediction error (FPE) criterion. In this case

Jk(t) = FPEk(t) =
1 + n

Nk

1− n
Nk

ρ̂k(t) (6)

where

Nk =

[∑k
i=−k vk(i)

]2
∑k

i=−k v
2
k(i)

∼= k

[∫ 1

−1
f(x)dx

]2
∫ 1

−1
f2(x)dx

(7)

denotes the so-called equivalent window width.
In the same paper we have demonstrated that the cross
validation approach, which yields Jk(t) in a form of a local
sum of squared leave-one-out signal interpolation errors,
does not provide satisfactory results (most likely because
interpolation errors may be strongly correlated). As we
will show below, the situation changes substantially if
interpolation errors are replaced with the pseudoprediction
errors.
To define pseudoprediction errors, we will introduce the
notion of a holey estimator of θ(t). The holey estimator

θ̂◦
k(t), introduced in Niedźwiecki (2012) for finite impulse

response (FIR) systems of the form

y(t) = ϕT(t)θ(t) + e(t), ϕ(t) = [u(t− 1), . . . , u(t− n)]T

where {u(i)} denotes the observable input sequence, can
be obtained by excluding from the estimation process the
output measurement y(t), collected at the instant t. This
leads to the following formula

θ̂◦
k(t) = argmin

θ

k∑

i=−k
i�=0

vk(i)[y(t+ i)−ϕT(t+ i)θ]2

= [R◦
k(t)]

−1r◦k(t)

(8)

where

R◦
k(t) =

k∑

i=−k
i�=0

vk(i)ϕ(t+ i)ϕT(t+ i)

r◦k(t) =

k∑

i=−k
i�=0

vk(i)y(t+ i)ϕ(t+ i) .

Even though for AR processes we will adopt the same
formula, there is an important difference between the AR
case and the FIR case: in the AR case y(t) is a component
of regression vectors ϕ(t+ 1), . . . ,ϕ(t+ n). Hence, unlike
the FIR case, even if the term vk(0)[y(t) − ϕT(t)θ]2 is
excluded from the sum in (2), the estimate (8) remains a
function of y(t).

Based on θ̂◦
k(t), one can compute a pseudoprediction

ŷ◦k(t) = ϕT(t)θ̂◦
k(t) of y(t) and the corresponding pseu-

doprediction error

ε◦k(t) = y(t)−ϕT(t)θ̂◦
k(t) . (9)
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The name “pseudoprediction” refers to the fact that the

vector of parameter estimates θ̂◦
k(t) depends on y(t), which

is the predicted quantity.
The decision statistic based on evaluation of the locally
observed pseudoprediction errors (PPE) takes the form

Jk(t) = PPEk(t) =

M∑
i=−M

[ε◦k(t+ i)]2 (10)

where M ∈ [20, 50] decides upon the size of the local
decision window [t−M, t+M ] centered at t.
It is interesting to note that evaluation of (10) does not

require implementation of the holey estimator θ̂◦
k(·).

Denote by εk(t) the pseudoprediction error defined in

terms of the original (unmodified) estimate θ̂k(t)

εk(t) = y(t)−ϕT(t)θ̂k(t) . (11)

It is straightforward to show that

ε◦k(t) =
εk(t)

1− bk(t)
(12)

where

bk(t) = ϕT(t)R−1
k (t)ϕ(t) .

Actually, using the well-known matrix inversion lemma
[see e.g. Söderström & Stoica (1988)], and exploiting the
fact that vk(0) = 1, one arrives at

θ̂◦
k(t) = [Rk(t)−ϕ(t)ϕT(t)]−1[rk(t)− y(t)ϕ(t)]

=

[
R−1

k (t) +
R−1

k (t)ϕ(t)ϕT(t)R−1
k (t)

1−ϕT(t)R−1
k (t)ϕ(t)

]
×

× [Rk(t)θ̂k(t)− y(t)ϕ(t)]

which, after substitution into (9), leads to (12).

3. NONCAUSAL WEIGHTED YULE-WALKER
ESTIMATORS

NWLS estimators do not guarantee stability of the ob-
tained AR models. While in some applications, such as
parametric spectrum estimation, this is not a critical issue,
in some other ones, such as predictive coding of signals
(where AR model is used to generate a signal that resem-
bles the analyzed one), it is an obvious requirement. The
stability problem can be overcome if estimation is carried
out using the noncausal weighted Yule-Walker (NWYW)
estimators.
First of all, we will show that the NWYW estimates can
be interpreted as local least squares estimates obtained for
the tapered data sequence

yk(t+ i|t) = wk(i)y(t+ i), i ∈ [−k, k]

where {wk(i), i = −k, . . . , k}, wk(0) = 1, is the non-
negative, symmetric, bell-shaped data taper. Similarly as
in the case of NWLS estimators, we will assume that
wk(i) = g(i/k), where g(·) is the continuous time taper
generation function defined on [−1, 1]. Suppose that the
data sequence y(t−k), . . . , y(t+k) is extended with n zero
samples at its beginning and at its end, and that the data
taper wk(t − k), . . . , wk(t + k) is extended likewise. Note
that under such extensions it holds that yk(t + i|t) = 0
for i ∈ [−k − n,−k − 1] and i ∈ [k + 1, k + n]. Finally, let
ϕk(t+ i|t) = [yk(t+ i− 1|t), . . . , yk(t+ i− n|t)]T.
Consider the following least squares estimates of θ(t) and
ρ(t)

θ̃k(t) = argmin
θ

k+n∑
i=−k

[yk(t+ i|t)−ϕT
k (t+ i|t)θ]2

= Q−1
k (t)qk(t)

(13)

ρ̃k(t) =
1

Lk

k+n∑
i=−k

[yk(t+ i|t)−ϕT
k (t+ i|t)θ̃k(t)]2

=
1

Lk
[zk(t)− qT

k (t)θ̃k(t)]

(14)

where

Qk(t) =

k+n∑
i=−k

ϕk(t+ i|t)ϕT
k (t+ i|t)

qk(t) =

k+n∑
i=−k

yk(t+ i|t)ϕk(t+ i|t)

zk(t) =

k+n∑
i=−k

y2k(t+ i|t)

and

Lk =

k∑
i=−k

w2
k(i)

∼= k

∫ 1

−1

g2(x)dx .

It is straightforward to check that the matrix Qk(t) is
symmetric and Toeplitz

Qk(t) =




p0|k(t) . . . pn−1|k(t)
. . .

pn−1|k(t) . . . p0|k(t)




and that

qk(t) = [p1|k(t), . . . , pn|k(t)]
T, zk(t) = p0|k(t)

where

pl|k(t) =

k∑
i=−k+l

yk(t+ i|t)yk(t+ i− l|t) .

This means that the estimates θ̃k(t) and ρ̃k(t), given
by (13) and (14), respectively, are solutions of the Yule-
Walker equations provided that the true autocorrelation
coefficients of y(t) are replaced with their local (tapered)
estimates pl|k(t)/Lk, l = 0, . . . , n – see Söderström &
Stoica (1988). A rigorous statistical analysis of the benefits
of data tapering can be found e.g. in Dahlhaus & Giraitis
(1998).
Note that when n � k, it holds that ϕk(t + i|t) ∼=
wk(i)ϕ(t + i), and since yk(t + i|t) = wk(i)y(t + i), one

arrives at θ̃k(t) ∼= θ̂k(t) provided that

vk(i) = w2
k(i), i ∈ [−k, k] . (15)

This means that under the condition (15) the NWYW
estimators will yield approximately the same results as the
NWLS estimators. Note also that when vk(i) is a raised
cosine window (4), the “equivalent” data taper is

wk(i) =
√
vk(i) = cos

πi

2(k + 1)
. (16)

As shown in Niedźwiecki, Cio¦lek & Kajikawa (2017), such
cosinusoidal taper allows for recursive computation of
Qk(t) and qk(t).
Based on the least squares interpretation of NWYW

estimators, one can define the holey estimator θ̃◦
k(t) in the

form
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is the predicted quantity.
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which, after substitution into (9), leads to (12).
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First of all, we will show that the NWYW estimates can
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negative, symmetric, bell-shaped data taper. Similarly as
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wk(i) = g(i/k), where g(·) is the continuous time taper
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θ

k+n∑
i=−k

[yk(t+ i|t)−ϕT
k (t+ i|t)θ]2

= Q−1
k (t)qk(t)

(13)
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1

Lk
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=
1
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Lk =

k∑
i=−k

w2
k(i)

∼= k

∫ 1

−1

g2(x)dx .

It is straightforward to check that the matrix Qk(t) is
symmetric and Toeplitz

Qk(t) =




p0|k(t) . . . pn−1|k(t)
. . .

pn−1|k(t) . . . p0|k(t)




and that

qk(t) = [p1|k(t), . . . , pn|k(t)]
T, zk(t) = p0|k(t)

where

pl|k(t) =

k∑
i=−k+l

yk(t+ i|t)yk(t+ i− l|t) .

This means that the estimates θ̃k(t) and ρ̃k(t), given
by (13) and (14), respectively, are solutions of the Yule-
Walker equations provided that the true autocorrelation
coefficients of y(t) are replaced with their local (tapered)
estimates pl|k(t)/Lk, l = 0, . . . , n – see Söderström &
Stoica (1988). A rigorous statistical analysis of the benefits
of data tapering can be found e.g. in Dahlhaus & Giraitis
(1998).
Note that when n � k, it holds that ϕk(t + i|t) ∼=
wk(i)ϕ(t + i), and since yk(t + i|t) = wk(i)y(t + i), one

arrives at θ̃k(t) ∼= θ̂k(t) provided that

vk(i) = w2
k(i), i ∈ [−k, k] . (15)

This means that under the condition (15) the NWYW
estimators will yield approximately the same results as the
NWLS estimators. Note also that when vk(i) is a raised
cosine window (4), the “equivalent” data taper is

wk(i) =
√
vk(i) = cos

πi

2(k + 1)
. (16)

As shown in Niedźwiecki, Cio¦lek & Kajikawa (2017), such
cosinusoidal taper allows for recursive computation of
Qk(t) and qk(t).
Based on the least squares interpretation of NWYW

estimators, one can define the holey estimator θ̃◦
k(t) in the

form
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θ̃◦
k(t) = argmin

θ

k+n∑

i=−k
i�=0

[yk(t+ i|t)−ϕT
k (t+ i|t)θ]2

= [Q◦
k(t)]

−1q◦
k(t)

(17)

where

Q◦
k(t) = Qk(t)−ϕk(t|t)ϕT

k (t|t)
q◦
k(t) = qk(t)− yk(t|t)ϕk(t|t) .

This leads to the following decision statistic

Jk(t) = PPEk(t) =

M∑
i=−M

[η◦k(t+ i)]2 (18)

where

η◦k(t) = y(t)−ϕT(t)θ̃◦
k(t) (19)

denotes the pseudoprediction error. One can show that

η◦k(t) = ηk(t) +
ck(t)

1− dk(t)
γk(t) (20)

where

ηk(t) = y(t)−ϕT(t)θ̃k(t)

γk(t) = y(t)−ϕT
k (t|t)θ̃k(t)

ck(t) = ϕT(t)Q−1
k (t)ϕk(t|t)

dk(t) = ϕT
k (t|t)Q−1

k (t)ϕk(t|t) .
This allows one to compute pseudoprediction errors with-
out implementing the holey estimation scheme.
When n � k, it holds that ϕk(t|t) ∼= ϕ(t), leading to
ηk(t) ∼= γk(t), ck(t) ∼= dk(t) and

η◦k(t)
∼=

γk(t)

1− dk(t)

which resembles (12).
We note that the holey estimator given by (17) differs
from the analogous estimator proposed in our earlier
work Niedźwiecki, Cio�lek & Kajikawa (2017) – in the

case considered there the influence of y(t) on θ̃◦
k(t) was

completely removed, albeit at the expense of introducing
extra bias errors.
The alternative solution to the bandwidth selection
problem can be obtained using the suitably modified
Akaike’s final prediction error statistic, i.e., by adopting
[Niedźwiecki, Cio�lek & Kajikawa (2017)]

Jk(t) = FPEk(t) =
1 + n

Nk

1− n
Nk

ρ̃k(t) (21)

where

Nk =

[∑k
i=−k w

2
k(i)

]2
∑k

i=−k w
4
k(i)

∼= k

[∫ 1

−1
g2(x)dx

]2
∫ 1

−1
g4(x)dx

. (22)

Remark

The NWYW approach is computationally attractive.

First, the estimates θ̃k(t) and ρ̃k(t) can be avaluated us-
ing the computationally efficient order-recursive Levinson-
Durbin algorithm [Söderström & Stoica (1988)]. Second,
the square root of the matrix Q−1

k (t), needed to com-
pute pseudoprediction errors according to (20), can be
expressed in terms of the quantities evaluated by the
Levinson-Durbin algorithm (autoregressive coefficients of
AR models of orders 1, . . . , n and the corresponding re-
flection coefficients) – see Söderström & Stoica (1988).

Given Q
−1/2
k (t), such that Q

−1/2
k (t)Q

−T/2
k (t) = Q−1

k (t),
one can use the the formulas ck(t) = αT

k (t)βk(t) and
dk(t) =‖ βk(t) ‖2, where

αk(t) = Q
−T/2
k (t)ϕ(t), βk(t) = Q

−T/2
k (t)ϕk(t|t) .

4. SYMMETRIZATION

Since the proposed decision statistics (10) and (18) are
defined in terms of forward pseudoprediction errors only,
the results of bandwidth selection will be in general dif-
ferent if the analysis is performed backward in time. This
inconsistency can be eliminated if both forward (−) and
backward (+) pseudoprediction errors are incorporated in
Jk(t).
The forward/backward AR model can be written down in
the form

y(t) = ϕT
±(t)θ(t) + e±(t)

where
ϕ±(t) = [y(t± 1), . . . , y(t± n)]T .

Denote by

ε±k (t) = y(t)−ϕT
±(t)θ̂

±
k (t)

the forward/backward pseudoprediction errors associated
with the forward/backward NWLS estimators, respec-
tively. The symmetrized decision statistic can be defined
in the form

PPE∗
k(t) =

M∑
i=−M

{[ε−k (t+ i)]◦}2 +
M∑

i=−M

{[ε+k (t+ i)]◦}2

where

[ε±k (t)]
◦ =

ε±k (t)

1− b±k (t)

b±k (t) = ϕT
±(t)[R

±
k (t)]

−1ϕ±(t) .

Due to different initial conditions, constituted by the
samples y(t − k − 1), . . . , y(t − k − n) for the forward

estimator θ̂−
k (t), and by the samples y(t + k + 1), . . . ,

y(t+k+n) for the backward estimator θ̂+
k (t), it holds that

R−
k (t) �= R+

k (t), r
−
k (t) �= r+k (t) and consequently θ̂−

k (t) �=
θ̂+
k (t), which means that the computational complexity of

the joint forward-backward analysis is doubled compared
with that of the unidirectional analysis.
In the NWYW case the situation is different. Since it holds
that Q−

k (t) = Q+
k (t) = Qk(t), q−

k (t) = q+
k (t) = qk(t)

and θ̃−
k (t) = θ̃+

k (t) = θ̃k(t), the computational overhead
required to evaluate, instead of (18), the symmetrized
decision statistic

PPE∗
k(t) =

M∑
i=−M

{[η−k (t+ i)]◦}2 +
M∑

i=−M

{[η+k (t+ i)]◦}2

where
[η±k (t)]

◦ = η±k (t) +
c±k (t)

1− d±k (t)
γ±
k (t)

η±k (t) = y(t)−ϕT
±(t)θ̃

±
k (t)

γ±
k (t) = y(t)− [ϕ±

k (t|t)]
Tθ̃±

k (t)

c±k (t) = ϕT
±(t)Q

−1
k (t)ϕ±

k (t|t)
d±k (t) = [ϕ±

k (t|t)]
TQ−1

k (t)ϕ±
k (t|t)

ϕ±
k (t|t) = [yk(t± 1|t), . . . , yk(t± n|t)]T,

is noticeably reduced.
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If needed, the symmetrized NWLS estimates of θ(t) and
ρ(t) can be obtained from

θ̄k(t) =
1

2
[θ̂−

k (t) + θ̂+
k (t)], ρ̄k(t) =

1

2
[ρ̂−k (t) + ρ̂+k (t)] .

In the NWYW case such symmetrization is not necessary.

5. COMPUTER SIMULATIONS

Performance of the proposed bandwidth selection methods
was checked by means of computer simulation. First,
two time-invariant “anchor” AR models (A, B), of order
n = 8, were obtained by performing local identification
of an audio signal using the NWYW algorithm. The
identified fragments differed in their resonance structures -
see Fig. 1. Anchor models were specified in the lattice form
{δ1, . . . , δn, p0}, where δi, i = 1, . . . , n, denote reflection
coefficients, which can be obtained as a byproduct of the
Levinson-Durbin algorithm [Söderström & Stoica (1988)],
and p0 = σ2

y. The lattice representation of a stable AR
model is unique and can be uniquely transformed into the
direct representation {a1, . . . , an, ρ}.
The time-varying AR model was obtained by morphing
the anchor model A into B and vice versa. Transition from
the model A, described by {δA1 , . . . , δAn , pA0 }, valid at the
instant t1, to the model B, described by {δB1 , . . . , δBn , pB0 },
valid at the instant t2, was realized using the following
transformations

δi(t) = [1− µ(t)]δAi + µ(t)δBi ,

p0(t) = [1− µ(t)]pA0 + µ(t)pB0 ,

i = 1, . . . , n, t ∈ [t1, t2]

where

µ(t) =
t− t1
t2 − t1

.

Transition from the model B back to the model A was
realized in an analogous way. At each time instant t ∈
[1, Ts], where Ts denotes simulation time, the indirect time-
varying lattice parametrization {δ1(t), . . . , δn(t), p0(t)} was
transformed into the direct time-varying representation
{a1(t), . . . , an(t), ρ(t)}, further used for AR process gen-
eration. Such a morphing technique guarantees stability
of the resultant time-variant model at all times as long
as both anchor models are stable (stability is not guaran-
teed if morphing is applied directly to the autoregressive
coefficients).
The applied morphing scenario is symbolically depicted
in Fig. 2. The identified model, analyzed in the interval
[1, Ts], had 3 periods of time-invariance (A-A, B-B, A-A),
each of length l1, interleaved with 2 periods of nonstation-
ary behavior (A-B, B-A), each of length l2 (Ts = 3l1+2l2).
To check performance of the compared methods under
different rates of signal nonstationarity, 3 different values
of simulation time Ts were considered (64000, 32000 and
16000), resulting in 3 different speeds of parameter varia-
tion (SoV): S1 (slow, l1 = 16000, l2 = 8000), S2 (medium,
l1 = 8000, l2 = 4000), and S3 (fast, l1 = 4000, l2 = 2000),
respectively. In each case data generation was started 1000
instants prior to t = 1 and was continued for 1000 instants
after t = Ts. The variable-bandwidth schemes were made
up of 4 algorithms with bandwidth parameters set to
k1 = 225, k2 = 337, k3 = 505 and k4 = 757. The applied
windows were given by (4) – for the NWLS algorithms,
and by (16) – for the NWYW algorithms.
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Fig. 1. Power spectra of two stationary anchor processes.

Two performance measures were used to evaluate and com-
pare the instantaneous identification results: the squared
parameter tracking error

dPAR(t) =‖ θ(t)− θ̂(t) ‖2

and the Itakura-Saito spectral distortion measure

dIS(t) =
1

2π

∫ π

−π

[
S(ω, t)

Ŝ(ω, t)
− log

S(ω, t)

Ŝ(ω, t)
− 1

]
dω

where

S(ω, t) =
ρ(t)

|A[ejω,θ(t)]|2
, Ŝ(ω, t) =

ρ̂(t)

|A[ejω, θ̂(t)]|2

A[z,θ(t)] = 1−
n∑

i=1

ai(t)z
−i

and ω ∈ (−π, π] denotes the normalized angular frequency.
We note that under the local stationarity framework de-
veloped by Dahlhaus [Dahlhaus (2012)], the instantaneous
spectral density function S(ω, t) of a time-varying AR
process (1) is a well and uniquely defined characteristic.
Table 1 shows identification results – the measures dPAR(t)
and dIS(t) averaged over t ∈ [1, Ts] and 100 inde-
pendent realizations of {y(t)} – obtained for 4 fixed-
bandwidth NWLS/NWYW algorithms (k1, . . . , k4), and
3 variable-bandwidth algorithms based on minimization
of the FPE statistics, the PPE statistics (M = 35), and
the symmetrized PPE statistic, respectively. Both FPE-
based and PPE-based algorithms with adaptive bandwidth
scheduling work satisfactorily and yield comparable re-
sults, usually better than the results provided by the fixed-
bandwidth algorithms. The symmetrized PPE rule works
slightly better than the one-sided rule.
Finally, Fig. 3 shows the locally time averaged histograms
of the results of bandwidth selection for the NWYW algo-
rithm (each time bin covers 500 consecutive time instants)
obtained for 100 process realizations. The analogous his-
tograms for the NWLS algorithm look almost identically.
On the qualitative level, the PPE-based selection seems to
work better than the FPE-based one.
The important advantage of the PPE-based approach is its
wider range of applicability. While the generalized FPE
criterion (21) can be used for evaluation of performance
of the NWLS/NWYW algorithms only, the PPE criterion
(18) can be extended to other classes of adaptive identifica-
tion algorithms, such as the Kalman filter based parameter
smoothers described in [Niedźwiecki (2012)]. Hence, using
this approach, one can control banks of adaptive filters
made up of noncausal algorithms based on different prin-
ciples.
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If needed, the symmetrized NWLS estimates of θ(t) and
ρ(t) can be obtained from

θ̄k(t) =
1

2
[θ̂−

k (t) + θ̂+
k (t)], ρ̄k(t) =

1

2
[ρ̂−k (t) + ρ̂+k (t)] .

In the NWYW case such symmetrization is not necessary.

5. COMPUTER SIMULATIONS

Performance of the proposed bandwidth selection methods
was checked by means of computer simulation. First,
two time-invariant “anchor” AR models (A, B), of order
n = 8, were obtained by performing local identification
of an audio signal using the NWYW algorithm. The
identified fragments differed in their resonance structures -
see Fig. 1. Anchor models were specified in the lattice form
{δ1, . . . , δn, p0}, where δi, i = 1, . . . , n, denote reflection
coefficients, which can be obtained as a byproduct of the
Levinson-Durbin algorithm [Söderström & Stoica (1988)],
and p0 = σ2

y. The lattice representation of a stable AR
model is unique and can be uniquely transformed into the
direct representation {a1, . . . , an, ρ}.
The time-varying AR model was obtained by morphing
the anchor model A into B and vice versa. Transition from
the model A, described by {δA1 , . . . , δAn , pA0 }, valid at the
instant t1, to the model B, described by {δB1 , . . . , δBn , pB0 },
valid at the instant t2, was realized using the following
transformations

δi(t) = [1− µ(t)]δAi + µ(t)δBi ,

p0(t) = [1− µ(t)]pA0 + µ(t)pB0 ,

i = 1, . . . , n, t ∈ [t1, t2]

where

µ(t) =
t− t1
t2 − t1

.

Transition from the model B back to the model A was
realized in an analogous way. At each time instant t ∈
[1, Ts], where Ts denotes simulation time, the indirect time-
varying lattice parametrization {δ1(t), . . . , δn(t), p0(t)} was
transformed into the direct time-varying representation
{a1(t), . . . , an(t), ρ(t)}, further used for AR process gen-
eration. Such a morphing technique guarantees stability
of the resultant time-variant model at all times as long
as both anchor models are stable (stability is not guaran-
teed if morphing is applied directly to the autoregressive
coefficients).
The applied morphing scenario is symbolically depicted
in Fig. 2. The identified model, analyzed in the interval
[1, Ts], had 3 periods of time-invariance (A-A, B-B, A-A),
each of length l1, interleaved with 2 periods of nonstation-
ary behavior (A-B, B-A), each of length l2 (Ts = 3l1+2l2).
To check performance of the compared methods under
different rates of signal nonstationarity, 3 different values
of simulation time Ts were considered (64000, 32000 and
16000), resulting in 3 different speeds of parameter varia-
tion (SoV): S1 (slow, l1 = 16000, l2 = 8000), S2 (medium,
l1 = 8000, l2 = 4000), and S3 (fast, l1 = 4000, l2 = 2000),
respectively. In each case data generation was started 1000
instants prior to t = 1 and was continued for 1000 instants
after t = Ts. The variable-bandwidth schemes were made
up of 4 algorithms with bandwidth parameters set to
k1 = 225, k2 = 337, k3 = 505 and k4 = 757. The applied
windows were given by (4) – for the NWLS algorithms,
and by (16) – for the NWYW algorithms.
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Fig. 1. Power spectra of two stationary anchor processes.

Two performance measures were used to evaluate and com-
pare the instantaneous identification results: the squared
parameter tracking error

dPAR(t) =‖ θ(t)− θ̂(t) ‖2

and the Itakura-Saito spectral distortion measure

dIS(t) =
1

2π

∫ π

−π

[
S(ω, t)

Ŝ(ω, t)
− log

S(ω, t)

Ŝ(ω, t)
− 1

]
dω

where

S(ω, t) =
ρ(t)

|A[ejω,θ(t)]|2
, Ŝ(ω, t) =

ρ̂(t)

|A[ejω, θ̂(t)]|2

A[z,θ(t)] = 1−
n∑

i=1

ai(t)z
−i

and ω ∈ (−π, π] denotes the normalized angular frequency.
We note that under the local stationarity framework de-
veloped by Dahlhaus [Dahlhaus (2012)], the instantaneous
spectral density function S(ω, t) of a time-varying AR
process (1) is a well and uniquely defined characteristic.
Table 1 shows identification results – the measures dPAR(t)
and dIS(t) averaged over t ∈ [1, Ts] and 100 inde-
pendent realizations of {y(t)} – obtained for 4 fixed-
bandwidth NWLS/NWYW algorithms (k1, . . . , k4), and
3 variable-bandwidth algorithms based on minimization
of the FPE statistics, the PPE statistics (M = 35), and
the symmetrized PPE statistic, respectively. Both FPE-
based and PPE-based algorithms with adaptive bandwidth
scheduling work satisfactorily and yield comparable re-
sults, usually better than the results provided by the fixed-
bandwidth algorithms. The symmetrized PPE rule works
slightly better than the one-sided rule.
Finally, Fig. 3 shows the locally time averaged histograms
of the results of bandwidth selection for the NWYW algo-
rithm (each time bin covers 500 consecutive time instants)
obtained for 100 process realizations. The analogous his-
tograms for the NWLS algorithm look almost identically.
On the qualitative level, the PPE-based selection seems to
work better than the FPE-based one.
The important advantage of the PPE-based approach is its
wider range of applicability. While the generalized FPE
criterion (21) can be used for evaluation of performance
of the NWLS/NWYW algorithms only, the PPE criterion
(18) can be extended to other classes of adaptive identifica-
tion algorithms, such as the Kalman filter based parameter
smoothers described in [Niedźwiecki (2012)]. Hence, using
this approach, one can control banks of adaptive filters
made up of noncausal algorithms based on different prin-
ciples.
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Fig. 2. Simulation scenario (top figure) and a typical
realization of the corresponding nonstationary AR
process (bottom figure).
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Fig. 3. Locally time averaged histograms of the results
of bandwidth selection obtained for the NWYW
algorithm (Ts = 16000).
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